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ABSTRACT 

A large number of facilities and offshore infrastructures have exceeded their 
original design life. The options are either decommissioning the facilities or extending 
the design life to the desired timeline without compromising the safety and integrity 
aspects of the facilities. The aspect of ageing management is the most important factor 
in order to control and mitigate the degradation of facilities. Scour in general is defined 
as erosion of loose seabed material directly around offshore structures. It is part of the 
component to be considered in the life extension of the offshore facilities. Code and 
standard practices have suggested various recommendations for the scour depth to be 
adopted during the initial design stage. Over estimation on the scour depth has an 
impact on the pile factor of safety, pilehead displacement and pile unity check which 
relates to the economic perspective. Therefore, it is crucial to determine the scour 
depth in the design stage. This study investigated the significant impact of scour depth 
on the pile performance, analysed the pile performance based on the design scour 
against the actual scour, and established the correlation between scour effect and pile 
performance. Fixed offshore platforms were selected from three different regions: 
Peninsular Malaysia Operation (PMO), Sarawak Operation (SKO), and Sabah 
Operation (SBO) for this study. Structural Analysis Computer System (SACS) was 
employed to model the structural member of the platform and the pile foundation. 
Static in-place analysis with pile soil interaction was conducted for the two scour case 
studies (actual and designed values). Results were scrutinised to establish the relation 
between scour depth and pile performance. The results showed pile unity check is 
lower than design unity check by a maximum difference of -7.6%. Minimum pile 
factor safety for actual scour was increased from the design with a maximum 
difference of 0.31%. A difference of -27.75% between actual and design value was 
recorded for maximum pilehead displacement. The scour depth increased, directly 
proportional to the pile unity check and pilehead displacement, whereas pile factor of 
safety was the other way around. Scour had a significant impact on the lateral load-
capacity and stiffness of the pile, led to the increase in the magnitude of bending 
moments along the pile shaft. The findings are significant to assist the industry, 
especially operators to reach the optimal design scour depth. 
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ABSTRAK 

Sebilangan besar kemudahan dan infrastruktur luar pesisir telah melebihi hayat 
rekabentuk asal. Pilihan adalah samada penyahtauliahan kemudahan atau melanjutkan 
hayat rekabentuk kepada jangka masa yang dikehendaki tanpa menjejaskan aspek 
keselamatan dan integriti fasiliti. Aspek pengurusan penuaan adalah faktor paling 
penting untuk mengawal dan mengurangkan kemerosotan fasiliti. Kerukan secara 
umum ditakrifkan sebagai hakisan bahan dasar laut yang longgar secara langsung di 
sekitar struktur luar pesisir. Ia adalah sebahagian daripada komponen yang harus 
dipertimbangkan dalam melanjutkan hayat kemudahan luar pesisir. Kod dan amalan 
piawai telah mencadangkan pelbagai cadangan kepada kedalaman kerukan untuk 
diguna pakai semasa peringkat permulaan rekabentuk. Lebihan anggaran pada 
kedalaman kerukan memberi kesan kepada pemeriksaan kesatuan cerucuk, faktor 
keselamatan cerucuk dan anjakan cerucuk yang berkaitan dengan perspektif ekonomi. 
Oleh itu, sangat penting untuk menentukan kedalaman kerukan dalam peringkat 
rekabentuk. Kajian ini meneliti kesan ketara kedalaman kerukan keatas prestasi 
cerucuk, menganalisis prestasi cerucuk berdasarkan rekabentuk kerukan terhadap 
kerukan sebenar dan mewujudkan hubungan antara kesan kerukan dan prestasi 
cerucuk. Pelantar luar pesisir telah dipilih dari tiga wilayah berbeza: Operasi 
Semenanjung Malaysia (PMO), Operasi Sarawak (SKO) dan Operasi Sabah (SBO) 
bagi kajian ini. Sistem Komputer Analisis Struktur (SACS) digunakan untuk 
permodelan anggota struktur pelantar dan asas cerucuk. Analisis “Static In-place“ 
dengan interaksi tanah cerucuk dijalankan untuk dua kajian kes kerukan (nilai sebenar 
dan rekabentuk). Keputusan telah diteliti untuk mewujudkan hubungan antara 
kedalaman kerukan dan prestasi cerucuk. Keputusan ini menunjukkan pemeriksaan 
kesatuan cerucuk lebih rendah berbanding pemeriksaan kesatuan rekabentuk dengan 
perbezaan maksimum -7.6%. Faktor keselamatan cerucuk minimum untuk nilai 
sebenar meningkat daripada rekabentuk dengan perbezaan maksimum 0.31%. 
Perbezaan sebanyak -27.75% antara nilai sebenar dan rekabentuk dicatatkan untuk 
anjakan cerucuk maksimum. Peningkatan kedalaman kerukan, berkadar langsung 
dengan pemeriksaan kesatuan cerucuk dan anjakan cerucuk, manakala faktor 
keselamatan cerucuk adalah sebaliknya. Kerukan mempunyai impak yang ketara 
terhadap kapasiti beban sisi dan kekukuhan cerucuk yang membawa kepada 
peningkatan magnitud momen lenturan di sepanjang cerucuk. Hasil kajian ini 
signifikan untuk membantu industri, terutamanya pengendali struktur luar pesisir bagi 
mencapai kedalaman kerukan rekabentuk yang optimum.   
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CHAPTER 1  
 

