# UNBLENDED POLYDIMETHYLSILOXANE DIELECTRICS FOR NON-CONTACT ELECTROCARDIOGRAPH BIOELECTRODES

UMAR ALHASSAN HARUNA

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy

> Faculty of Electrical Engineering Universiti Teknologi Malaysia

> > MARCH 2023

# **DEDICATION**

This thesis is dedicated to the Muslim Ummah.

#### ACKNOWLEDGEMENT

All praise is for Allah alone, Whom by His favours and blessings, this research was accomplished. May the Peace and Blessings of Allah be upon The Noble Prophet (sallallahu alaihi wa-sallam), Who was sent as Mercy and Blessing to the Mankind. I would like to thank my supervisors for their constant help, support, and encouragement during my studies. I am starting with my main supervisor, Dr. Mohd Afzan Bin Othman, for his tolerance and constructive advice. I am grateful for his motivation and guidance to accomplish to work. Indeed, I cannot thank him enough for his kindness. In addition, I am pleased to express my gratitude to my Co-Supervisor, Dr. Fauzan Khairi Che Harun, for his support, mentoring, and assistance in different capacities. My special thanks and appreciations to Dr Yusmeeraz Yosuf for the use facilities and important contributions to this work. This research would not have been possible without the scholarship and financial support of the Tertiary Education Trust Fund (TETFund) of Nigeria. I am also grateful to the management of Jigawa State Polytechnic Dutse for their trust, nomination, and support in completing this research successfully. My extreme appreciation and gratitude to my Parents, Brothers, Sisters, My Wife, Children, Relatives, Friends, and all well-wishers for their prayers. I say to you all, Barakallahu Feekum.

#### ABSTRACT

Dielectric materials play crucial roles in the non-contact recording of electrocardiograms (ECGs), allowing cardiac physiological signals to be monitored and abnormalities detected early. Previous dielectrics are rigid, unstable, require expensive fabrication, and induce severe noise. PDMS is a polymer with remarkable biomedical properties suitable for non-contact bioelectrodes. However, the poor dielectric capability of PDMS has led to costly attempts to improve it. This research introduces an affordable technique to explore and characterize unblended PDMS films as dielectrics for non-contact ECG bioelectrodes by varying the weight mix ratio of Sylgard 184 TM silicone elastomer and its crosslinker. Capacitance and relative permittivity were measured and estimated using the parallel-plate technique in the frequency range of the LCR meter. Skin impedance values were also measured for different skin conditions using the Hioki impedance analyzer test frequency of 4 Hz -1 MHz. Non-contact ECG measurements are affected by morphology of the dielectric, bioelectrode conductor, contact area, and skin conditions. To investigate the impact of these factors on skin impedance, the skin bioelectrode interface was modeled using equivalent circuits for wet, direct contact, and non-contact modes and analyzed using least-squares non-linear curve fit. Finally, the proposed approach was verified by recording ECG using different bioelectrodes and dielectrics. Due to susceptibility to motion artifacts and electrical interferences, digital filters were introduced to improve the quality of ECG recorded. The results demonstrate the effectiveness of the proposed method for improving the dielectric performance of unblended PDMS films, with a steady increase in capacitance (50.53 pF to 102.86 pF) and relative permittivity (0.19 to 0.69) observed with an increase in the proportion of the crosslinker. Good agreement was found between the measured skin impedance and equivalent circuit models, but differences exist in estimated circuit parameters. The unblended PDMS films with the highest mix ratio (10:2) successfully recorded visible P-QRS-T peaks in ECG. Skin conditions, bioelectrode conductivity, dielectric thickness and porosity, and the OpenBCI board filtering parameters affect the ECG recordings. This study confirms the potential of unblended PDMS films for non-contact bioelectrodes to detect heart abnormalities early.

#### ABSTRAK

Biolektrod tanpa sentuh telah digunapakai bagi pemantaun isyarat fisiologi jantung disamping mengesan keabnormalan jantung. Di mana, bahan dielektrik merupakan komponen utama yang digunakan dalam merakan isyarat elektrokardiogram (ECG) tanpa sentuh. Sebelumnya, dielektrik bukan polimer adalah bersifat tegar, tidak stabil, memerlukan kos fabrikasi yang mahal serta menghasilkanhingar yang teruk. Satu bahan dielektrik yang dipanggil sebagai polimer polydimethylsiloxane (PDMS) adalah tidak berbahaya kepada tisu manusia, memberikan sentuhan kulit ergonomik yang lebih baik terhadap artifak gerakan dan cas triboelektrik, dan ianya berpotensi untuk digunakan sebagai dielektrik bioelektrod ECG tanpa sentuhan. Oleh kerana PDMS mempunyai pemalar dielektrik yang rendah, beberapa percubaan untuk memperbaiki sifat penebat PDMS telah dibuat. Penyelidikan ini telah meneroka dan mencirikan filem PDMS yang tidak dicampur sebagai dielektrik untuk digunakan sepagai bioelektrod ECG tanpa sentuhan. Dengan mengubah nisbah campuran berat elastomer silikon Sylgard 184TM dan penyambung silangnya, filem PDMS didepositkan secara manual pada Mylar dan kesan dielektrik bagi ketebalan filem yang berbeza akan diperiksa dan dianalisis. Jumlah kapasitan dan kebolehtelapan relatif adalah antara parameter dielektrik penting yang diukur dan dianggarkan menggunakan teknik plat selari untuk frekuensi ujian yang berbeza dalam julat frekuensi meter LCR pratetap (100 Hz - 100 kHz). Disamping itu, nilai impedans kulit diukur untuk keadaan kulit yang berbeza iaitu dengan menggunakan julat impedans Hioki antara 4 Hz hingga 1 MHz. Antra faktor penting yang akan mempengaruhi pengukuran fisiologi bukan sentuhan adalah seperti morfologi dan keliangan dielektrik, jenis konduktor bioelektrod dan kawasan sentuhan, dan keadaan kulit. Bioelektrod kulit telah dimodelkan sebagai litar setara bagi beberapa mod ECG seperti basah, sentuhan langsung dan bukan sentuhan bagi mengkaji kesan faktor biopenderiaan pada impedan kulit, dan dianalisis menggunakan kesesuaian lengkung tak linear kuasa dua terkecil. Akhir sekali, ECG telah direkodkan dengan menggunakan bioelektrod yang mempunyai dielektrik yang berbeza untuk pengesahan prestasi. Oleh kerana rakaman ECG mudah dipengaruhi oleh artifak gerakan dan gangguan elektrik, maka penapis digital telah diperkenalkan untuk memproses dan memeriksa kualiti ECG yang direkodkan oleh papan biopenderia OpenBCI Cyton pada kulit bergel, kering dan berpeluh. Hasil kajian menunjukkan keberkesanan kaedah yang dicadangkan untuk meningkatkan prestasi dielektrik filem PDMS yang tidak dicampur. Sepanjang julat frekuensi 100 Hz hingga 100 kHz, peningkatan yang stabil dalam bahagian pemaut silang mengakibatkan peningkatan nilai kapasitan daripada 50.53 pF kepada 102.86 pF dan kebolehtelapan relatif daripada 0.19 kepada 0.69. Selain itu, kesesuaian yang baik dengan model litar setara telah diperoleh untuk impedan kulit yang diukur, akan tetapi terdapat perbezaan antara parameter litar yang dianggarkan. Perbandingan prestasi antara dielektrik dan bioelektrod telah disahkan dengan melihat rakaman ECG dengan puncak P-QRS-T yang boleh dilihat menggunakan filem PDMS yang tidak dicampur dengan nisbah campuran tertinggi (10:2). Hasil kajian juga menunjukkan bahawa keadaan kulit, jenis bioelektrod dan kekonduksian mempengaruhi kadar dielektrik dan ukuran fisiologi. Pada masa yang sama, kualiti ECG yang ditapis didapati bergantung pada masa penderia OpenBCI, frekuensi pensampelan dan potongan serta susunan penapis. Buat pertama kalinya, kajian ini telah mencadangkan dan mengesahkan bahawa potensi dielektrik PDMS yang tidak dicampur boleh digunakan dalam bioelektrod bukan sentuhan untuk pemantauan jangka panjang dan pengesanan awal keabnormalan jantung.

# TABLE OF CONTENTS

TITLE

PAGE

|           | DECLARATION               |                         | iii  |
|-----------|---------------------------|-------------------------|------|
|           | DEDICATION                |                         | iv   |
|           | ACKNOWLEDGEMEN            | T                       | v    |
|           | ABSTRACT                  |                         | vii  |
|           | ABSTRAK                   |                         | viii |
|           | TABLE OF CONTENT          | S                       | ix   |
|           | LIST OF TABLES            |                         | xiv  |
|           | LIST OF FIGURES           |                         | xvi  |
|           | LIST OF ABBREVIAT         | IONS                    | xxii |
|           | LIST OF SYMBOLS           |                         | xxiv |
|           | LIST OF APPENDICE         | 5                       | XXV  |
|           |                           |                         |      |
| CHAPTER 1 | INTRODUCTION              |                         | 1    |
| 1.1       | Problem Background        |                         | 1    |
| 1.2       | Problem Statement         |                         | 8    |
| 1.3       | Research Objectives       |                         | 8    |
| 1.4       | Scope of the Research     |                         | 9    |
| 1.5       | Significance of the Resea | rch                     | 10   |
| 1.6       | Thesis Outline            |                         | 10   |
|           |                           |                         |      |
| CHAPTER 2 | LITERATURE REVIE          | W                       | 13   |
| 2.1       | The Human Cardiac Syst    | em                      | 13   |
| 2.2       | Formation of the ECG W    | aveform (P-QRS-T waves) | 13   |
| 2.3       | Physiology of the Human   | Skin                    | 16   |
| 2.4       | Wet ECG Bioelectrodes     |                         | 17   |
| 2.5       | Dry ECG Bioelectrodes     |                         | 19   |
|           | 2.5.1 Direct Contact      | Bioelectrodes           | 19   |
|           | 2.5.2 Non-contact Bi      | pelectrodes             | 22   |

