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ABSTRACT 

Ageing fixed offshore platforms are growing in numbers worldwide. Operators 
choose to extend the platforms lives beyond the original design to improve economic 
viability and increase profitability. The structural integrity of these platforms is 
affected by various degradation factors throughout their service lives. However, a 
limited number of comprehensive studies have been conducted on the relationship 
between reserve strength ratio, probability of failure and return period with multiple 
degradation factors. This study aims to develop a comprehensive regression model of 
reserve strength ratio, probability of failure and return period by considering marine 
growth, corrosion and subsidence. Calculating reserve strength ratio, probability of 
failure, and return period are fairly time consuming. The presence of the proposed 
model is to provide a quick reference and immediate results of the remaining life of 
the fixed offshore platform in the occurrence of degradations, thus minimising the 
usage of industry resources. It is also expected that degradation effects over time will 
be predicted accurately. The development of the degradation limit state model adopted 
structural reliability assessment, which has been widely used in the oil and gas industry 
to determine the probability of failure and return period of offshore structures. The 
assessment can provide a higher confidence level that is required by regulators and 
stakeholders. This study includes the effects of wave height at the collapse of the 
platform caused by wave-in-deck. The wave-in-deck load has been calculated based 
on the silhouette method introduced by International Organization for Standardization. 
The degradation limit state models considered have 0 m, 2 m, 4 m, 6 m and 8 m 
subsidence. Each of them with 0 mm, 3 mm, 6 mm, 9 mm and 12 mm corrosion depth 
has been studied separately. The model has been developed using both single and 
linear multi regression method. The proposed models are then validated with a 
platform of similar configurations. Based on the validation results of single regression 
method, the lowest accuracy for reserve strength ratio was 94.9 %, while the 
probability of failure and return period were 56.6 % and 69.7 %, respectively. Despite 
that, the variations are acceptable since both probability of failure and return period 
values conform with the standard industry requirements. However, the results for 5 m 
subsidence shows very low accuracies, hence not recommended to utilise subsidence 
value that has not been considered in model development. For linear multi regression 
method, the lowest accuracy for reserve strength ratio has been 92.1 %. However, both 
probability of failure and return period shows very low accuracies, therefore, not 
recommended to be utilized by industry. It has been found that although the analysis 
model used for validation had a similar configuration, the overall platform surfaces 
were different, which in turn gave different platform responses. This eventually led to 
differences in the probability of failures and return periods. Careful consideration is 
expected prior to adopting the proposed model as it is to be used with platforms, which 
have similar platform configurations, structural member sizing, water depth and 
metocean data. The accuracy and effectiveness of the proposed model will generally 
assist operators in the industry in decision-making and more importantly, in outlining 
the action items for business risk management in which marine growth, corrosion, and 
subsidence are expected to occur. 
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ABSTRAK 

