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ABSTRACT 

Malicious Uniform Resource Locators (URLs) are one of the major threats in 

cybersecurity. Cyber attackers spread malicious URLs to carry out attacks such as 

phishing and malware, which lead unsuspecting visitors into scams, resulting in 

monetary loss, information theft, and other threats to website users. At present, 

malicious URLs are detected using blacklist and heuristic methods, but these methods 

lack the ability to detect new and obfuscated URLs. Machine learning and deep 

learning methods have been seen as popular methods for improving the previous 

method to detect malicious URLs. However, these methods are entirely data-

dependent, and a large, updated dataset is necessary for the training to create an 

effective detection method. Besides, accuracy and detection mostly depend on the 

quality of training data. This research developed a framework to detect malicious URL 

based on predefined static feature classification by allocating priority coefficients and 

feature evaluation methods. The feature classification employed 39 classes of blacklist, 

lexical, host- based, and content-based features. A dataset containing 2000 real-world 

URLs was gathered from two popular phishing and malware websites, URLhaus and 

PhishTank. In the experiment, the proposed framework was evaluated with three 

supervised machine learning methods: Support Vector Machine (SVM), Random 

Forest (RF), and Bayesian Network (BN). The result showed that the proposed 

framework outperformed these methods. In addition, the proposed framework was 

benchmarked with three comprehensive malicious URL detection methods, which 

were Precise Phishing Detection with Recurrent Convolutional Neural Networks, Li, 

and URLNet in terms of accuracy and precision. The results showed that the proposed 

framework achieved a detection accuracy of 98.95% and a precision value of 98.60%. 

In sum, the developed malicious URL framework significantly improves the detection 

in terms of accuracy.  
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ABSTRAK 

Malicious Uniform Resource Locators (URL) adalah salah satu ancaman 

utama dalam keselamatan siber. Penyerang siber menyebarkan URL perosak untuk 

melakukan serangan seperti pancingan data dan perisian perosak yang mampu menarik 

perhatian pengguna internet kepada penipuan siber, mengakibatkan kerugian 

kewangan, rompakan maklumat dan ancaman  lain terhadap pengguna internet. Pada 

masa ini, URL perosak boleh dikesan menggunakan kaedah senarai hitam dan trial 

and error, tetapi kaedah ini tidak mempunyai keupayaan untuk mengesan URL baharu 

dan yang tidak jelas. Pembelajaran menggunakan mesin dan kaedah pembelajaran 

yang mendalam telah dilihat sebagai kaedah yang disukai untuk menambah baik 

kaedah sebelumnya untuk mengesan URL perosak ini. Walau bagaimanapun, kaedah 

ini bergantung sepenuhnya kepada data,  dan set data yang besar dan dikemas kini  

diperlukan untuk latihan bagi mewujudkan  kaedah pengesanan yang berkesan. Selain 

itu, ketepatan dan pengesanan sangat bergantung pada kualiti dan latihan. Penyelidikan 

ini membangunkan pengesanan rangka kerja URL perosak berdasarkan pengelasan ciri 

statik yang telah ditetapkan dengan memberikan keutamaan kepada pekali keutamaan 

dan kaedah penilaian ciri. Pengelasan ciri menggunakan 39 senarai hitam, leksikal, 

host-based, dan ciri yang berasaskan kandungan. Set data yang mengandungi 2000 

real-word URL telah dikumpulkan daripada dua laman web terkenal untuk pancingan 

data dan perisian perosak, iaitu URLhaus dan PhishTank. Dalam kajian ini, rangka 

kerja yang dicadangkan telah dinilai dengan tiga kaedah pembelajaran yang diselia, 

iaitu: Support Vector Machine (SVM), Random Forest (RF) dan Bayesian Network 

(BN). Keputusan yang diperoleh mendapati bahawa rangka kerja yang dicadangkan 

mengatasi prestasi kaedah ini. Selain itu, rangka kerja yang dicadangkan telah ditanda 

aras dengan tiga kaedah pengesanan URL perosak secara menyeluruh, iaitu Precise 

Phishing Detection with Recurrent Convolutional Neural Networks (PDRCNN), 

kaedah Li dan URLNet dari segi ketepatan dan kejituan. Keputusan menunjukkan 

bahawa rangka kerja yang telah dicadangkan mencapai ketepatan pengesanan 

sebanyak 98.95% serta nilai ketepatan sebanyak 98.60%. Secara ringkas, rangka kerja 