|        | 2.6  | Skin Bi   | oelectrode Interface and Its Equivalent Circuit   |    |
|--------|------|-----------|---------------------------------------------------|----|
|        |      | Models    |                                                   | 24 |
|        | 2.7  | Impact    | of coupling capacitance in non-contact ECG        |    |
|        |      | recordin  | g                                                 | 27 |
|        | 2.8  | Dielectri | cs for Medical Bioelectrodes                      | 28 |
|        |      | 2.8.1     | Dielectrics of Metal Compounds                    | 29 |
|        |      | 2.8.2     | Fabric Dielectrics                                | 31 |
|        |      | 2.8.3     | Polymer Dielectrics                               | 36 |
|        | 2.9  | Influence | e of Dielectrics on Non-contact ECG Method        | 38 |
|        |      | 2.9.1     | Comfortability and Skin-conformity                | 39 |
|        |      | 2.9.2     | Signal Quality                                    | 40 |
|        |      | 2.9.3     | Motion Artifacts and Triboelectric-charge Effects | 42 |
|        | 2.10 | Polymer   | s and Polydimethylsiloxane (PDMS)                 | 44 |
|        |      | 2.10.1    | Biomedical Applications of PDMS                   | 46 |
|        |      | 2.10.2    | Application of PDMS in Electronics                | 49 |
|        | 2.11 | Characte  | rization of Surface Morphology of PDMS films      | 51 |
|        |      | 2.11.1    | Field Emission Scanning Electron Microscope       |    |
|        |      |           | (FESEM) and Energy Dispersive X-Ray Analysis      |    |
|        |      |           | (EDX)                                             | 51 |
|        |      | 2.11.2    | Raman Spectroscopy                                | 51 |
|        | 2.12 | Mechani   | cal and Dielectric Behavior of PDMS               | 53 |
|        | 2.13 | Summar    | у                                                 | 53 |
|        |      |           |                                                   |    |
| СНАРТЕ | R 3  | RESEA     | RCH METHODOLOGY                                   | 55 |
|        | 3.1  | Introduc  | tion                                              | 55 |
|        | 3.2  | Experim   | ental Design Flow Diagram For Fabrication of      |    |
|        |      | PDMS E    | Dielectrics                                       | 55 |
|        | 3.3  | Chemica   | ls and Materials                                  | 56 |
|        | 3.4  | Fabricati | on of PDMS Dielectrics                            | 57 |
|        | 3.5  | Test Sam  | ples of PDMS Dielectric Films Fabricated          | 60 |
|        | 3.6  | Surface   | and Physical Characterization of PDMS Films       | 60 |
|        |      | 3.6.1     | Field Emission Scanning Electron Microscope       |    |
|        |      |           | (FESEM)                                           | 60 |
|        |      | 3.6.2     | Energy Dispersive X-ray (EDX) Spectroscopy        | 61 |

|           | 3.6.3    | Raman Spectroscopy                               | 61 |
|-----------|----------|--------------------------------------------------|----|
| 3.7       | Electric | al Characterization of PDMS Dielectric Films     | 62 |
|           | 3.7.1    | Capacitance Measurement using Parallel Plate     |    |
|           |          | Technique                                        | 62 |
|           | 3.7.2    | Estimation of Relative Permittivity              | 63 |
| 3.8       | ECG Bi   | oelectrodes                                      | 63 |
|           | 3.8.1    | Wet Bioelectrodes                                | 63 |
|           | 3.8.2    | Direct Contact and Non-contact Bioelectrodes     | 64 |
| 3.9       | Biosens  | ing Instrument and Skin Impedance Measurement    | 65 |
|           | 3.9.1    | Cyton Biosensing Board                           | 65 |
|           | 3.9.2    | Cyton Board Specifications                       | 66 |
|           | 3.9.3    | Cyton Board Settings and Operations              | 67 |
|           | 3.9.4    | Skin Impedance Measurement using OpenBCI         |    |
|           |          | Cyton Board                                      | 68 |
|           | 3.9.5    | Skin Impedance Measurement with Hioki            |    |
|           |          | IM3570 Impedance Analyzer                        | 71 |
| 3.10      | Equival  | ent Circuits for Skin Bioelectrode Interface     | 73 |
|           | 3.10.1   | Equivalent Circuits for Wet and Dry Contact      |    |
|           |          | Bioelectrodes                                    | 73 |
|           | 3.10.2   | Equivalent Circuit for Non-contact Bioelectrodes | 74 |
| 3.11      | Measure  | ement of ECG Signal                              | 77 |
|           | 3.11.1   | Bioelectrode Placement                           | 77 |
|           | 3.11.2   | Wet ECG Mode                                     | 78 |
|           | 3.11.3   | Direct Contact ECG Mode                          | 78 |
|           | 3.11.4   | Non-contact ECG Mode                             | 78 |
| 3.12      | ECG Si   | gnal Processing                                  | 79 |
|           | 3.12.1   | Sources of Noise and Interference                | 80 |
|           | 3.12.2   | ECG Signal Filtering                             | 80 |
| 3.13      | Summa    | ry                                               | 83 |
|           |          |                                                  |    |
| CHAPTER 4 | RESUL    | TS AND DISCUSSION                                | 85 |
| 4.1       | Introduc | ction                                            | 85 |
| 4.2       | Morpho   | logical Analysis                                 | 85 |
|           | 4.2.1    | FESEM and EDX                                    | 85 |

|           | 4.2.2    | Raman Spectroscopy                                  | 88  |
|-----------|----------|-----------------------------------------------------|-----|
| 4.3       | Electric | cal and Dielectric Analysis of Fabric and Unblended |     |
|           | PDMS     | Dielectrics                                         | 90  |
|           | 4.3.1    | Capacitance Measured Per Dielectric                 | 90  |
|           | 4.3.2    | Estimation of Relative Permittivity                 | 92  |
| 4.4       | Skin I   | mpedance Measurements and Skin Bioelectrode         |     |
|           | Interfac | ee Modelling                                        | 93  |
|           | 4.4.1    | Skin Impedance Measured with OpenBCI Cyton          |     |
|           |          | Board                                               | 94  |
|           | 4.4.2    | Measurement of Skin Impedance and Skin              |     |
|           |          | Bioelectrode Interface Modelling                    | 97  |
|           |          | 4.4.2.1 Measured Skin Impedance with Wet            |     |
|           |          | and Dry Bioelectrodes                               | 97  |
|           |          | 4.4.2.2 Model Simulation Results for Porous         |     |
|           |          | and Non-Porous Dielectrics used in                  |     |
|           |          | Non-contact Bioelectrodes                           | 99  |
| 4.5       | Equiva   | lent Circuit Parameters of Skin Bioelectrode        |     |
|           | Interfac | ce                                                  | 103 |
|           | 4.5.1    | Estimated Circuit Parameters for Wet and Direct     |     |
|           |          | Contact Bioelectrodes                               | 103 |
|           | 4.5.2    | Circuit Parameters for Non-contact Bioelectrodes    | 105 |
| 4.6       | ECG S    | ignal Processing                                    | 107 |
|           | 4.6.1    | Performance and Analysis of The OpenBCI GUI         |     |
|           |          | Filters                                             | 107 |
|           | 4.6.2    | Performance and Analysis of ECG Filters             |     |
|           |          | Implemented in Matlab                               | 109 |
| 4.7       | Measur   | red ECG Signals                                     | 109 |
|           | 4.7.1    | Wet Bioelectrodes                                   | 109 |
|           | 4.7.2    | Direct Contact Bioelectrodes                        | 110 |
| 4.8       | Non-co   | ntact Bioelectrodes                                 | 113 |
| 4.9       | Summa    | ury                                                 | 123 |
| CHAPTER 5 | CONC     | LUSION AND RECOMMENDATIONS                          | 125 |

125

5.1

**Research Outcomes** 

| 5.2 | Contributions to Knowledge | 127 |
|-----|----------------------------|-----|
| 5.3 | Future Works               | 128 |
|     |                            |     |

| REFERENCES           | 129 |
|----------------------|-----|
| LIST OF PUBLICATIONS | 165 |

# LIST OF TABLES

| TABLE NO. | TITLE                                                     | PAGE |
|-----------|-----------------------------------------------------------|------|
| Table 1.1 | Comparison of ECG bioelectrodes                           | 6    |
| Table 2.1 | ECG wave components and their duration                    | 15   |
| Table 2.2 | Layers of the human skin                                  | 16   |
| Table 2.3 | Summarised description of previous capacitive ECG         |      |
|           | bioelectrodes of metal compound dielectrics               | 30   |
| Table 2.4 | Estimated Dielectric Parameters of Fabric Materials       | 32   |
| Table 2.5 | Summarised description of previous capacitive ECG         |      |
|           | bioelectrodes of fabric-based dielectrics                 | 33   |
| Table 2.6 | Summarised description of previous capacitive ECG         |      |
|           | bioelectrodes of polymer-based dielectrics                | 37   |
| Table 2.7 | Previous applications of PDMS in biomedical and flexible  |      |
|           | electronics                                               | 47   |
| Table 2.8 | Dielectric and electrical applications of PDMS composite  |      |
|           | films                                                     | 50   |
| Table 3.1 | Preparation ratio of PDMS polymer                         | 58   |
| Table 3.2 | Ambu Whitesensors for wet ECG measurement                 | 64   |
| Table 3.3 | Fabricated dry bioelectrodes for ECG measurement          | 65   |
| Table 3.4 | Technical specifications of Cyton biosensing board        | 67   |
| Table 4.1 | Elemental percentage in unblended PDMS dielectric films   | 88   |
| Table 4.2 | Comparison of unblended PDMS Raman peak stoke bands       |      |
|           | at different Raman shifts                                 | 89   |
| Table 4.3 | Capacitance measured and the estimated relative permit-   |      |
|           | tivity for unblended PDMS dielectric films at various     |      |
|           | frequencies                                               | 91   |
| Table 4.4 | Comparison of past measured skin impedance with the       |      |
|           | current work                                              | 103  |
| Table 4.5 | Estimated model parameters for wet and dry direct contact |      |
|           | bioelectrodes for different skin conditions               | 104  |

| Table 4.6 | Equivalent circuit parameters for different dielectrics and |     |
|-----------|-------------------------------------------------------------|-----|
|           | bioelectrode conductors for different skin conditions       | 106 |
| Table 4.7 | Current and previous applications of PDMS dielectric        |     |
|           | properties                                                  | 121 |
| Table 4.8 | Comparison of experimental results for fabric and           |     |
|           | unblended PDMS dielectrics                                  | 122 |
| Table 4.9 | Comparison of ECG parameters for different ECG recording    |     |
|           | modes and skin conditions                                   | 123 |

# LIST OF FIGURES

| FIGURE NO.  | TITLE                                                           | PAGE |
|-------------|-----------------------------------------------------------------|------|
| Figure 1.1  | The Ischaemic-CVD is the principal cause of death (a)           |      |
|             | worldwide as reported by the WHO in 2019 and (b)                |      |
|             | domestically by the Malaysian Department of statistics          |      |
|             | (modified)                                                      | 2    |
| Figure 1.2  | Categories of non-invasive ECG bioelectrodes                    | 4    |
| Figure 2.1  | Cardiac conduction system showing the depolarization            |      |
|             | (green) and repolarization (red)                                | 15   |
| Figure 2.2  | Normal ECG waveform showing the peak waves (P-QRS-              |      |
|             | T-U)                                                            | 15   |
| Figure 2.3  | Anatomical view of the human skin layers                        | 17   |
| Figure 2.4  | Wet ECG bioelectrodes (a) Ambu cardiology sensor with           |      |
|             | silver strip conductor, (b) stainless steel, (c) gold cup, and  |      |
|             | (d) solid conductive-gel foam                                   | 18   |
| Figure 2.5  | Dry bioelectrodes made from (a) a metal coin and PCB,           |      |
|             | (b) flexible PDMS/CNT composite, flexible semi-dry              |      |
|             | bioelectrodes of (c) PEDOT/PSS, and (d) porous PDMS/Ti          | 21   |
| Figure 2.6  | Micro-needles fabricated by thermal drawing and sputtering      |      |
|             | of titanium/gold (Ti/Au)                                        | 22   |
| Figure 2.7  | Non-contact mode of observing physiological events: (i) is      |      |
|             | the PPGI for detection of skin perfusion, (ii) ECG, (iii) the   |      |
|             | MIM for monitoring respiration of infants, (iv) the BCG         |      |
|             | is for detecting body motion and breathing, and (v) is the      |      |
|             | IRT system comprising of (1) radiant warmer-bed, (2) bed-       |      |
|             | side monitor, (3) camera area of view, (4) thermal infrared     |      |
|             | camera, (5) diagnosis workstation, (6) infant subject under     |      |
|             | NIRT imaging                                                    | 23   |
| Figure 2.8  | Electrical equivalent circuit for a wet bioelectrode            | 25   |
| Figure 2.9  | Electrical equivalent circuit for a direct contact bioelectrode | 26   |
| Figure 2.10 | Electrical equivalent circuit for a micro-needle bioelectrode   | 26   |