 

INTRODUCTION 

1.1 Oil and Gas Overview in Malaysia 

Malaysia has tremendous potential to meet the rising demand for energy 

consumption by itself. They had begun collecting and processing oil and natural gas 

effectively from the beginning of the last century. Overall primary energy supply has 

been growing since the last 18 years. In 2008, it was about 64 Mtoe, representing a 

rise of more than 200 % from 1990 (Ong HC, 2011). 

Since the first oil well was drilled in Miri, Sarawak, in 1910, oil and gas 

production has been a mainstay of Malaysia's growth. The first oil discovered by Shell 

(known as The Grand Old Lady) began with a production rate of 83 barrels per day 

(bbls/d) and reached a peak of 15,000 bbls/d in 1929. Until the 1950s, there were no 

other drilling operations in Borneo or Peninsular Malaya. Petroleum activity increased 

dramatically in the 1960s as a result of the discovery and development of offshore 

fields in Borneo. Offshore oil exploration on Peninsular Malaysia's east coast began in 

the late 1960s. In the 1970s, some Malaysian oil fields produced 90,000 to 99,000 

barrels per day (Bank Pembangunan, 2011). 

Initially, foreign oil companies dominated Malaysia's oil and gas industry, with 

Shell and Esso being the two major players. This was followed by a number of other 

foreign corporations, including Conoco, Mobil, and Aquitaine. PETRONAS, the 

national company, first appeared on the scene in 1974 (Bank Pembangunan, 2011). 

Since then, oil and gas exploration and production have been carried out under a 

Production Sharing Contract (PSC), under which PETRONAS granted exploration 

rights to local and international companies. Each contract requires the PSC Contractor 

to provide all financing and bear all risks associated with exploration, development, 
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and production activities in exchange for a percentage of total production. (Razali, 

2005). 

Presently, more than 70 PSCs with various companies, including its 

Exploration and Production (E and P) subsidiary PETRONAS Carigali Sdn. Bhd., 

which accounts for 43 % of total Malaysian production. Shell had a 22 % share of total 

production, and ExxonMobil had a 16 % share (Bank Pembangunan, 2011). In the year 

2000, Peninsular Malaysia Operation (PMO), Sarawak Operation (SKO) and Sabah 

Operation (SBO) operated over 300 offshore platforms in Malaysia (Wan Abdullah 

Zawawi, 2012). According to Ayob et al. (2014), 65 % of 191 offshore platforms 

completed their design life in 2014 and the figure would grow to 78 % in 2019. 