Bilangan pelantar minyak tetap luar pesisir lebih usia semakin bertambah di seluruh 
dunia. Pengendali memilih untuk memanjangkan jangka hayat pelantar melebihi usia reka 
bentuk asal bagi meningkatkan daya maju ekonomi dan keuntungan. Integriti struktur pelantar 
ini dipengaruhi oleh pelbagai masalah degradasi sepanjang hayat operasi. Walau 
bagaimanapun, sebilangan kajian komprehensif yang terbatas telah dijalankan mengenai 
hubung kait antara nisbah kekuatan simpanan, kebarangkalian gagal and tempoh ulangan 
dengan pelbagai degradasi. Kajian ini bertujuan untuk membangunkan model regresi yang 
menyeluruh bagi nisbah kekuatan simpanan, kebarangkalian gagal and tempoh ulangan 
dengan mengambil kira hidupan marin, karatan dan enapan. Mengira nisbah kekuatan 
simpanan, kebarangkalian gagal dan tempoh ulangan memakan masa yang agak panjang. 
Kehadiran model yang diusulkan ini dapat menjadi rujukan dan memberikan keputusan yang 
segera terhadap baki jangka hayat pelantar minyak tetap luar pesisir sekiranya degradasi 
terjadi, seterusnya mengurangkan penggunaan tenaga kerja industri. Turut dijangkakan 
bahawa kesan degradasi dari masa ke masa akan dapat diramalkan dengan tepat. Pembangunan 
model degradasi had keadaan menggunakan penilaian kebolehpercayaan struktur, yang telah 
banyak digunakan dalam industri minyak dan gas untuk menentukan kebarangkalian gagal dan 
tempoh ulangan pelantar minyak tetap luar pesisir. Penilaian ini dapat memberikan aras 
keyakinan yang diperlukan oleh pihak berkuasa dan berkepentingan. Kajian ini juga 
merangkumi kesan ketinggian ombak ketika platform runtuh disebabkan oleh bebanan 
hempasan ombak ke dek. Bebanan hempasan ombak ke dek dikira berdasarkan kaedah siluet 
yang dicadangkan oleh International Organization for Standardization. Model degradasi had 
keadaan ini mengambil kira enapan sebanyak 0 m, 2 m, 4 m, 6 m dan 8m. Setiap model tersebut 
mempunyai 0 mm, 3 mm, 6 mm, 9 mm dan 12 mm tebal karatan. Model in dibangunkan 
mengunakan kaedah regresi tunggal dan kaedah lelurus berbilang. Model yang dicadangkan 
juga telah dibandingkan dengan satu pelantar minyak luar persisir yang mempunyai persamaan 
konfigurasi. Berdasarkan pengesahan menggunakan kaedah regresi tunggal, nilai ketepatan 
terendah bagi nisbah kekuatan simpanan adalah 94.9 %, manakala kebarangkalian gagal dan 
tempoh ulangan, nilainya masing-masing adalah 56.6 % dan 69.7 %. Walau bagaimanapun, 
perbezaan ini boleh diterima kerana nilai kebarangkalian gagal dan tempoh ulangan memenuhi 
keperluan piawaian industri. Walau bagaimanapun, keputusan enapan 5 m menunjukkan 
ketepatan yang sangat rendah, oleh itu tidak digalakkan untuk menggunakan nilai yang tidak 
diambil kira dalam pembangunan model. Bagi kaedah regresi lelurus berbilang, ketepatan 
terendah untuk nisbah kekuatan simpanan adalah 92.1 %. Namun begitu, nilai kebarangkalian 
gagal dan tempoh ulangan menunjukkan ketepatan yang sangat rendah, maka tidak disarankan 
untuk digunakan oleh industri. Dengan ini didapati bahawa walaupun analisis model yang 
digunakan untuk validasi mempunyai konfigurasi yang sama, tetapi keseluruhan permukaan 
pelantar adalah berbeza menyebabkan perbezaan dari segi tindakbalas pelantar. Ini akan 
menyebabkan perbezaan kebarangkalian gagal dan tempoh ulangan. Pertimbangan yang teliti 
adalah diperlukan sebelum menggunakan model yang dicadangkan ini kerana ia mestilah 
digunakan bersama pelantar minyak yang mempunyai persamaan dari segi konfigurasi 
platform, saiz anggota struktur, kedalaman air dan data meteorologi samudera. Ketepatan dan 
keberkesanan model degradasi yang diusulkan dalam kajian ini akan membantu pengendali di 
dalam industri untuk membuat keputusan. Lebih penting, dalam menggariskan item tindakan 
bagi pengurusan risiko perniagaan sekiranya ada hidupan marin, karatan dan enapan yang 
dijangka akan berlaku. 
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CHAPTER 1  
 

 

INTRODUCTION 

1.1 Background 

Anglo-Saxon Petroleum Company, owned by Royal Dutch Shell, discovered 

the first commercial oil well in Malaysia in 1910. It was located at onshore field in 

Miri, Sarawak (Seong and Hong, 1995; Sorkhabi, 2010). The discovery marked the 

starting point of petroleum industry in Malaysia. Over the years, exploration was 

extended to offshore location which brought West Lutong oilfield in Sarawak as the 

first offshore oilfield which started operating in 1968 (Abdul Rahim and Liwan, 2012). 

In 2000, there were more than 300 offshore platforms in Malaysia operated by 

PETRONAS Peninsular Malaysia Operation (PMO), Sarawak Operation (SKO) and 

Sabah Operation (SBO) (Wan Abdullah Zawawi et al., 2012). According to Ng et al. 

(2019), more than 50 % of platforms in Malaysia operate for more than 25 years as 

shown in Figure 1.1. The oldest platform owned by PETRONAS is already in 

operation for 50 years (Ng et al., 2019). 

 

Figure 1.1 PETRONAS platform age distribution (Ng et al., 2019) 
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Ageing platforms are either decommissioned or go through a series of 

structural integrity assessment for life extension. Structural integrity assessment is 

crucial to ensure offshore platforms are able to operate safely and avoid structural 

failure. There are two factors that may affect the structural integrity of offshore 

platforms. They are excessive load and insufficient strength (Ayob et al., 2014; 

Kajuputra et al., 2016). The excessive load may come from environmental load, 

operational load, and accidental load. Whereas insufficient strength may cause by error 

in design, fabrication, installation, operation, and degradation. Degradation is critical 

in ensuring the integrity of platforms as the operators opt to extend their platform 

service life beyond the original design life (Shanker, 2018). 