| Figure 2.11 | Electrical equivalent circuit for a non-contact bioelectrode    | 27 |
|-------------|-----------------------------------------------------------------|----|
| Figure 2.12 | Characteristics of capacitive bioelectrode (a) biomedical       |    |
|             | representation and (b) electrical model                         | 28 |
| Figure 2.13 | PCB-based EMG biosensor with (a) biosignal circuit, (b)         |    |
|             | sensor, (c) cotton, (d) linen, (e) rayon, (f) nylon, (g)        |    |
|             | polyester, and (h) PVC-fabric dielectrics                       | 31 |
| Figure 2.14 | Samples of previous dielectrics employed in non-contact         |    |
|             | ECG bioelectrodes. Metal oxide: (a) ceramic, identical to       |    |
|             | the dielectric used in . Fabrics: (b) cotton armband and        |    |
|             | (c). Polymer: (e) polymer-foam , (e) soldermask , and (f)       |    |
|             | polyimide                                                       | 38 |
| Figure 2.15 | The impact of $(a)$ rigid and flexible materials on ECG quality |    |
|             | (shown in grey). (b) More noise (blue) is introduced in the     |    |
|             | ECG recorded with rigid bioelectrode materials                  | 40 |
| Figure 2.16 | The quality of ECG improved after 4 hours due to the effect     |    |
|             | of sweat and moisture on cotton dielectric                      | 41 |
| Figure 2.17 | An example of polymerization of monomer to polymer              | 44 |
| Figure 2.18 | Categorization of polymers                                      | 45 |
| Figure 2.19 | Structural representation of PDMS                               | 46 |
| Figure 2.20 | Surface morphology of pure PDMS film processed using            |    |
|             | FESEM and EDX techniques                                        | 52 |
| Figure 2.21 | Raman spectroscopy of pure PDMS                                 | 52 |
| Figure 3.1  | The overall research procedure of the study                     | 55 |
| Figure 3.2  | Experimental flow diagram for fabrication of PDMS               |    |
|             | dielectrics                                                     | 56 |
| Figure 3.3  | Materials used for fabrication of unblended PDMS films.         |    |
|             | (a) Sylgard 184 elastomer base, (b) Sylgard 184 curing          |    |
|             | agent, (c) PMMA glass, (d) mylar film, (e) white adhesive       |    |
|             | tape of 0.14 mm thickness used as spacer, (f) desiccator,       |    |
|             | (g) black paper calipers for binding glasses, and (h) digital   |    |
|             | caliper                                                         | 57 |
| Figure 3.4  | Fabrication of PDMS Dielectrics by Manual deposition            | 59 |
| Figure 3.5  | (a) Prepared PDMS liquid placed in oven for baking and (b)      |    |
|             | manual deposition of unblended PDMS on a PMMA glass             | 60 |

| Figure 3.6  | Measurement of capacitance by parallel plate method           | 63 |
|-------------|---------------------------------------------------------------|----|
| Figure 3.7  | Description of components of OpenBCI Cyton biopotential       |    |
|             | sensing                                                       | 66 |
| Figure 3.8  | Components of the 8-Channel Cyton Biosensing Board            | 66 |
| Figure 3.9  | ECG Sensing points (a) thoracic region and (b) fore-          |    |
|             | arms. The OpenBCI biosensing board allows connection of       |    |
|             | bioelectrode leads with the positive (red), negative (black), |    |
|             | and biasing (blue)                                            | 68 |
| Figure 3.10 | Stages of recording ECG using OpenBCI Cyton biosensing        |    |
|             | board                                                         | 68 |
| Figure 3.11 | OpenBCI GUI control panel showing a live streaming of         |    |
|             | ECG                                                           | 69 |
| Figure 3.12 | Procedures of recording heart biopotential signals and skin   |    |
|             | impedance using OpenBCI Cyton board                           | 70 |
| Figure 3.13 | Skin impedance measurement technique using ADS1299 of         |    |
|             | the OpenBCI Cyton board                                       | 71 |
| Figure 3.14 | Ohms-button for measuring skin impedance using OpenBCI        |    |
|             | Cyton                                                         | 71 |
| Figure 3.15 | Bioimpedance measurement conditions                           | 72 |
| Figure 3.16 | Skin impedance measurement using two-bioelectrodes            |    |
|             | technique                                                     | 73 |
| Figure 3.17 | Skin bioelectrode interface equivalent circuit for            |    |
|             | wet/moisturized skin condition                                | 74 |
| Figure 3.18 | Capacitive bioelectrodes with (a) porous and (b) non-porous   |    |
|             | dielectric material                                           | 76 |
| Figure 3.19 | Equivalent circuit for (a) porous and (b) non-porous          |    |
|             | dielectric                                                    | 76 |
| Figure 3.20 | (a) schematic of bioelectrode placement on the forearms,      |    |
|             | non-contact ECG recording via (b) PDMS, and (c) fabric        |    |
|             | dielectrics                                                   | 79 |
| Figure 3.21 | Effect of the filter in time domain                           | 81 |
| Figure 3.22 | Effect of the filter in frequency domain. The noise           |    |
|             | components have been attenuated                               | 81 |
| Figure 3.23 | Effect of FIR bandpass filtering in frequency domain          | 82 |

| Figure 3.24 | Welch spectrum frequency representation                       | 82  |
|-------------|---------------------------------------------------------------|-----|
| Figure 3.25 | Effect of Butterworth filter                                  | 83  |
| Figure 4.1  | Polymer dielectric films developed from Unblended PDMS        |     |
|             | for different weight mix ratio of silicone elastomer (Sylgard |     |
|             | $184^{TM}$ and its curing agent                               | 86  |
| Figure 4.2  | FESEM surface structure of PDMS films made from               |     |
|             | different mix ratios of silicone elastomer and curing agent   |     |
|             | compared with a previous study on pure PDMS for polymer       |     |
|             | mix ratio 10:1                                                | 86  |
| Figure 4.3  | EDX elemental analysis of PDMS films made from different      |     |
|             | mix ratios of silicone elastomer and curing agent compared    |     |
|             | with a previous study                                         | 87  |
| Figure 4.4  | Raman spectra of PDMS films made from different mix           |     |
|             | ratios of silicone elastomer and curing agent compared with   |     |
|             | a previous study for PDMS mix ratio 10:1                      | 89  |
| Figure 4.5  | Influence of polymer mix ratio on capacitance, as shown       |     |
|             | in (a), (b), (c), and relative permittivity as shown in (d),  |     |
|             | (e), and (f) for PDMS dielectrics in comparison with cotton   |     |
|             | dielectric at different test frequencies                      | 93  |
| Figure 4.6  | Impedance of different bioelectrodes acquired from the        |     |
|             | forearms under (a) dry and (b) sweaty skin conditions using   |     |
|             | OpenBCI Cyton biosensing board at 32.5 Hz frequency           | 95  |
| Figure 4.7  | Impedance of different bioelectrodes acquired from the        |     |
|             | chest under (c) dry and (d) sweaty skin conditions using      |     |
|             | OpenBCI Cyton biosensing board at 32.5 Hz frequency           | 95  |
| Figure 4.8  | Comparison of measured skin impedance with a Hioki            |     |
|             | impedance analyzer for a frequency range of 4 Hz to 1         |     |
|             | MHz for wet, direct contact, and non-contact modes under      |     |
|             | different skin conditions                                     | 98  |
| Figure 4.9  | Measured skin impedance and the equivalent skin bioelec-      |     |
|             | trode model impedance for (a) CuNi/Fabric dielectric, (b)     |     |
|             | CuNi/PDMS 10:2 dielectric, (c) PCB/Fabric dielectric, and     |     |
|             | PCB/PDMS (10:2) dielectric on dry skin                        | 101 |

| Figure 4.10 | Measured skin impedance and the equivalent skin bioelec-       |     |
|-------------|----------------------------------------------------------------|-----|
|             | trode model impedance for (a) CuNi/Fabric dielectric, (b)      |     |
|             | CuNi/PDMS 10:2 dielectric, (c) PCB/Fabric dielectric, and      |     |
|             | PCB/PDMS (10:2) dielectric on sweaty skin                      | 102 |
| Figure 4.11 | Playback of raw ECG in the OpenBCI GUI                         | 107 |
| Figure 4.12 | FFT plots revealing the ECG components and the 50 Hz           |     |
|             | powerline interference                                         | 108 |
| Figure 4.13 | ECG signal after applying 50 Hz notch filter in the GUI        | 108 |
| Figure 4.14 | Fft plot and impact of the 50 Hz notch filter on the powerline |     |
|             | noise                                                          | 108 |
| Figure 4.15 | Filtered ECG after applying the bandpass filter in the GUI     |     |
|             | range of 1 – 50 Hz                                             | 109 |
| Figure 4.16 | Filtered ECG signal recorded by Ambu Whitesensor 4535M         |     |
|             | bioelectrode with reticulated gelled-sponge                    | 110 |
| Figure 4.17 | Filtered ECG signal recorded by Ambu Whitesensor               |     |
|             | bioelectrode with solid gel                                    | 110 |
| Figure 4.18 | (a) noisy ECG recorded on dry skin with customized copper-     |     |
|             | nickel bioelectrode in direct contact mode and (b) filtered    |     |
|             | ECG signal                                                     | 111 |
| Figure 4.19 | (a) Unfiltered ECG (blue) and (b) filtered ECG (red)           |     |
|             | recorded using copper-nickel bioelectrode for sweaty skin      | 112 |
| Figure 4.20 | (a) Unfiltered ECG signal (blue) recorded with flexible PCB    |     |
|             | for dry skin and (b) is the filtered ECG (red)                 | 112 |
| Figure 4.21 | (a) Unfiltered ECG signal (blue) recorded with flexible PCB    |     |
|             | for sweaty skin and (b) is the filtered ECG (red)              | 113 |
| Figure 4.22 | ECG signal recorded on dry skin in non-contact mode using      |     |
|             | copper-nickel bioelectrode with fabric dielectric. Results     |     |
|             | shown in (a) is the ECG before (blue) and (b) after (red)      |     |
|             | filtering                                                      | 114 |
| Figure 4.23 | ECG signal recorded on dry skin in non-contact mode using      |     |
|             | copper-nickel bioelectrode with unblended PDMS dielectric      |     |
|             | of 0.14 mm thickness made from polymer mix ratio of 10:2.      |     |
|             | The result shown in (a) is the ECG (blue) before and (b)       |     |
|             | after (red) filtering                                          | 115 |
|             |                                                                |     |

| Figure 4.24 | ECG signal recorded on dry skin in non-contact mode using    |     |  |
|-------------|--------------------------------------------------------------|-----|--|
|             | flexible PCB bioelectrode with fabric dielectric. Results    |     |  |
|             | shown in (a) is the ECG before (blue) and (b) after (red)    |     |  |
|             | filtering                                                    | 116 |  |
| Figure 4.25 | ECG signal recorded on dry skin in non-contact mode using    |     |  |
|             | flexible PCB bioelectrode with unblended PDMS dielectric     |     |  |
|             | of 0.14 mm thickness made from polymer mix ratio of 10:2.    |     |  |
|             | The result shown in (a) is the ECG (blue) before and (b)     |     |  |
|             | after (red) filtering                                        | 116 |  |
| Figure 4.26 | ECG recorded on sweaty skin in non-contact mode with         |     |  |
|             | copper-nickel bioelectrode and fabric dielectric, (a) before |     |  |
|             | (blue) and (b) after (red) application of filter             | 117 |  |
| Figure 4.27 | ECG recorded on sweaty skin in non-contact mode with         |     |  |
|             | copper-nickel bioelectrode and PDMS dielectric, (a) before   |     |  |
|             | (blue) and (b) after (red) application of filter             | 118 |  |
| Figure 4.28 | ECG recorded on sweaty skin in non-contact mode with         |     |  |
|             | flexible PCB bioelectrode and PDMS dielectric, (a) before    |     |  |
|             | (blue) and (b) after (red) application of filter             | 119 |  |
| Figure 4.29 | ECG recorded on sweaty skin in non-contact mode with         |     |  |
|             | flexible PCB bioelectrode and PDMS dielectric, (a) before    |     |  |
|             | (blue) and (b) after (red) application of filter             | 119 |  |