The types of offshore platforms differ from structure system point of view, 

which developed over time from the requirement to obtain the oil and gas in locations 

with greater water depth. The offshore platforms are usually divided into two, fixed 

platforms and floating platforms (Chakrabarti, 2005; El-Reedy, 2012). Fixed platforms 

are supported either by a pile-based jacket type or the gravity-based type. Whereas for 

floating platforms, production, storage, and offloading (FPS) can be tension leg 

platform, spar, semi-submersible and floating. 

The type of offshore platform usually depends on the water depth and mode of 

operation of the proposed location (Reddy and Swamidas, 2014). Figure 1.1  shows 

the different types of offshore platform.  Building a fixed style platform may be 

feasible and economical for the shallow water level up to 500 m. In terms of viability 

and economics, floating platform has always been a better choice for deep water levels 

(Sadeghi, 2007; Nouban et al., 2016). 
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Figure 1.1 Deepwater system types 
(Source: (Nguyen, 2015)) 

Most of the existing offshore platforms in Malaysia are a fixed template jacket 

installed in water with a depth less than 150 m. The platforms, such as central 

processing platform, drilling platform, compression platform, and living quarters 

platform, are defined by its function (Chakrabarti, 2005; Sadeghi and Bichi, 2018). 

The main components of a typical fixed template jacket consist of a topside, jacket and 

pile foundation while other components are considered as an appurtenance. Figure 1.2 

shows the typical fixed jacket template for wellhead and process platform. 
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(a) Typical wellhead platform 
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(b) Typical central processing platform 

Figure 1.2 Typical view offshore platform modelled in Structural Analysis 
Computer Software (SACS) 
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1.2 Challenges in Ageing Offshore Structures 

In the year 2020, Malaysia had roughly 378 shallow water fixed platforms 

operated by 30 PSC contractor in the three regions: namely SKO, SBO, and PMO 

(PETRONAS, 2020). As stated in 2008, 48 % of the platforms have gone beyond their 

25 years design life. SKO contributed 28 % , 12 % of SBO and 8 % of Peninsular 

Malaysia (Shuhud, 2008). Therefore, the number of ageing platform is increasing with 

time. 

Lifetime extension is defined as the increase in life of the facility without 

increasing the facility risk (Palkar, 2012; Li et al., 2021). Life extension due to 

additional and/or enhance oil and gas recoveries has its own challenges, mostly due to 

the structural integrity (Nicholas et al., 2006; Seyyedattar et al., 2020; Tarpø, 2020). 

Material degradation, obsolescence and organisational issues are the three main 

aspects of the management of ageing offshore facilities. The erosion process of loose 

seabed material around offshore structure is known as a scour and it is part of the 

material degradation (Palkar, 2012; Ma et al., 2018). Changes from the original design 

assumption such as scour depth is one of the criteria for assessing platform life 

extension (ISO, 2007; Schendel, 2018). 

The removal of seafloor soils caused by waves and currents is known as scour. 

Such erosion can be caused by a natural geological process or by structural elements 

interfering with the natural flow regime near the seabed (American Petroleum Institute, 

2007; Welzel et al., 2018). There are two types of scours which are common to occur 

according to El-Reedy (2012). Global scour affects the areas of the piles, usually twice 

the area covered by the platform local scour occurs around specific areas of the 

structure such as piles. Figure 1.3 shows the two different types of scours that generally 

occur. 