URL perosak yang dibangunkan dengan ketara meningkatkan pengesanan dari segi 

ketepatan. 
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CHAPTER 1  
 

 

INTRODUCTION 

1.1 Introduction 

With the development of Internet technology, the number of world wide web 

services has increased, like online banking and electronic commerce, which deal with 

important information such as credit card numbers, bank accounts, and personal 

information. The crux of this growth on the internet is the rise of various types of 

cyberattacks on unsuspecting users, and securing this information during any 

transactions has become a necessity (ALfouzan, 2022). The field of computer security 

is conducted with a variety of threats and vulnerabilities that can lead to the lack of 

accessibility of network resources and compromise the system's confidentiality, 

integrity, and availability (Butt, 2020). Cybersecurity refers to the practice of keeping 

computer systems and networks safe against unauthorized access, theft, or destruction 

(Rakotoasimbahoaka, 2019).  

Malicious (Harmful) URLs have become one of the most significant 

cybersecurity threats on the Internet today (Naveen, 2019). The vast majority of 

cyberattacks are launched as a result by clicking on malicious websites (Manyumwa,  

2020). Malicious URLs host unwanted material, which leads unsuspecting visitors into 

scams, resulting in monetary loss and information theft (Chatterjee, 2019). The field 

of cybersecurity has developed into a dominating focus for researchers as they attempt 

to eliminate all threats and dangers provided by malicious URLs (Park, 2022). The fast 

growth of harmful URL trends makes detection extremely difficult since attackers are 

sufficiently skilled to utilize numerous obfuscated methods to keep the URLs 

ambiguous (Alshehri, 2022). 

Phishing and malware are the most popular malicious URL attacks, which 

occur daily and harm millions of people, and can target various operating systems. 
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(Catak, 2021; Patil, 2018). Phishing is a type of online fraud attack in which attackers 

use multiple fraudulent social engineering tactics to trick unsuspecting victims into 

disclosing their personal data (Benavides, 2020). Malware, short for malicious 

software, is a type of code created by cyberattackers with the goal of causing extensive 

damage to data and systems or gaining unauthorised access to a network (Krombholz,  

2014). The number of phishing and malware websites has increased rapidly from a 

few thousand in January 2007 to more than 2 million in January 2021(Google-Safe-

Browsing, 2022). According to (Johnson, 2022) there were less than 145,000 different 

phishing websites detected around the world in 2013. But by 2021, this number had 

jumped to over 630,000, which is a huge increase. 

In this research, an efficient framework for detecting malicious URLs is 

proposed. This framework is based on predefined static feature classifications to 

overcome the multiple limitations of current malicious URL detection methods. The 

priority coefficient and feature evaluation methods are allocated to enhance detection 

accuracy. The priority coefficient is allocated to the classes and features according to 

the level of importance in order to lend greater weight to the essential classes and 

features that are effective in detecting malicious URLs. The feature evaluation method 

assesses the value delivered from feature classification. It determines if all of the 

features deliver a value, and if any of them fails to deliver, the method will decide to 

use the other feature's coefficient value instead, which leads to increasing the detection 

accuracy of the framework. The proposed framework is being evaluated and 

benchmarked with several methods, and the result shows the proposed framework 

achieved 98.95% accuracy, which represents a significant improvement over the 

previous attempts. 

1.2 Background of the Problem 

There have been a lot of scientific research that have demonstrated a variety of 

methods for detecting malicious URLs. Existing solutions are generally classified into 

four categories: blacklist, heuristic, machine learning, and deep learning-based (Liang, 

2021; Xuan, 2020). In past years, the blacklist feature was the most preferred approach 
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for identifying harmful websites. URLs that have already been identified as potentially 

dangerous (phishing, malware) are located in blacklist databases and have gathered 

over time. (Patil, 2018; Yuan, 2021).  

The primary objectives of detecting harmful websites are to defend users 

against cyber-crime attacks and detect newly generated websites in real time (Rupa, 

2021). The malicious URLs used to be discovered mostly by blacklist-based methods 

previously due to some limitations. The main issue is that this approach is unable to 

detect newly created malicious URLs since it is impossible to have a complete 

database of all old and newly generated websites (Sahoo, 2017; Xiao, 2020). The other 

issue is obfuscation techniques, which can easily pass through databases by simply 

converting a harmful URL to a safe one and redirecting users to a fake site rather than 

their intended destination. This approach is currently only used as a supplemental 

method for detection (Afzal, 2021; Mourtaji, 2021). 