### LIST OF ABBREVIATIONS

| AAMI    | - | American Association for Medical Instrumentation |
|---------|---|--------------------------------------------------|
| Ag-NW   | - | Silver Nano-Wire                                 |
| ANSI    | - | American National Standards Institute            |
| BCG     | - | Ballistocardiograph                              |
| CB      | - | Carbon Black                                     |
| CuNi    | - | Copper-Nickel                                    |
| CVD     | - | Cardiovascular Disease                           |
| ECG     | - | Electrocardiogram                                |
| EDX     | - | Energy dispersive X-ray spectroscopy             |
| EEG     | - | Electroencephalogram                             |
| EMG     | - | Electromyogram                                   |
| FESEM   | - | Field Emission Scanning Electron Microscope      |
| FFT     | - | Fast Fourier Transform                           |
| FIR     | - | Finite Impulse Response                          |
| GO      | - | Graphene Oxide                                   |
| GUI     | - | Graphic User-Interface                           |
| IIR     | - | Infinite Impulse Response                        |
| IRT     | - | Infrared Thermography                            |
| MEMS    | - | Micro-Mechanical Systems                         |
| MIM     | - | Magnetic Induction Monitoring                    |
| MNB     | - | Micro-Needle Bioelectrode                        |
| MWCNT   | - | Multi-walled Carbon Nano-Tube                    |
| OpenBCI | - | Open Brain-Computer Interface                    |
| PCB     | - | Printed Circuit Board                            |
| PDMS    | - | Polydimethylsiloxane                             |
| PMMA    | - | Poly(methyl methacrylate)                        |

| PPGI | - | Photoplethysmography Imaging |
|------|---|------------------------------|
| PVC  | - | Polyvinyl Chloride           |
| SC   | - | Stratum Corneum              |
| WHO  | - | World Health Organization    |

# LIST OF SYMBOLS

| Α                  | - | Contact area                                  |
|--------------------|---|-----------------------------------------------|
| С                  | - | Capacitance                                   |
| $C_B$              | - | Capacitance of gel-bioelectrode interface     |
| $C_E$              | - | Capacitance of epidermis                      |
| $C_n$              | - | Capacitance of non-porous dielectric          |
| $C_p$              | - | Capacitance of porous dielectric              |
| d                  | - | thickness of dielectric                       |
| $E_{v}$            | - | Half-cell potential                           |
| $f_c$              | - | Cut-off frequency                             |
| f <sub>s</sub> amp | - | Sampling frequency                            |
| k                  | - | Dielectric constant                           |
| М                  | - | Filter length (number of filter coefficients) |
| $R_B$              | - | Resistance of gel-bioelectrode interface      |
| $R_C$              | - | Resistance of conductive gel                  |
| $R_E$              | - | Resistance of epidermis                       |
| $R_n$              | - | Resistance of non-porous dielectric           |
| $R_p$              | - | Resistance of porous dielectric               |
| $R_p$              | - | Resistance of dermis and subcutaneous tissue  |
| Ζ                  | - | Impedance                                     |
| $\mathcal{E}_{O}$  | - | Relative permittivity of free-space           |
| $\mathcal{E}_r$    | - | Relative permittivity of dielectric material  |
| $\delta p$         | - | Pass-band ripple                              |
| δs                 | - | Stop-band ripple                              |
| $\Delta f$         | - | Normalized transition width                   |

# LIST OF APPENDICES

# APPENDIX

### TITLE

PAGE

Appendix A Measured Skin Impedance

163

### **CHAPTER 1**

#### INTRODUCTION

#### 1.1 Problem Background

Cardiovascular diseases (CVDs) are non-communicable lifetime illnesses and the highest cause of deaths globally [1]. At present, CVD has a global presence as the supreme health threat to all demography of people across different genders and ages [2]. In 2019, the World Health Organization (WHO) reported ischaemic-CVD as the most deadly disease (Figure 1.1(a)) [3]. Furthermore, in 2020, the Malaysian Department of Statistics reported that ischaemic-CVD is the leading cause of death at the national level, as shown in Figure 1.1(b) [4]. Consequently, many countries bear a heavy financial burden to manage affected citizens with heart abnormalities [5–8]. In 2022, the the Ministry of Health Malaysia published a report confirming that the country spent RM3.93 Billion as the total healthcare cost for CVDs [9].

Heart diseases are silent-killers. In light of the primary health concerns, patients with a high risk of CVD are highly recommended to regularly monitor their health status to detect heart dysfunction and prevent sudden heart failure or damage of organs that rely on the cardiac conduction system [10, 11].

Electrocardiography is a non-invasive medical procedure for acquiring bioelectrical signals generated by the heart in the form of an interpretable waveform [12]. To date, Cardiologists use the electrocardiogram (ECG) to identify heart problems such as infarction, ischemia, and other cardiac abnormalities [13–15]. Since the coronavirus was reported in 2020, the ECG has been attracting the interest of the healthcare communities. For example, an irregularity in the ECG waves pattern indicates infection by the COVID-19 [16]. Therefore, there is a universal increase in the application of non-invasive ECG recording systems to evaluate the potential threat and influence of cardiac diseases on the COVID-19 prognosis [17–22].

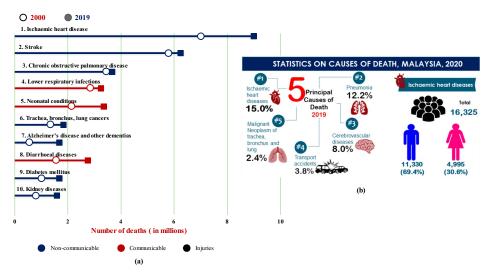



Figure 1.1 The Ischaemic-CVD is the principal cause of death (a) worldwide as reported by the WHO in 2019 [3] and (b) domestically by the Malaysian Department of Statistics [4] (modified).

Over a century since Augustus Waller invented the first heart monitoring device to record heart rhythms using five zinc bioelectrodes [23]. In 1893, the Dutch Physiologist improved the work of Waller and successfully reduced the number of ECG bioelectrodes from five to three [24, 25]. The conventional approach of measuring heart biopotential is the 12-lead ECG system [26] and Holter monitor [27]. Despite the advantages of these clinical ECG systems, they rely on non-invasive bioelectrodes that are effective for a short period and restricted to clinical settings. As such, patients that require constant monitoring are at high risk when they experience sudden heart failure [28].

In physiological signal monitoring, non-invasive bioelectrodes are necessary to acquire the electrical potentials on the skin. Regarding the placement of bioelectrodes, bioelectrodes are classified as invasive when embedded within human tissue to record physiological signals and non-invasive when attached to the outer skin layer [29]. The focus of this study is entirely on non-invasive bioelectrodes. Non-invasive ECG bioelectrodes are sub-classified, based on skin conditions, into wet and dry bioelectrodes. The wet silver/silver-chloride (Ag/AgCl) bioelectrodes were the foremost and the most popular bioelectrodes for acquiring heart electrical signals [30, 31]. The wet bioelectrodes require conductive gel before use. The gel creates a low impedance

path for easy movement of ionic current from the cardiac tissues to produce a detectable electrical potential with high resolution.

Over the past years, there has been a growing effort towards long-term ECG monitoring. The long-term monitoring ensures physicians do not miss any useful indicators of heart abnormalities and allows early diagnosis of critically affected patients [32–36]. In long-term ECG monitoring, the performance of the wet bioelectrodes is greatly restricted. The conductive gel may dehydrate after extended use, leading to severe signal instability and attenuation [30]. Besides, the placement of wet bioelectrodes requires clinical experience and sensitive skin abrasion. When the ECG is frequently recorded, the chemical reaction between the gel and metal conductor can result in skin irritations and contact dermatitis infections [37, 38]. Since wet bioelectrodes are not often reusable and biodegradable, their waste can contribute to substantial environmental pollution [36, 39].

Studies have proposed that by constantly monitoring the ECG, many heart patients could be better examined and protected from sudden death [40–43]. Unfortunately, the wet bioelectrodes are constrained by the problems mentioned earlier. Dry bioelectrodes are biopotential sensors capable of operating without skin abrasion and conductive gels. In the last decade, non-invasive bioelectrodes have been researched to support telemedicine and real-time monitoring of physiological activities [44,45]. In addition, patients benefit from constant health monitoring and enjoy better comfort [46]. Dry bioelectrodes are of three types: direct contact, micro-needles, and non-contact (capacitive), as classified in Figure 1.2.

Direct contact bioelectrodes are alternative to the wet bioelectrodes and operate through physical contact with the skin. They can be used in long-term ECG monitoring because they guarantee ease without skin preparations, and offers the safest approach to prevent skin irritations [47, 48]. Several studies have explored direct contact bioelectrodes utilizing diverse materials. Some of the bioelectrodes were implemented using stainless-steel [49, 50], brass [51], silver, gold [52], and silver-coin [53, 54]. Despite being good conductors, metal-based ECG bioelectrodes have drawbacks. They are rigid, un-ergonomic, induce motion artifacts, and are highly vulnerable to

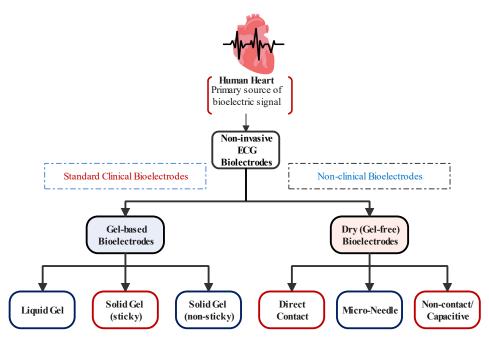



Figure 1.2 Categories of non-invasive ECG bioelectrodes

electrical interference [30]. Furthermore, the performance demonstrated by direct contact bioelectrodes is dependent on skin condition. For instance, dry skin exhibit high impedance than when moisturized by sweat, which is responsible for unstable biosignal quality in dry ECG bioelectrodes [55].

Fabrics are the most accessible and used materials by humans. Fabrics have been investigated by many researchers for wearable and long-term ECG monitoring, such as conductive-threads, inks, and printed-fabrics [56]. Many other bioelectrodes include yarns of silver-coated threads stitched to fabrics [57, 58] and screen-printed fabrics using conductive inks [59, 60]. Fabric-based bioelectrodes have the advantage of being soft and flexible. However, they still require excessive pressure to attach them to the skin firmly. Furthermore, skin exudates could produce unpleasant skin reactions [61] and cause the coated ink to fade, resulting in low and unstable ECG quality [62, 63]. Also, triboelectric charges are more frequent in fabrics.