The structural integrity of ageing platform affected by various degradation 

factor throughout its service life. For example, they are corrosion, marine growth, weld 

crack, scour, subsidence, and damaged structural member due to boat impact (Ng et 

al., 2019; McLean et al., 2019; Dehghani and Aslani, 2019). Degraded offshore 

structure will reduce the structural integrity over time (Gholami et al., 2018). Hence, 

it is crucial to consider degradation in the structural integrity assessment to ensure the 

result represents actual condition at site. This study considers degradation, which are 

marine growth, corrosion, and subsidence in structural reliability assessment (SRA). 

Structural reliability assessment (SRA) is not new to oil and gas industries as 

it has been applied to offshore structure since 1960s (Cornell, 1995). According to 

Szalewski (2019), structural reliability assessment can provide confidence level 

required by regulators and stakeholders. It is achieved by maintaining the target safety 

level beyond the original design life. One of structural reliability assessment 

component is pushover analysis (Tromans and van de Graaf, 1992; Ayob et al., 2014; 

Mat Soom et al., 2018), which has been performed to generate the reserve strength 

ratio. Subsequently, reserve strength ratio is utilised to determine annual probability 

of failure and return period of platform.  Both probability of failure and return period 

of platform are important for the operator to justify the risk to their assets.  

Bow-tie diagram is widely adopted in risk analysis. In order to present the 

background of problem of existing ageing structure, bow-tie diagram has been utilised 
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as shown in Figure 1.2. It comprises of fault trees and event trees, which are connected 

to hazardous event or top event (Lu et al., 2015; Vileiniskis and Remenyte-Prescott, 

2017). The fault tree is divided into hazard and threat, while event tree is consequences 

of hazardous event. Bow-tie diagram is one of Health, Safety, Security and 

Environment (HSSE) tool support for as Low as Reasonably Practicable (ALARP) 

(Valeur, 2014). 
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Figure 1.2 Bowtie of existing jacket structure with degradation 
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failure of control barrier may cause hazardous event or top event which is platform 

collapse.  

As a recovery measure, emergency response will be activated, and platform 

will be shut down as soon as possible to contain leak from live piping or wells. 

Consequences of platform collapse can be loss of life, injury to people, damage to 

assets and damage to environment (Azman et al., 2019). This study focused on three 

degradation issues which are marine growth, corrosion and subsidence and associated 

threat, control barrier and top event as shaded in blue in Figure 1.2. 

1.2 Problem Statement 

Ageing platforms are growing in numbers worldwide. To improve economic 

viability and increase profitability, operators choose to extend the platform life beyond 

the original design life (Aeran et al., 2017; Animah and Shafiee, 2018). Life extension 

also reduces both capital expenditure (CAPEX) and operational expenditure (OPEX) 

of an offshore platform (Shafiee and Animah, 2017). Structural reliability assessment 

has been widely adopted in oil and gas industry and has been utilised by operator to 

quantify whether ageing platform life can be extended, as studied by Mat Soom et al. 

(2016) and Copello et al. (2017).  

However, structural reliability assessment is complex and time-consuming. 

The conventional procedure explained by Tromans and van de Graaf (1992) and Mat 

Soom et al. (2019) comprises of data collection, structural modelling, and preparation, 

hindcast study, pushover analysis and calculation of probability of failure and return 

period. It is estimated that engineer requires two (2) months to complete per cycle of 

structural reliability assessment for specific magnitude of degradation per platform 

with industrial manhours of approximately 280 manhours (total manhours from 

principle and senior engineer). Thus, by utilising the proposed model, an engineer is 

able to save time as the reserve strength ratio, probability of failure and return period 

have been calculated depending on degradation level. This study will help industry to 

determine the results even before the actual degradation occur hence will save a 
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significant time and minimise the use of resources as the resources may contribute to 

better field economics. 

Based on the review performed on structural reliability assessment, majority of 

the author did not clearly specify whether degradation has been included as part of 

their structural reliability assessment. Even if the author considered degradation, only 

single factor was highlighted as part of their study. However, there are chances that 

several degradation factors may occur at the same time. It is also an industry 

requirement to consider degradation such as marine growth and corrosion depth as 

during design and assessment of fixed offshore platform. Furthermore, the author 

concentrated on specific value of degradation, whereas this study considered multiple 

degradation magnitude so that industry will be able to choose a correct model once 

survey data is available. 

It is also noted that limited study has been conducted on the relationship 

between reserve strength ratio, probability of failure and return period, and degradation 

faced by fixed offshore structures. This study considered constant marine growth, 

corrosion, and subsidence to determine the impact of degradation to structural 

reliability assessment by developing a comprehensive degradation limit state model. 

Corrosion was applied in the splash zone area by reducing the structural member 

thickness. Subsidence effects, which include reduction of air gap and wave-in-deck 

were considered in the proposed model as the effects of wave-in-deck load are 

excluded during reserve strength ratio determination. 