The heuristic-based detection methods rely on the statistical similarities 

between phishing and malware sites, extracted features and gathered critical 

information regarding a website, and expert knowledge to detect malicious URLs. 

Malicious URL detection is performed on the basis of these features, which are derived 

from many observations of known harmful webpages and generalized into a specific 

set of heuristic rules (Wang, 2019 ; Yuan, 2021).  

The researchers utilized heuristics to reduce a large collection of online sites to 

a more manageable collection of suspect web pages. Although this method overcomes 

the blacklist method and does not require a large database of malicious URLs, most of 

the suggested methods are still incapable of detecting harmful websites due to the fact 

that rules are created based on the behavior of already existing malicious URLs 

(Almeida, 2020). In addition, analyzing harmful websites involves a great deal of 

subjective expertise. Currently, the behaviour of phishing and malware websites is 

diverse, and utilizing rule-based techniques is ineffective . 

Due to the weakness of the blacklist and heuristic-based methods to predict 

new malicious URLs and to overcome this issue, researchers have applied Machine 



 

4 

Learning (ML) techniques in the last decade and achieved significant results (Al-

Janabi, 2017; Rakotoasimbahoaka, 2019). The most extensively used method for 

identifying malicious URLs is machine learning. The goal of machine learning is to 

create a method from a sample dataset, referred to as training data, and to create a 

pattern. These patterns may then be used to predict, classify, and cluster URLs (Patil, 

2018). 

Despite the fact that machine learning algorithms have made significant 

improvements in detecting malicious URLs over the past decade, there are still 

numerous critical limitations that remain. Supervised machine learning is one of the 

most important approaches for identifying malicious URLs with an accuracy rate of 

more than 90%, and the majority of research has been conducted using this method 

(Al-Janabi, 2017; Ramesh, 2021; Xuan, 2020). However, this strategy required a 

massive, tedious, and time-consuming process to collect labelling training data. 

Another issue with the ML methods is that it needs massive quantities of data for 

training in order to develop an appropriate detection method with acceptable levels of 

accuracy.  

The most important weakness of machine learning is data-dependent. The 

detection method's reliability and level of accuracy are entirely dependent on the 

dataset's quality and a large and updated dataset is necessary for the training. Also, the 

method that was built based on a training dataset with a high level of accuracy is 

ineffective for detecting URLs in another dataset (Janet, 2021; Kumar, 2021). The 

other limitation is retraining time and cost due to short-lived URLs, which refers to the 

difficulty and complexity of retraining the method with an updated dataset to enable it 

to detect and interact with new characteristics of websites (Khonji, 2013).  

Deep learning approaches have made great progress in detecting malicious 

URLs over the last few years. Deep learning is a subset of machine learning approaches 

based on artificial neural networks, and uses current URL datasets to develop a pattern 

for predicting future URLs. Some machine learning problems have been overcome, 

such as tedious feature classification, which leads to a training model with minimal 

effort and results in an appropriate pattern for detecting malicious URLs (Bu, 2021). 
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This method is currently used widely to develop a pattern for predicting future URLs 

(Benavides, 2020; Le, 2018; Saxe, 2017). 

However there are still a number of major issues remaining (Benavides, 2020; 

Le, 2018; Saxe, 2017). The main limitation of DL is interpretability. However, deep 

learning overcomes feature classification, which is one of machine learning's primary 

issues, but also leads to a new difficulty (Liang, 2021). Deep learning algorithms 

provide automated feature classification according to the training URLs, which usually 

leads to fairly good results. But the algorithms do not disclose the details and specifics 

of the method's prediction and feature classification, which behave like black boxes 

(Park, 2022). 

It is necessary to adhere to specific criteria to develop an efficient malicious 

URL detection method. In reality, detecting malicious URLs faces a variety of 

challenges which are (Sadique, 2020; Huang, 2014) 

Realtime Detection. The malicious URL detection method must be able to notify 

users about a harmful website before visiting the website to properly protect them.  

Detection of New URLs. The primary objective of detecting malicious URL methods 

is to defend users against cyber-crime attacks and related threats in the real world 

(Rupa 2021).  

Effective Detection. The malicious URL detection method ought to be efficient and 

demonstrated by evaluation metrics such as accuracy.  

There have been lots of scientific studies that have demonstrated a variety of 

methods for detecting malicious URLs. However, some drawbacks can be found in 

methods that must be addressed. 