Materials and fabrication techniques have greatly influenced bioelectrode technology in the past decade. Polymers have inspired the development of polymeric materials and nano-metallic conductors with special properties for biomedical applications. Typical examples are the direct contact bioelectrodes fabricated using multi-wall carbon nanotube (MWCNT)/polydimethylsiloxane (PDMS) [64, 65]; polypyrrole (PPy)/patterned-vertical carbon nanotube [66]; silver nanowires, MWCNT, and adhesive PDMS [67]; graphene-oxide (GO)/Ag-NWs [68]; and polyvinyl butyral/Ag-NWs [69]. The disadvantages of nano-materials are that fabrication methods are expensive and require hazardous laboratory experiments.

In skin anatomy, the stratum corneum (SC) is the outer-most layer of the epidermis. When bioelectrodes are applied in direct contact mode, they are placed on the surface of the SC. The SC has a dry structure, short lifespan, and the ability to regenerate [70]. The thickness of the SC varies with the region of the body (6 – 40  $\mu$ m) [71] and is weakly conductive [72]. This makes the SC the primary cause of high skin impedance that hinders biopotential signal recording [73, 74]. In wet ECG, the SC is usually abraded to minimize its influence. Dry bioelectrodes with micro-needles can overcome the restrictions of the SC layer. The micro-needles are invented to penetrate the SC layer and minimize its influence on the skin impedance. In addition, the micro-needles ensure stable contact with the skin and prevent motion artifact [75, 76]. Examples of the dry micro-needles bioelectrodes reported can be found in the studies conducted by [77–81]. However, the micro-needles can cause inconveniences such as pains, bleeding, and infection in prolonged use. Moreover, the fabrication of micro-needles requires stringent laboratory procedures and expensive facilities [75].

Non-contact ECG bioelectrodes were researched long ago and are presently investigated because of their potentials [82–84]. In contrast to the dry, direct skin contact bioelectrodes, the non-contact bioelectrodes are capable of recording ECG from unabraded skin via dielectric materials. Dielectrics provide non-contact bioelectrodes the advantage to operate for an extended period with much convenience and assurance to detect heart abnormalities in good time [85]. Table 1.1 shows a comparison of different ECG bioelectrodes.

| Bioelectrodes  | Skin Condition | Advantages                                                                                                                                                                                                                  | Disadvantages                                                                                                                                                                                                                                |
|----------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Wet            | Gelled         | <ul> <li>Records high-quality biosignal</li> <li>Suitable for short-term ECG recording</li> <li>Acceptable in clinical practice</li> </ul>                                                                                  | <ul> <li>Gel causes skin allergies</li> <li>Requires skin abrasion</li> <li>Dehydration of gel affects quality of biosignal</li> <li>Usage is restricted to clinical settings</li> </ul>                                                     |
| Direct contact | Dry            | <ul> <li>No gel or skin abrasion<br/>is required</li> <li>No skin allergies</li> <li>Suitable for long-term<br/>ECG recording and<br/>wearable biosensors</li> </ul>                                                        | <ul> <li>Biosignal quality depends on skin condition</li> <li>Requires special frontend bio-amplifiers with a high input impedance</li> <li>Prone to powerline noise and motion artifacts</li> </ul>                                         |
| Micro-needles  | Dry            | <ul> <li>Requires no skin preparation</li> <li>Ensures proper skin contact and low impedance</li> <li>Good ECG quality</li> </ul>                                                                                           | <ul> <li>Inconvenient</li> <li>Could cause skin infection in long-term use</li> <li>Fabrication is expensive</li> </ul>                                                                                                                      |
| Non-contact    | Dry            | <ul> <li>No gel or skin abrasion<br/>is required</li> <li>No skin allergies</li> <li>Suitable for long-term<br/>ECG recording and<br/>wearable biosensors</li> <li>Dielectrics provide bet-<br/>ter skin comfort</li> </ul> | <ul> <li>Biosignal quality depends on the type of dielectric material</li> <li>Requires front-end circuits with a high input impedance</li> <li>Susceptible to powerline noise, motion artifacts, and triboelectric charge effect</li> </ul> |

Table 1.1 Comparison of ECG bioelectrodes

In non-contact ECG sensing, the performance of the bioelectrodes is greatly influenced by the dielectric material, which makes the dielectric material worth investigating. From non-contact ECG bioelectrodes developed previously, three dielectrics were most common. They are metal-oxides, fabrics, and polymers. Metal oxides were employed as dielectrics in non-contact ECG bioelectrodes because of their high dielectric constant [82–84]. However, their rigid structure induces severe motion artifacts and electrical interference [30].

Alternatively, previous research investigated natural and synthetic fabrics as dielectrics [54, 86–89]. Fabric dielectrics are soft, breathable, and skin conformable. Although, the aforementioned properties are desired in dielectrics used for wearable medical bioelectrodes. However, in long-term ECG monitoring, fabrics can exhibit unstable behaviour when they are moisturized by sweat and skin exudates. Also, they

can introduce triboelectric charges strong enough to distort weak biopotential signals such as the ECG.

Among the enormous materials on the earth, polymers are well-known. Polymers are primarily used in electronics as insulators because they are non-conductive materials [90, 91]. Recent years have seen a high increase in the characterization and application of polymers as biomaterials and biomedical electronics for several reasons [92–97]. Polymers are exciting materials. They are easy to synthesize and characterize to produce degradable medical devices [98]. Polymers are easy to fabricate into any desired shape [99]. They are inert against most chemicals, light weight, stretchable, skin conformable, and harmless to human tissue [100, 101].

Polydimethylsiloxane (PDMS) belongs to the siloxane group of polymers that has gained broad research interest in biomedical engineering because of its outstanding properties and compatibility [102–106]. More interestingly, PDMS has the following qualities and potentials; (a) it is relatively cheap, (b) resembles and harmless to human tissue when characterized and moulded [107], (c) flexible and stretchable, (d) can be fabricated using a simple method to conform with skin structure, (e) bio-durable and compatible with other polymers and nano-particles. Among the poly-siloxanes group, PDMS has been extensively employed as a significant composite constituent in developing polymer biosensors [65, 108], micro-fluidic devices [109–112], and substrate materials [113–115].

In non-contact ECG measurement, the following qualities are essential in a dielectric material; high dielectric constant, biocompatible, bio-durable, and ability to conform with the skin. Another essential characteristic of a biomedical dielectric is the capacity to protect any front-end electronics from short-circuit by sweat and enable high coupling capacitance. Also, dielectric materials that induce triboelectric (electrostatic) charges are unsuitable since they can generate charges that can distort the ECG signal.

#### **1.2 Problem Statement**

Like most polymers, several investigators have explored PDMS to serve as insulants in electronics [116, 117]. PDMS is a good insulator, but it has poor dielectric performance. Many techniques have been proposed to enhance the weak dielectric properties of PDMS using nano-particles as composites for non-biomedical applications [111, 118–121]. However, the techniques employed require expensive nano-particles, hazardous laboratory procedures, and expensive equipment. Strict safety precautions are also required to characterize these materials. In some instances, the experiment might fail, as reported in [122], leading to a waste of time and resources. When undertaking the current study, we are yet to find literature on composite PDMS dielectrics for capacitive bioelectrodes.

PDMS is commercially available as a single kit but in two parts; elastomer base and curing agent (crosslinker). Mixing of these two parts results in a change in molecular structure and dielectric properties of PDMS. It is feasible to modify the dielectric properties of unblended PDMS without the need for expensive conducting nano-particles. In this study, the term "unblended" means without electrical conducting nano-particles. By adding more of the crosslinker, the polymer chains get shorter and structurally affected [123–125]. This study intends to explore the dielectric performance of unblended PDMS films for non-contact ECG sensing applications. By employing the manual deposition technique, PDMS dielectric films can be characterized by varying the proportion of the silicone elastomer (Sylgard  $184^{TM}$ ) base and its curing agent. To our knowledge, no direct study investigating the dielectric performance of unblended PDMS for non-contact ECG bioelectrodes has been reported in the literature. Exploring unblended PDMS elastomer for dielectrics will open up and better understand its performance when applied in non-contact ECG bioelectrodes.

#### **1.3 Research Objectives**

The objectives of the present investigation are:

- (a) To experiment and fabricate by varying the polymer mix ratios, unblended PDMS dielectric films.
- (b) To characterize the electrical and dielectric properties of unblended PDMS films.
- (c) To model and simulate the bioelectrode skin interface equivalent circuit for a porous and non-porous dielectric for non-contact ECG bioelectrode.
- (d) To assess the dielectric performance of unblended PDMS dielectrics in noncontact ECG recordings.

#### **1.4** Scope of the Research

The primary focus of this research is to modify and fabricate by manual deposition the dielectric properties of PDMS films. Thin PDMS films were characterized by varying the proportion of the silicone elastomer liquid and its crosslinker. The polymer mix ratios affect PDMS baking temperature. Consequently, a trade-off was made between the PDMS mix ratios baking and its baking temperature that can be tolerated by the glass substrates. Considering these factors, the weight ratio method is applied on the elastomer and its crosslinker to generate three polymer mix ratios; 10:1, 10:1.5, and 10:2. Also, the minimum thickness of the proposed PDMS films is defined by the thickness of the spacer. The effects of polymer composition ratio on PDMS dielectric properties are the main interest within the research scope. The dielectric parameters are the capacitance and relative permittivity of the PDMS films. PDMS is a low-k dielectric material. The parallel-plate technique is considered for measuring the generated capacitances with an Agilent LCR meter of a preset frequency range of 100 Hz to 100 kHz. Also, the instrument applied for measuring impedance has fixed and restricted test frequencies. The possible range of frequency allowed is 4 Hz to 1 MHz. The equivalent circuit model for a non-porous PDMS dielectric was simulated in Matlab 2019b to determine circuit parameters.

Furthermore, the relative permittivity of each film sample was estimated by the general expression for parallel-plate capacitance. PDMS films with reliable dielectric characteristics were selected and experimented. Separately, ECG waveforms were

acquired with the Ambu Ag/AgCl, direct contact, and non-contact bioelectrodes with fabric (porous) and PDMS (non-porous) dielectrics.

### **1.5** Significance of the Research

The study will provide benefits in the following ways:

- (a) The model and simulation results of the equivalent circuit for a porous and nonporous dielectric will provide invaluable information for designing biopotential amplifiers and other front-end biosignal processing circuits.
- (b) This is the first occasion the dielectric performance of unblended PDMS films from Sylgard 184<sup>TM</sup> elastomer is investigated for non-contact ECG sensing. The results obtained will provide relevant insights on the characterization of unblended PDMS as a safe biomedical dielectric without expensive nanoparticles.
- (c) Non-porous PDMS dielectric film is flexible, non-toxic, harmless to the skin, and can satisfactorily protect the front-end circuit from skin exudates. The recorded ECG signals with visible P-QSR-T peaks confirm the feasibility of reliable non-contact measurement physiological signals for early detection, diagnosis of cardiac abnormalities, and preventing sudden death of heart patients.