1.3 Aims and Research Objectives 

The aim of the study is to develop a comprehensive regression limit state model 

of reserve strength ratio, probability of failure and return period by considering 

degradation in the structural reliability assessment of ageing fixed offshore platforms. 

The proposed model is expected to provide an immediate result in order to determine 

whether there is a need to perform a comprehensive structural reassessment.  
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To achieve these aims, three objectives are set as follows: 

i) To investigate the primary degradation factors for comprehensive ageing fixed 

offshore platforms model development. 

ii) To develop a comprehensive degradation limit state model of reserve strength 

ratio, probability of failure and return period for ageing fixed offshore 

platforms. 

iii) To validate the proposed degradation limit state model by conducting a 

comprehensive parametric study. 

1.4 Scopes of the Study 

This study focused on 4-legged fixed offshore jacket structures. Three 

degradation factors were considered in structural reliability assessment. They are 

marine growth, corrosion, and subsidence. Marine growth is considered constant 

throughout the analysis. The thickness was based water fixed offshore platform located 

at East Malaysian water. The value was adopted by industry, which was based on the 

actual survey. Corrosion was considered up to 12 mm at the splash zone area, while 

subsidence is considered up to 8 m. Both corrosion and subsidence values were chosen 

based on the predicted value at platform location. Reliability Based Design and 

Assessment as explained by Mat Soom et al. (2016) was utilised to calculate the 

probability of failure and return period of the platform. The target probability of failure 

and return period were based on International Organization for Standardization (ISO, 

2007).  

Existing analysis model were used and verified using Structural Analysis 

Computer Software (SACS). The software is widely used in the industry especially for 

the fixed jacket offshore structure. It is capable to perform linear static analysis and 

built-in with several code checks such as International Organization for 

Standardization (ISO), American Petroleum Institute (API) and Norwegian Shelf’s 

Competitive Position Standard (NORSOK). Ultimate Strength for Offshore Structures 
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(USFOS) computer programme was utilised to determine the reserve strength ratio. 

The software is widely used by the industry for nonlinear structural analysis. The 

regression analysis was performed to identify and develop the most comprehensive 

model for reserve strength ratio, probability of failure and return period of ageing fixed 

offshore structure. Details of the method were elaborated further in Chapter 3. 

1.5 Significance of the Study 

A comprehensive regression model of probability of failure considering 

degradation, which are marine growth, corrosion, and subsidence in structural 

reliability assessment were introduced in this study. The proposed model is efficient 

and economical in terms of time and the use of resources as engineers do not need to 

run a full cycle of structural reliability assessment, which is time consuming. What 

engineers need to do are to find the degradation value to estimate the reserve strength 

ratio, probability of failure and return period, and compare the results with industry 

standard which is ISO (2007). 

By systematically considers marine growth, corrosion, and subsidence in 

structural reliability assessment, it is expected that degradation effect will be predicted 

accurately. Outcomes from this study shall also allow the operator to decide and to 

outline the action for their business risk management in case where marine growth, 

corrosion and subsidence is expected to occur. This is important as it involves quality, 

safety, and cost, especially when the collapse of the platform potentially involves the 

loss of life, damage to assets and damage to environment. 

1.6 Thesis Outline 

Chapter 1 describes the introduction of this thesis, which includes general 

background of oil and gas scenes in Malaysia, brief description of degradation issue 

and an introduction of structural reliability assessment. This chapter also include 
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detailed problem statement, aims and objectives, scopes, and significance of the study 

and lastly thesis outline. 

Chapter 2 contains the review of literature of this study. It includes platform 

degradation factors such as marine growth, corrosion, subsidence, weld crack, 

damaged member and scour and theories behind the study. This chapter explains the 

approach, principle and procedure of structural reliability assessment. This chapter 

also provides review on structural reliability assessment, which has been adopted in 

oil and gas industry and its development.  

Chapter 3 explains research methodology in detail including research 

flowchart and structural model preparation. This chapter also explains the 

methodology of structural reliability assessment. The development of degradation 

limit state model is taking into account marine growth, corrosion, and subsidence.  

These were elaborated in detail, together with numerical example of proposed method. 

This chapter also provides validation process of the proposed degradation limit state 

model. 

Chapter 4 discusses the structural reliability assessment results from pushover 

analysis, extreme air gap analysis and regression analysis of the proposed degradation 

limit state model. This chapter also includes validation of the proposed degradation 

limit state model by comparing the reserve strength ratio, probability of failure and 

return period. 

Chapter 5 concludes the objective of the study. Apart from that, it also 

contains the contribution of current study and recommendation for future. List of 

publications, innovations and intellectual properties are also part of this chapter. 
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