Data dependency is the main challenge to the current effective malicious URL 

detection methods, which is common to all big data learning methods. This refers to 

the fact that the reliability and accuracy of the detection method are entirely dependent 
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on the quality of the dataset (Afzal, 2021). Furthermore, these methods need 

huge datasets for training in order to create an adequate method, and accuracy is totally 

dependent on the quality of the dataset. Finally, they necessitate large retraining costs, 

which require a significant amount of time and software resources (ALfouzan, 2022). 

Figure 1.1 shows the scenario leading to the problem addressed by this study.  

Lack of effective feature classification and evaluation is the other limitation to 

be addressed related to the current detection methods (Ghaleb, 2022). These methods 

do not prioritize the classes of features according to level of importance, and all have 

the equal detection priority level, which may cause a low level of accuracy. Also, 

feature classification is extremely hard and needs expertise, and may lead to a 

decreased detection rate due to ineffective feature selection (Sahoo, 2017; Alshehri, 

2022). The feature evaluation assesses the feature’s value, which is delivered from 

feature classification, and in the case that the value is not delivered, it needs to identify 

the URL with other available information. The majority of malicious URL detection 

methods do not contain feature evaluation, resulting in decreased detection accuracy 

and inefficiency. Furthermore, it allocates dynamic values to the classes according to 

the training dataset. These values change over time in the learning methods based on 

their training dataset. 
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Figure 1.1  Scenarios leading to the problems 
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1.3 Problem Statements 

Although several studies have been done on detecting malicious URLs, there 

are still several fundamental issues that need to be addressed. Data dependency is the 

primary concern regarding the current malicious URL detection methods that have 

attracted more attention. The method's reliability and level of accuracy are entirely 

dependent on the quality of training dataset. In order to develop an effective framework 

for detecting malicious URLs, a massive and updated dataset is necessary for the 

training, which takes a lot of time and resources and it gets even worse when retraining 

of new data is required. However, the method that was built based on a training dataset 

with a high level of accuracy is ineffective for detecting URLs in another dataset. The 

second challenging issue to be addressed is the current detection methods do not 

prioritize the classes and features according to their level of importance, which leads 

to a low level of accuracy. Each class and feature has a different level of importance 

in detecting malicious URLs, and facing them should provide distinct results. 

However, current methods do not distinguish between them. The third challenging 

issue, which focuses less but is very effective for detecting malicious URLs is feature 

evaluation. It evaluate the feature’s value which deliver from feature classification and 

determining whether a URL is benign or malicious in the case that the value do not 

delivered. It may occur for various reasons, but the method must be able to detect URL 

according to the values of other available features.  

This research proposed a framework to enhance the detection accuracy of 

malicious URLs in real time by allocating predefined static feature classifications and 

implementing priority coefficients and feature evaluation methods. 

1.4 Research Questions 

1) How to design an accurate framework to detect newly generated malicious URLs 

in real time? 

2) What are the most effective methods to enhance the detection accuracy of 

malicious URL framework? 
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3) How to overcome the data dependency limitation of current malicious URL 

detection methods? 

4) How to evaluate and benchmark the proposed framework with other malicious 

URL detection methods?  

 

 

1.5 Research Objectives 

The primary objective of this research is to design a malicious URL detection 

framework that is capable of detecting newly generated malicious websites in real time 

with a high level of accuracy. Figure 1.2 illustrates the mapping of research objectives, 

questions, and research methods. The objectives of the study are as follows: 

1) To propose a priority coefficient and feature evaluation methods to provide a more 

efficient framework. 

2) To design predefined static feature classifications by allocating a range of values 

for the classes.   

3) To test and evaluate the proposed framework by benchmarking with supervised 

machine learning and other malicious URL detection methods.  
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Figure 1.2 Mapping research objectives, questions and research methods 

 

 
1.6 Research Scope 

1) This research only focuses on phishing and malware attacks, which are the most 

popular types of URLs attacks (Patil, 2018; Rupa, 2021).   

2) The application is developed based on the MVVM architecture on Kotlin 

programming languages in Android.  

1.7 Significant of the Study 

The research is important and significant from theoretical and practical 

perspectives. The rationale and motivation for this research were:  
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1) The number of phishing and malware websites has increased rapidly from a few 

thousand in January 2007 to more than 2 million in January 2021 (Google-Safe-

Browsing, 2022). The new generated and obfuscated malicious URLs require 

developing a new framework to overcome the shortage of available methods.  

2) An efficient framework is required to overcome the limitations of available 

methods by detecting newly generated malicious URLs in real time in order to 

protect computer systems and data. 

3) Phishing and malware websites are becoming more complicated and widespread 

as a result of obfuscation methods (short-URLs), which make users more 

vulnerable. 