### 1.6 Thesis Outline

The organization of the different chapters of the thesis is as follows:

In Chapter 1, essential information on cardiovascular diseases and the health challenges are introduced. This is followed by a description of the techniques used to record ECG signals and performance limitations of bioelectrodes in long-term ECG measurement. Next, the problem statement and research objectives are outlined. The remaining sections of the chapter define the scope and significance of the research.

In Chapter 2, the literature review covers relevant aspects of the human cardiac system, skin physiology, and the ECG extraction points. Further, an extensive review is conducted on non-invasive ECG bioelectrode technologies, the skin bioelectrode interface, and equivalent electrical models. The focus of the study is non-contact bioelectrodes and biomedical dielectrics. Therefore, the final part of the chapter provides a detailed assessment of three categories of dielectric materials and their crucial role in non-contact ECG recording.

Chapter 3 elaborates the experimental procedures employed to modify and boost the dielectric performance of pure Sylgard 184 <sup>TM</sup> PDMS films. The chapter starts with a schematic narration of the experimental design, fabrication of PDMS dielectrics, and morphological analyses. Next, the electrical and dielectric parameters of selected samples PDMS films were measured using the parallel plate technique. Equivalent circuit models for both porous and non-porous dielectrics are presented. Matlab simulation was implemented to observe the output response of the proposed capacitive biosensing system using the transfer function. The performance of the proposed PDMS films is tested through a non-contact method to record ECG from a human subject, processed using the digital filters, and compared with other types of dielectric materials.

In Chapter 4, the results presented comprise the surface morphological analyses of unblended PDMS films made from different mix ratios, dielectric properties, equivalent circuit model simulations, ECG signal recordings, and denoising ECG signal techniques. In addition, a detailed analysis is made and the implication of the results in capacitive bioelectrodes and extended ECG monitoring.

Lastly, Chapter 5 completes the thesis with a conclusion and offers suggestions for future research.

### REFERENCES

- World Health Organization (WHO). Cardiovascular diseases (CVDs). https://www.who.int/en/news-room/fact-sheets/detail/ cardiovascular-diseases-(cvds), 2021. Retrieved October 2021.
- Savarese, G. and Lund, L. H. Global public health burden of heart failure. *Cardiac failure review*, 2017. 3(1): 7.
- 3. World Health Organization (WHO). Global health estimates: Leading causes of death. https://www.who.int/data/gho/ data/themes/mortality-and-global-health-estimates/ ghe-leading-causes-of-death, 2019. Retrieved January 2021.
- Department of Statistics Malaysia. Statistics on causes of death. https: //www.dosm.gov.my, 2017. Retrieved January 2021.
- Leal, J., Luengo-Fernández, R., Gray, A., Petersen, S. and Rayner, M. Economic burden of cardiovascular diseases in the enlarged European Union. *European Heart Journal*, 2006. 27(13): 1610–1619.
- Amiri, M., Majid, H. A., Hairi, F., Thangiah, N., Bulgiba, A. and Su, T. T. Prevalence and determinants of cardiovascular disease risk factors among the residents of urban community housing projects in Malaysia. *BMC Public Health*, 2014. 14(3): 1471–2458.
- Darba, S., Safaei, N., Mahboub-Ahari, A., Nosratnejad, S., Alizadeh, G., Ameri, H. and Yousefi, M. Direct and Indirect Costs Associated with Coronary Artery (Heart) Disease in Tabriz, Iran. *Risk Management and Healthcare Policy*, 2020. 13: 969–978.
- Kilgore, M., Patel, H. K., Kielhorn, A., Maya, J. F. and Sharma, P. Economic burden of hospitalizations of Medicare beneficiaries with heart failure. *Risk management and healthcare policy*, 2017. 10: 63–70.
- 9. Ministry of Health Malaysia, Putrajaya. Direct Health-care Cost of Noncommunicable Diseases in Malaysia. https://malaysia.un.org/en/

194055-direct-health-care-cost-noncommunicable-diseases-malaysia, 2022. Retrieved September 2022.

- Martirosyan, M., Caliskan, K., Theuns, D. A. and Szili-Torok, T. Remote monitoring of heart failure: benefits for therapeutic decision making. *Expert review of cardiovascular therapy*, 2017. 15(7): 503–515.
- Karunathilake, S. P. and Ganegoda, G. U. Secondary prevention of cardiovascular diseases and application of technology for early diagnosis. *BioMed research international*, 2018. 2018.
- Fye, W. B. A history of the origin, evolution, and impact of electrocardiography. *The American journal of cardiology*, 1994. 73(13): 937–949.
- 13. De Luna, A. B. *Basic electrocardiography: normal and abnormal ECG patterns*. John Wiley and Sons. 2008.
- Goldberger, A. L., Goldberger, Z. D. and Shvilkin, A. Chapter 5 The Normal ECG. In: *Goldberger's Clinical Electrocardiography*. Elsevier. 9th ed. 32–40. 2018.
- Zipes, D. P., Libby, P., Bonow, R. O., Mann, D. L. and Tomaselli, G. F. Braunwald's Heart Disease: A Textbook of Cardiovascular Medicine. vol. 2. Elsevier Health Sciences. 2018.
- Haseeb, S., Gul, E. E., Çinier, G., Bazoukis, G., Alvarez-Garcia, J., Garcia-Zamora, S., Lee, S., Yeung, C., Liu, T., Tse, G. and Baranchuk, A. Value of electrocardiography in coronavirus disease 2019 (COVID-19). *Journal of Electrocardiology*, 2020. 62: 39–45.
- 17. Yadav, R., Bansal, R., Budakoty, S. and Barwad, P. COVID-19 and sudden cardiac death: a new potential risk. *Indian Heart Journal*, 2020. 72(5): 333.
- 18. Lakkireddy, D. R., Chung, M. K., Gopinathannair, R., Patton, K. K., Gluckman, T. J., Turagam, M., Cheung, J., Patel, P., Sotomonte, J. and Lampert, R. Guidance for Cardiac Electrophysiology During the COVID-19 Pandemic from the Heart Rhythm Society COVID-19 Task Force; Electrophysiology Section of the American College of Cardiology; and the Electrocardiography and Arrhythmias Committee of the Council on Clinical

Cardiology, American Heart Association. *Circulation*, 2020. 141(21): e823–e831.

- Jain, S., Workman, V., Ganeshan, R., Obasare, E. R., Burr, A., DeBiasi, R. M., Freeman, J. V., Akar, J., Lampert, R. and Rosenfeld, L. E. Enhanced electrocardiographic monitoring of patients with coronavirus disease 2019. *Heart rhythm*, 2020.
- Chen, L., Feng, Y., Tang, J., Hu, W., Zhao, P., Guo, X., Huang, N., Gu, Y., Hu, L. and Duru, F. Surface electrocardiographic characteristics in coronavirus disease 2019: repolarization abnormalities associated with cardiac involvement. *ESC heart failure*, 2020.
- Barman, H. A., Atici, M. A., Alici, M. G., Sit, M. O., Tugrul, M. S., Gungor, M. B., Okuyan, M. E. and Sahin, M. I. The effect of the severity COVID-19 infection on electrocardiography. *The American Journal of Emergency Medicine*, 2020.
- Alqarawi, W., Birnie, D. H., Golian, M., Nair, G. M., Nery, P. B., Klein, A., Davis, D. R., Sadek, M. M., Neilipovitz, D. and Johnson, C. B. The Clinical Utility of Continuous QT Interval Monitoring in Patients Admitted With COVID-19 Compared With Standard of Care: A Prospective Cohort Study. *CJC open*, 2020.
- 23. Waller, A. D. A Demonstration on Man of Electromotive Changes accompanying the Heart's Beat. *The Journal of physiology*, 1887. 8(5): 229–234.
- Drew, B. J. Celebrating the 100th birthday of the electrocardiogram: lessons learned from research in cardiac monitoring. *American Journal of Critical Care*, 2002. 11(4): 378–386.
- Barold, S. S. Willem Einthoven and the Birth of Clinical Electrocardiography a Hundred Years Ago. *Cardiac Electrophysiology Review*, 2003. 7(1): 99– 104.
- Harris, P. R. The Normal electrocardiogram: resting 12-Lead and electrocardiogram monitoring in the hospital. *Critical Care Nursing Clinics*, 2016. 28(3): 281–296.

- DiMarco, J. P. and Philbrick, J. T. Use of ambulatory electrocardiographic (Holter) monitoring. *Annals of internal medicine*, 1990. 113(1): 53–68.
- Jeong, I. C., Bychkov, D. and Searson, P. C. Wearable Devices for Precision Medicine and Health State Monitoring. *IEEE Transactions on Biomedical Engineering*, 2019. 66(5): 1242–1258.
- 29. Macy, A. The handbook of human physiological recording. http://www.alanmacy.info, 2017 [Online].
- Searle, A. and Kirkup, L. A direct comparison of wet, dry and insulating bioelectric recording electrodes. *Physiological Measurement*, 2000. 21(2): 271–283.
- 31. Janz, G. J. and Ives, D. J. G. Silver, silver chloride electrodes. *Annals of the New York Academy of Sciences*, 1968. 148(1): 210–221.
- Melgarejo-Meseguer, F.-M., Everss-Villalba, E., Gimeno-Blanes, F.-J., Blanco-Velasco, M., Molins-Bordallo, Z., Flores-Yepes, J.-A., Rojo-Álvarez, J.-L. and García-Alberola, A. On the Beat Detection Performance in Long-Term ECG Monitoring Scenarios. *Sensors*, 2018. 18(5): 1387.
- Lobodzinski, S. S. and Laks, M. M. New devices for very long-term ECG monitoring. *Cardiology Journal*, 2012. 19(2): 210–214.
- Li, P., Wang, Y., He, J., Wang, L., Tian, Y., Zhou, T., Li, T. and Li, J. High-Performance Personalized Heartbeat Classification Model for Long-Term ECG Signal. *IEEE Transactions on Biomedical Engineering*, 2017. 64(1): 78–86.
- Fergus, P., Iram, S., Al-Jumeily, D., Randles, M. and Attwood, A. Home-Based Health Monitoring and Measurement for Personalised Healthcare. *Journal of Medical Imaging and Health Informatics*, 2012. 2(1): 35–43.
- Guo, S.-L., Han, L.-N., Liu, H.-W., Si, Q.-J., Kong, D.-F. and Guo, F.-S. The future of remote ECG monitoring systems. *Journal of geriatric cardiology : JGC*, 2016. 13(6): 528–530.
- 37. Cochran, R. and Rosen, T. Contact dermatitis caused by ECG electrode paste. *Southern medical journal*, 1980. 73(12): 1667.