Bijaker (1980) identifies three mechanisms that contribute to scour. To begin, 

the presence of the object causes an increase in water velocity around the object, a 

vortex trail shed on the downstream side of the object, and a vertical component of 

seawater velocity. 
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(a) Global scour (b) Local scour 

Figure 1.3 General types of scours 

Sand or silt soils at water depths below approximately 130 feet (40 meters) are 

especially vulnerable to scouring, but scouring has been found in cobbles, gravel and 

clays; the intensity of scouring in deeper water depends on the vigorousness of currents 

and waves (Welzel et al., 2018). Scouring can lead to the removal of vertical and lateral 

foundation support, causing undesirable mat foundation settlements, and 

overpowering of foundation components (Akhlaghi et al., 2020). Scour should be 

accounted for in design and/or considered for its mitigation (American Petroleum 

Institute, 2007; Menzel and Paschen, 2017). Scour can increase the length of exposure 

of the structure subjected to the additional hydrodynamic loading (Palkar, 2012; 

Bayton and Black, 2019). 

Figure 1.4 shows the sample of local scour that occurred below the mud mat 

structural framing. The scour was recorded during an underwater inspection campaign 

in 2018, five years after the platform was installed. As stated, the scour depth recorded 

was 292 mm, while during the design stage, the scour adopted was 1372 mm. This 

shows that the scour adopted during design stage was overestimated and led to the over 

design of structure’s member. Further description on the fundamental of scour and its 

significance in the design of offshore structure will be explained in Chapter 2. 
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Figure 1.4 Side view of local scour near leg below the mud-mat framing       
(Source: (International Petroleum Corp, 2018)) 

1.3 Problem Statement 

Scour is a natural occurrence that can cause additional forces to be exerted on 

the offshore structure. Scour has become a serious concern since strong bottom current 

with long durations have been observed in many deep water developments (Niedoroda 

et al., 2003b).  Removing the seabed sediments surrounding the offshore structure's 

legs can lead to an increase in the internal stresses on structural elements, which could 

lead to instability or unwanted lateral movement overall. As a result, designers should 

take this occurrence into account while creating new products. (John B. Herbich, 

1984).  Various recommendations have been given by the industry’s standard practice 

in order to address the local scour phenomenon during the design stage of the fixed 

jacket (ONGC, 2008; PETRONAS, 2012; ARAMCO, 2018).  
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Several studies have been conducted by various researchers, focusing on the 

scour effect to the pile capacity (Rudolph et al., 2004; Mutlu Sumer et al., 2005; Tseng 

et al., 2017; Welzel et al., 2019). At the early stage, scour would result in soil loss 

around the monopile’s foundation, hence forming a conical local scour hole. 

Consequently, it would reduce the embedded pile length of the monopile foundation. 

Besides, scour may influence the effective unit weight of the soil, depending on the 

scour depth against the pile diameter (Camp et al., 2004; Qi and Gao, 2019). This 

happened due to the changing of the overburden stress around the monopile that 

changes from normally consolidated state to over-consolidated state and the increasing 

of coefficient of lateral earth pressure at rest (Lin et al., 2010; Li et al., 2020).  

Scour decreases the lateral support of the soil, leading to increased overall 

bending tension in the mound that affects the performance and capacity of the lateral 

and axial piles (Mostafa, 2012; Li et al., 2018). Pile wall thickness at mudline and 

other location is normally governed by the combined axial force and bending moment 

which are computed based on the soil resistance and soil scour (ISO, 2007; Jiang and 

Lin, 2021). As a result of the various preliminary scour depth, it has a direct impact on 

the Pile Unity Check, Pile Factor of Safety and Pile-head Displacement (Tseng et al., 

2017). This may lead to the unnecessary upsizing pile thickness and pile penetration 

depth. 

In the absence of specific data, current practice for an isolated pile is to use a 

local estimated scour depth of 1.5 x Outside pile diameter (D), (ISO, 2007). 

Meanwhile, in the PETRONAS guideline, the minimum of 900 mm or 1.0 x Outside 

pile diameter (D), whichever greater can be adopted for design purposes (PETRONAS, 

2012). Previous researchers have clearly mentioned how the scour phenomena impacts 

the stability of the structures, especially on its pile capacity. Till date, limited 

comprehensive study on the scour differences between recommended and actual depth 

value, and its impact one pile unity check, pile-head displacement, and factor of safety. 