4) The malicious URL detection framework requires efficient feature classification 

and evaluation. 

1.8 Research Contributions 

This research designs an efficient malicious URL detection framework which 

is able to identify new generated and obfuscated malicious websites with a high level 

of accuracy. The framework is based on a predefined static feature classification. It 

utilizes the priority coefficient and feature evaluation methods to provide an accurate 

malicious URL detection framework. The priority coefficient gives more weight to the 

important classes and features that are effective at detecting malicious URLs and 

feature evaluation, assessing the feature’s value, which is delivered from feature 

classification, and determining whether a URL is benign or malicious in the case that 

the value is not delivered. 

The research findings provide a significant improvement in malicious detection 

accuracy compared with the existing methods. This framework is based on predefine 

feature classification and does not require a massive dataset for training. The outcome 

is an Android application that has the possibility to detect newly generated malicious 
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URLs with a high level of accuracy, and the results can be used both in research and 

industry. 

This application is able to protect users and computers from various types of 

online attacks such as phishing and malware, which lead unsuspecting visitors into 

scams and fraud, resulting in monetary loss and information theft. The application 

analyses the website's status and returns the scanning result, whether it is malicious or 

benign, before accessing the website. Additionally, it alerts users to any potential 

threats. Furthermore, it can operate under a variety of conditions and deliver an 

accurate result. 

1.9 Definition of Terms 

In this section, the main definition and terms adapted in the thesis are 

presented. Table 1.1 presents the source of all definitions and terms adapted in the 

thesis. 

Table 1.1  Definitions and terms 

Benign URL 
 

Refer to the safe websites. 
 

Class 

The classes are a subset of features and refer to the sort of 
information that is extracted from the URL. Each feature 
includes several classes, and in this research 39 classes are 
employed. 

Feature 

Refers to a category of information that retrieves 
information regarding a URL. In total, four features are 
utilized in this research that are blacklist, lexical, host-
based, and content-based. 

Feature 
Classification 

The feature classification refers to features and their 
classes that are utilized to find out the characteristics of a 
URL to determine whether it is malicious or benign. It 
includes the processes of creation, extraction, and 
selection. 

Feature Evaluation 

Refer to evaluate the value of features delivered from 
feature classification for the final calculation. If any of 
them fails to deliver a value, it uses the other feature 
priority coefficient’s value instead. 
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Malicious URL 
Refers to a website that was created with the purpose of 
promoting scams, attacks, and frauds that result in 
monetary loss and information theft. 

Predefined feature 
classification 

This method is part of feature classification and is 
implemented in feature creation. The predefined values are 
generated and configured based on the static 
characteristics of URLs and assign a range of values for 
the classes in analysis and comparison. 

Priority Coefficient Refer to lending greater weight to the important classes and 
features. 

Redirect URL 

 

Refers to types of URLs that are shortened or redirected. 

 
 

1.10 Thesis Organizations  

This chapter presents the introduction of the study. The chapter has provided 

an introduction to malicious URL detection issues and problems and the motivation 

for the research by reviewing the background to the problem, as well as outlining the 

problem statement and the objectives of the research. In addition, the potential 

contribution of the proposed research has also been highlighted.  

Chapter 2 appraises the state of the art of the previous research related to 

malicious URL detection. This chapter reviews issues and existing techniques in the 

development of malicious URL detection systems in order to find the problems in these 

methods. The limitations of their work are discussed to guide the research’s direction. 

Chapter 3 presents the methodology of the proposed framework to detect 

malicious URLs. The proposed framework contains three phases: identification, 

feature classification, and feature evaluation. The specific purpose of the identification 

phase is that if a URL is redirected (using a short URL), it should be transmitted to the 

original website. The feature classification is based on a predefined static feature 

classification and allocating a priority coefficient to selected classes. The feature 

evaluation assesses the value delivered from feature classification. It determines if all 
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of the features deliver a value for the final calculation (except lexical features that 

always return a value), and if any of them fails to deliver a value, it uses the other 

feature priority coefficient’s value instead. 

Chapter 4 presents the design and implementation of the framework. This 

chapter discusses the methods and pseudocodes utilized to design an efficient 

malicious URL detection framework. 

Chapter 5 highlights the experimental results of the framework and evaluates 

the methods utilized. Also, discuss and benchmark the outcome with other methods. 

Finally, Chapter 6 summarizes the findings and the overall results, as well as 

the conclusion of this study. Also, present suggestions for future work are at the end 

of the chapter. 
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