- Uter, W. and Schwanitz, H. Contact dermatitis from propylene glycol in ECG electrode gel. *Contact Dermatitis*, 1996. 34(3): 230–231.
- 39. World Health Organization (WHO). Health-care waste. https://www.who. int/news-room/fact-sheets/detail/health-care-waste, 2018. Retrieved January 2021.
- 40. Palumbo, A., Vizza, P., Calabrese, B. and Ielpo, N. Biopotential Signal Monitoring Systems in Rehabilitation: A Review. *Sensors*, 2021. 21(21): 7172.
- Chowdhury, M. E. H., Alzoubi, K., Khandakar, A., Khallifa, R., Abouhasera, R., Koubaa, S., Ahmed, R. and Hasan, M. A. Wearable Real-Time Heart Attack Detection and Warning System to Reduce Road Accidents. *Sensors* (*Basel, Switzerland*), 2019. 19(12): 2780.
- Lin, J., Fu, R., Zhong, X., Yu, P., Tan, G., Li, W., Zhang, H., Li, Y., Zhou,
   L. and Ning, C. Wearable sensors and devices for real-time cardiovascular disease monitoring. *Cell Reports Physical Science*, 2021. 2(8): 100541.
- Stehlik, J., Schmalfuss, C., Bozkurt, B., Nativi-Nicolau, J., Wohlfahrt, P., Wegerich, S., Rose, K., Ray, R., Schofield, R., Deswal, A., Sekaric, J., Anand, S., Richards, D., Hanson, H., Pipke, M. and Pham, M. Continuous Wearable Monitoring Analytics Predict Heart Failure Hospitalization. *Circulation: Heart Failure*, 2020. 13(3): e006513.
- 44. Heikenfeld, J., Jajack, A., Rogers, J., Gutruf, P., Tian, L., Pan, T., Li, R., Khine, M., Kim, J., Wang, J. and Kim, J. Wearable sensors: modalities, challenges, and prospects. *Lab Chip*, 2018. 18(2): 217–248.
- 45. Ha, M., Lim, S. and Ko, H. Wearable and flexible sensors for user-interactive health-monitoring devices. *Journal of Materials Chemistry B*, 2018. 6(24): 4043–4064.
- Bunn, J. A., Navalta, J. W., Fountaine, C. J. and Reece, J. D. Current state of commercial wearable technology in physical activity monitoring 2015–2017. *International journal of exercise science*, 2018. 11(7): 503.
- 47. Ernest, N. K. and Dario, F. *Peripheral Nerves and Muscles*, CRC Press, book section 10. 2014, 214–235.

- 48. Yazıcıoğlu, R. F., Van Hoof, C. and Puers, R. *Introduction to Biopotential Acquisition*, Dordrecht: Springer Netherlands. 2009, 5–19.
- Randazzo, V., Ferretti, J. and Pasero, E. A Wearable Smart Device to Monitor Multiple Vital Parameters—VITAL ECG. *Electronics*, 2020. 9(2): 300.
- Wangmo, P., Uppal, M., Chanu, O. R., Easwaran, A. and Ramyavani, G. Dual Electrodes System for acquisition of ECG Waveform. 2020 International Conference on Communication and Signal Processing (ICCSP). 0607–0612.
- Ruvalcaba, J. A., Gutiérrez, M. I., Vera, A. and Leija, L. Wearable Active Electrode for sEMG Monitoring Using Two-Channel Brass Dry Electrodes with Reduced Electronics. *Journal of Healthcare Engineering*, 2020. 2020: 5950218.
- Anusha, A. S., Preejith, S. P., Akl, T. J., Joseph, J. and Sivaprakasam,
   M. Dry Electrode Optimization for Wrist-based Electrodermal Activity Monitoring. 2018 IEEE International Symposium on Medical Measurements and Applications (MeMeA). 1–6.
- 53. Feng, J., Shehab, S. H., Yang, Y., Karmakar, N. C. and Gupta, S. A Design and Implementation of an Ambulatory Electrocardiogram (ECG) Acquisition Circuit for Emergency Application. 2018 12th International Symposium on Medical Information and Communication Technology (ISMICT). 1–6.
- Chi, Y. M., Jung, T. and Cauwenberghs, G. Dry-Contact and Noncontact Biopotential Electrodes: Methodological Review. *IEEE Reviews in Biomedical Engineering*, 2010. 3: 106–119.
- Albulbul, A. Evaluating Major Electrode Types for Idle Biological Signal Measurements for Modern Medical Technology. *Bioengineering*, 2016. 3(3): 20.
- 56. Stoppa, M. and Chiolerio, A. Wearable electronics and smart textiles: a critical review. *sensors*, 2014. 14(7): 11957–11992.
- 57. Arquilla, K., Webb, A. K. and Anderson, A. P. Textile Electrocardiogram (ECG) Electrodes for Wearable Health Monitoring. *Sensors*, 2020. 20(4): 1013.

- Ankhili, A., Tao, X., Cochrane, C., Coulon, D. and Koncar, V. Washable and Reliable Textile Electrodes Embedded into Underwear Fabric for Electrocardiography (ECG) Monitoring. *Materials*, 2018. 11(2): 256.
- Wu, W., Pirbhulal, S., Sangaiah, A. K., Mukhopadhyay, S. C. and Li,
   G. Optimization of signal quality over comfortability of textile electrodes for ECG monitoring in fog computing based medical applications. *Future Generation Computer Systems*, 2018. 86: 515–526.
- Achilli, A., Bonfiglio, A. and Pani, D. Design and Characterization of Screen-Printed Textile Electrodes for ECG Monitoring. *IEEE Sensors Journal*, 2018. 18(10): 4097–4107.
- 61. Hoffmann, K. and Ruff, R. Flexible dry surface-electrodes for ECG longterm monitoring. 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 5739–5742.
- 62. Scilingo, E. P., Gemignani, A., Paradiso, R., Taccini, N., Ghelarducci, B. and De Rossi, D. Performance evaluation of sensing fabrics for monitoring physiological and biomechanical variables. *IEEE Transactions on information technology in biomedicine*, 2005. 9(3): 345–352.
- Li, G., Wang, S. and Duan, Y. Y. Towards gel-free electrodes: A systematic study of electrode-skin impedance. *Sensors and Actuators B: Chemical*, 2017. 241: 1244–1255.
- Chi, M., Zhao, J., Dong, Y. and Wang, X. Flexible Carbon Nanotube-Based Polymer Electrode for Long-Term Electrocardiographic Recording. *Materials*, 2019. 12(6): 971.
- Chlaihawi, A. A., Narakathu, B. B., Emamian, S., Bazuin, B. J. and Atashbar, M. Z. Development of printed and flexible dry ECG electrodes. *Sensing and Bio-Sensing Research*, 2018. 20: 9–15.
- Abu-Saude, M. and Morshed, B. I. Characterization of a Novel Polypyrrole (PPy) Conductive Polymer Coated Patterned Vertical CNT (pvCNT) Dry ECG Electrode. *Chemosensors*, 2018. 6(3): 27.

- 67. Liu, B., Luo, Z., Zhang, W., Tu, Q. and Jin, X. Silver nanowire-composite electrodes for long-term electrocardiogram measurements. *Sensors and Actuators A: Physical*, 2016. 247: 459–464.
- Xu, X., Liu, Z., He, P. and Yang, J. Screen printed silver nanowire and graphene oxide hybrid transparent electrodes for long-term electrocardiography monitoring. *Journal of Physics D: Applied Physics*, 2019. 52(45): 455401.
- Choi, S. B., Oh, M. S., Han, C. J., Kang, J.-W., Lee, C.-R., Lee, J. and Kim, J.-W. Conformable, Thin, and Dry Electrode for Electrocardiography Using Composite of Silver Nanowires and Polyvinyl Butyral. *Electronic Materials Letters*, 2019. 15(3): 267–277.
- Black, D., Pozo, A., Lagarde, J. M. and Gall, Y. Seasonal variability in the biophysical properties of stratum corneum from different anatomical sites. *Skin Research and Technology*, 2000. 6(2): 70–76.
- Holbrook, K. A. and Odland, G. F. Regional differences in the thickness (cell layers) of the human stratum corneum: an ultrastructural analysis. *Journal of Investigative Dermatology*, 1974. 62(4): 415–422.
- Yamamoto, T. and Yamamoto, Y. Electrical properties of the epidermal stratum corneum. *Medical and biological engineering*, 1976. 14(2): 151– 158.
- 73. Birgersson, U., Birgersson, E. and Ollmar, S. Estimating electrical properties and the thickness of skin with electrical impedance spectroscopy: Mathematical analysis and measurements. *Journal of Electrical Bioimpedance*, 2012. 3(1): 51–60.
- Martinsen, G., Grimnes, S. and Haug, E. Measuring depth depends on frequency in electrical skin impedance measurements. *Skin Research and Technology*, 1999. 5(3): 179–181.
- O'Mahony, C., Pini, F., Blake, A., Webster, C., O'Brien, J. and McCarthy, K. G. Microneedle-based electrodes with integrated through-silicon via for biopotential recording. *Sensors and Actuators A: Physical*, 2012. 186: 130– 136.

- Ren, L., Liu, B., Zhou, W. and Jiang, L. A Mini Review of Microneedle Array Electrode for Bio-Signal Recording: A Review. *IEEE Sensors Journal*, 2019. 20(2): 577–590.
- 77. Li, J., Shen, Z., Wang, H., Huang, D., Chen, Y., Mou, Q., Zheng, F., Liu, J. and Li, Z. Low-Cost, Low-Impedance Polyimide Based Micro-Needle Array (PI-MNA): A Minimally Invasive Flexible Dry Electrode for Surface Bio-Potential Monitoring. *IEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS)*. IEEE. 2019. 28–31.
- Chen, K., Ren, L., Chen, Z., Pan, C., Zhou, W. and Jiang, L. Fabrication of micro-needle electrodes for bio-signal recording by a magnetization-induced self-assembly method. *Sensors*, 2016. 16(9): 1533.
- Song, J., Liu, H., Wei, M. and Li, J. A Performance Testing Platform of ECG Electrodes Based on Millipore Films. 2017 International Conference on Advanced Materials Science and Civil Engineering (AMSCE). 2017. 9–12.
- Ren, L., Jiang, Q., Chen, K., Chen, Z., Pan, C. and Jiang, L. Fabrication of a micro-needle array electrode by thermal drawing for bio-signals monitoring. *Sensors*, 2016. 16(6): 908.
- O'Mahony, C., Grygoryev, K., Ciarlone, A., Giannoni, G., Kenthao, A. and Galvin, P. Design, fabrication and skin-electrode contact analysis of polymer microneedle-based ECG electrodes. *Journal of Micromechanics and Microengineering*, 2016. 26(8): 084005.
- 82. Potter, A. and Menke, L. Capacitive type of biomedical electrode. *IEEE Transactions on Biomedical Engineering*, 1970. (4): 350–351.
- Richardson, P. C., Coombs, F. K. and Adams, R. Some new electrode techniques for long-term physiologic monitoring. *Aerospace medicine*, 1968. 39(7): 745.
- 84. Lopez, A. and Richardson, P. C. Capacitive electrocardiographic and bioelectric electrodes. *IEEE Transactions on Biomedical Engineering*, 1969. (1): 99–99.