Therefore, this study aimed to discover the impact of scouring on pile 

performance based on the recommended and actual scour depth value of fixed offshore 

platform. In the next chapter, the development and process of formation scour around 
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the legs of platform will be discussed, followed by the specific design regulation of 

fixed offshore platform in consideration for the scour depth. Then the research 

flowchart that illustrated the overall analysis in this study is presented. Finally, a 

comparison of pile performance was made based on the analysis of static in-place 

against the recommended and actual scour depth value. Output from this study would 

assist the designer in the process of decision making at early design stages as well as 

life extension programs. 

1.4 Aims and Research Objectives 

The aim of the study was to evaluate the impact of pile scour depth on the 

existing fixed offshore platform integrity. To achieve this aim, two objectives were set 

as follows: 

i. To analyse the pile performance (i.e., Pile Unity Check, Pile Factor of 

Safety and Pile-head Displacement) based on the predicted against actual 

scour depth. 

ii. To examine the relation between the scour effect and pile performance in 

Malaysian waters. 

1.5 Scopes of the Study 

The study concentrated on fixed jacket offshore platform located in 

Terengganu (PMO), Sabah (SBO) and Sarawak (SKO) with a water depth ranging 

from 25 m to 130 m depth. The fixed jacket platform with different number of legs 

was assessed in a static in-place analysis with pile soil interaction. Selected jacket leg 

numbers were between 4 legged and 8 legged. It comprised of wellhead, vent and 

process platform ranging from 5 years to 30 years old. 
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The platform was modelled and verified using Structural Analysis Computer 

Software (SACS) suite program version 13.0 and the static in-place analysis with pile 

soil interaction was performed in accordance to API RP 2A and AISC Working Stress 

Design. The study reported that the parametric study was carried out to investigate the 

effect of scour to the pile unity check, pile factor of safety and pile-head displacement. 

1.6 Significance of the Study 

This study focused on a parametric study of the offshore platform against the 

recommended and actual scour depth value since limited study has been established. 

The outcome of this study could be beneficial from both academic and industry 

perspectives. In terms of academic, the findings from this research enables the 

development of the correlation between the design scour which is normally adopted 

from the code and standard against the actual value. This study may also lead to the 

comparison between the code and standard of practice in this region.  

In larger industry perspectives, the study could be beneficial in design 

optimisation of the fixed offshore platform. Due to the current challenges in the oil 

and gas industry, cost is the most concerning aspect in determining the survival of the 

company. On average, an offshore platform is constructed out of 1,000 – 20,000 t or 

more of steel depending of the type of platforms  (Zawawi et al., 2012). Therefore, an 

optimal design is required without compromising the aspect of safety and strength. 

The outcome from this study leads towards adopting the realistic and optimum scour 

depth in the jacket design set as a threshold value for scour in Malaysian waters 

specifically according to the region. 

1.7 Thesis Outline 

Chapter 1 describes the introduction of this thesis, which include oil and gas 

overview in Malaysia, types of offshore structure, challenges in ageing offshore 
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structure, scour, problem statement, aim and objective, scopes, and significance of the 

study. 

Chapter 2 contains the review of the literature study, which include offshore 

platform, platform degradation and scour to the offshore structure. This is also done to 

establish the research gap and define the method that was used in the research. 

 Chapter 3 explains the methodology of the study which includes the 

introduction of the static in-place analysis and pile soil interaction as well as the effect 

of scour to the pile unity check, pile factor of safety and pile-head displacement at 

mudline. 

 Chapter 4 discusses the results of the selected six platforms from the three 

different regions. The results contained the pile unity check, pile factor of safety and 

pile-head displacement for the different scour depth. 

Chapter 5 contains the conclusion made based on the parametric study 

conducted. From the results, it can be concluded that the scour depth has significant 

impact on the pile unity check, pile factor of safety and pile-head displacement. 
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