- Portelli, A. J. and Nasuto, S. J. Design and development of non-contact biopotential electrodes for pervasive health monitoring applications. *Biosensors*, 2017. 7(1): 2.
- Ng, C. L. and Reaz, M. B. I. Characterization of textile-insulated capacitive biosensors. *Sensors*, 2017. 17(3): 574.
- 87. Babusiak, B., Borik, S. and Balogova, L. Textile electrodes in capacitive signal sensing applications. *Measurement*, 2018. 114: 69–77.
- 88. Ng, C. L., Reaz, M. B. I., Crespo, M. L., Cicuttin, A. and Chowdhury, M. E. H. characterization of capacitive electromyography biomedical sensor insulated with porous medical bandages. *Scientific RepoRtS*, 2020. 10(1): 1–12.
- 89. Li, X. and Sun, Y. A wearable button-like system for long-term multiple biopotential monitoring using non-contact electrodes. *Smart Health*, 2019. 11: 2–15.
- Kabir, S. F., Sikdar, P. P., Haque, B., Bhuiyan, M. R., Ali, A. and Islam,
   M. Cellulose-based hydrogel materials: Chemistry, properties and their prospective applications. *Progress in biomaterials*, 2018. 7(3): 153–174.
- 91. Hall, J. F. History and bibliography of polymeric insulators for outdoor applications. *IEEE Transactions on Power Delivery*, 1993. 8(1): 376–385.
- 92. Shalaby, W. *Polymers as biomaterials*. Springer Science Business Media. 2012.
- Galbis, J. A., Garcia-Martin, M. d. G., de Paz, M. V. and Galbis, E. Synthetic polymers from sugar-based monomers. *Chemical reviews*, 2016. 116(3): 1600–1636.
- Stansbury, J. W. and Idacavage, M. J. 3D printing with polymers: Challenges among expanding options and opportunities. *Dental materials*, 2016. 32(1): 54–64.
- Machado, T. O., Sayer, C. and Araujo, P. H. Thiol-ene polymerisation: a promising technique to obtain novel biomaterials. *European Polymer Journal*, 2017. 86: 200–215.

- Yu, X., Tang, X., Gohil, S. V. and Laurencin, C. T. Biomaterials for bone regenerative engineering. *Advanced healthcare materials*, 2015. 4(9): 1268– 1285.
- Tsavalas, J. G. and McAuley, K. B. Special Issue: Innovative Processes and Enabling Technologies. *Macromolecular Reaction Engineering*, 2019. 13(2): 1900010.
- Salman, H. E. and Rajab, Z. N. Polymers synthetic degradable for design of devices medical implantable. *Journal of Xi'an University of Architecture Technology*, 2020. 12(2): 1954–1966.
- Wang, K., Strandman, S. and Zhu, X. A mini review: Shape memory polymers for biomedical applications. *Frontiers of Chemical Science and Engineering*, 2017. 11(2): 143–153.
- Laycock, B., Nikolić, M., Colwell, J. M., Gauthier, E., Halley, P., Bottle, S. and George, G. Lifetime prediction of biodegradable polymers. *Progress in Polymer Science*, 2017. 71: 144–189.
- Liu, Y., Pharr, M. and Salvatore, G. A. Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring. *ACS nano*, 2017. 11(10): 9614–9635.
- 102. Zheng, K., Chen, S., Zhu, L., Zhao, J. and Guo, X. Large Area Solution Processed Poly (Dimethylsiloxane)-Based Thin Film Sensor Patch for Wearable Electrocardiogram Detection. *IEEE Electron Device Letters*, 2018. 39(3): 424–427.
- 103. Stauffer, F., Thielen, M., Sauter, C., Chardonnens, S., Bachmann, S., Tybrandt, K., Peters, C., Hierold, C. and Vörös, J. Skin Conformal Polymer Electrodes for Clinical ECG and EEG Recordings. *Advanced Healthcare Materials*, 2018. 7(7): 1700994.
- Gao, W., Ota, H., Kiriya, D., Takei, K. and Javey, A. Flexible Electronics toward Wearable Sensing. *Accounts of Chemical Research*, 2019. 52(3): 523–533.
- Wang, X., Liu, Z. and Zhang, T. Flexible Sensing Electronics for Wearable/Attachable Health Monitoring. *Small*, 2017. 13(25): 1602790.

- 106. Mata, A., Fleischman, A. J. and Roy, S. Characterization of Polydimethylsiloxane (PDMS) Properties for Biomedical Micro/Nanosystems. *Biomedical Microdevices*, 2005. 7(4): 281–293.
- Colas, A., Malczewski, R. and Ulman, K. Silicone tubing for pharmaceutical processing. *PharmaChem*, 2004. 3: 30–36.
- Cui, Z., Han, Y., Huang, Q., Dong, J. and Zhu, Y. Electrohydrodynamic printing of silver nanowires for flexible and stretchable electronics. *Nanoscale*, 2018. 10(15): 6806–6811.
- Raj M, K. and Chakraborty, S. PDMS microfluidics: A mini review. *Journal of Applied Polymer Science*, 2020. 137(27): 48958.
- Wu, J., Wang, R., Yu, H., Li, G., Xu, K., Tien, N. C., Roberts, R. C. and Li,
  D. Inkjet-printed microelectrodes on PDMS as biosensors for functionalized microfluidic systems. *Lab on a Chip*, 2015. 15(3): 690–695.
- 111. Basu, M., Parihar, V., Lincon, A., Joshi, V. P., Das, S. and DasGupta, S. Development of graphene oxide–PDMS composite dielectric for rapid droplet movement in digital microfluidic applications. *Chemical Engineering Science*, 2021. 230: 116175.
- 112. Le Maout, E., Lo Vecchio, S., Bhat, A. and Riveline, D. *Directing cell migration on flat substrates and in confinement with microfabrication and microfluidics*, Academic Press, vol. 147. 2018, 109–132.
- Cui, J., Zhang, B., Duan, J., Guo, H. and Tang, J. Flexible Pressure Sensor with Ag Wrinkled Electrodes Based on PDMS Substrate. *Sensors*, 2016. 16(12): 2131.
- Dong, W., Cheng, X., Xiong, T. and Wang, X. Stretchable bio-potential electrode with self-similar serpentine structure for continuous, long-term, stable ECG recordings. *Biomedical Microdevices*, 2019. 21(1): 6.
- 115. Yadhuraj, S. R., Sudarshan, B. G., Prasanna Kumar, S. C. and Mahesh Kumar,
  D. Study of PDMS Material for ECG Electrodes. *Materials Today: Proceedings*, 2018. 5(4, Part 3): 10635–10643.
- Munaro, A. P., da Cunha, G. P., Filgueiras, J. G., Pinto, J. M., Munaro, M.,
   de Azevedo, E. R. and Akcelrud, L. C. Ageing and structural changes in

PDMS rubber investigated by time domain NMR. *Polymer Degradation and Stability*, 2019. 166: 300–306.

- 117. Li, M., Wang, M., Hou, X., Zhan, Z., Wang, H., Fu, H., Lin, C.-T., Fu, L., Jiang, N. and Yu, J. Highly thermal conductive and electrical insulating polymer composites with boron nitride. *Composites Part B: Engineering*, 2020. 184: 107746.
- 118. He, X., Mu, X., Wen, Q., Wen, Z., Yang, J., Hu, C. and Shi, H. Flexible and transparent triboelectric nanogenerator based on high performance wellordered porous PDMS dielectric film. *Nano Research*, 2016. 9(12): 3714– 3724.
- Fan, B., Liu, Y., He, D. and Bai, J. Achieving polydimethylsiloxane/carbon nanotube (PDMS/CNT) composites with extremely low dielectric loss and adjustable dielectric constant by sandwich structure. *Applied Physics Letters*, 2018. 112(5): 052902.
- Nawanil, C., Makcharoen, W., Khaosa-Ard, K., Maluangnont, T., Vittayakorn,
   W., Isarakorn, D. and Vittayakorn, N. Electrical and dielectric properties of barium titanate–polydimethylsiloxane nanocomposite with 0-3 connectivity modified with carbon nanotube (CNT). *Integrated Ferroelectrics*, 2019. 195(1): 46–57.
- 121. Liu, Y., Wo, H., Huang, S., Huo, Y., Xu, H., Zhan, S., Li, M., Zeng, X., Jin, H. and Zhang, L. A Flexible Capacitive 3D Tactile Sensor With Cross-Shaped Capacitor Plate Pair and Composite Structure Dielectric. *IEEE Sensors Journal*, 2020. 21(2): 1378–1385.
- 122. Zambri, I. M., Sultan, S. M., Yusof, Y. and Addi, M. M. Fabrication and characterization of multi-walled carbon nanotube for conductive polymer composite. *AIP Conference Proceedings*. AIP Publishing LLC. vol. 2306. 020012.
- 123. Prabowo, F., Wing-Keung, A. L. and Shen, H. H. Effect of curing temperature and cross-linker to pre-polymer ratio on the viscoelastic properties of a PDMS elastomer. *Advanced Materials Research*. Trans Tech Publ. 2015, vol. 1112. 410–413.

- Jones, R. G., Ando, W. and Chojnowski, J. Silicon-containing polymers: the science and technology of their synthesis and applications. Springer Science & Business Media. 2013.
- 125. Esteves, A., Brokken-Zijp, J., Laven, J., Huinink, H., Reuvers, N., Van, M. and De With, G. Influence of cross-linker concentration on the cross-linking of PDMS and the network structures formed. *Polymer*, 2009. 50(16): 3955–3966.
- 126. Katz, A. M. *Physiology of the Heart*. Lippincott Williams Wilkins. 2010.
- Webb, A. G. *Principles of biomedical instrumentation*. Cambridge University Press. 2018.
- 128. Tortora, G. J. and Derrickson, B. H. *Principles of anatomy and physiology*.1st ed. John Wiley Sons. 2018.
- Sibbald M, L. W., Dabrowski A. Standard Electrocardiography, McMaster Textbook of Internal Medicine.
- 130. Zaza, A., Wilders, R. and Opthof, T. Cellular electrophysiology. Comprehensive Electrocardiography, 2nd Edn., edited by: Macfarlane, PW, van Oosterom, A., Pahlm, O., Kligfield, P., Janse, M., and Camm, J., Springer-Verlag London, 2011: 107–144.
- Kottmann, J., Rey, J. M. and Sigrist, M. W. Mid-Infrared Photoacoustic Detection of Glucose in Human Skin: Towards Non-Invasive Diagnostics. *Sensors (Basel, Switzerland)*, 2016. 16(10): 1663.
- 132. Wondershare. Edrawmax online: all-in-one diagram maker amp software.
- 133. Neuman, M. R. Biopotential electrodes. *Medical instrumentation: application and design*, 1998: 183–232.
- Denby, C. and Stone, T. Chapter 18 Neurological measurement. In: Taktak,
   A., Ganney, P. S., Long, D. and Axell, R. G., eds. *Clinical Engineering* (*Second Edition*). Academic Press. Second edition ed. 309–319. 2020.
- Popović-Maneski, L., Ivanović, M. D., Atanasoski, V., Miletić, M., Zdolšek,
   S., Bojović, B. and Hadžievski, L. Properties of different types of dry electrodes for wearable smart monitoring devices. *Biomedical Engineering / Biomedizinische Technik*, 2020. 65(4): 405–415.

- 136. Ambu Cardiology Sensors. https://www.ambu.com, 2015. January 2021.
- 137. New V-Key Technology Co. Ltd. 26mm Dry Electrode By Stainless Steel. https://www.nvk.com.tw, 2019.
- 138. Compumedics Neuromedical Supplies. Compumedics Gold cup electrode 60 touchproof. https://www.au.neuromedicalsupplies.com, Last accessed January 2020.
- Davis Medical Electronics Inc. Electrodes. https://www.davismedical.
   com, Last accessed January 2020.
- 140. BIOPAC Systems Inc. Electrode Properties—Gel and Adhesive. https: //www.biopac.com, Last accessed on February 2020.
- 141. Eggins, B. R. Skin contact electrodes for medical applications. *Analyst*, 1993.
  118(4): 439–442.
- 142. Kara, S., Konal, M., Ertaş, M. and Uzunoğlu, C. P. The electrical characteristics of electroconductive gels used in biomedical applications. *Medical Technologies National Congress (TIPTEKNO)*. IEEE. 2017. 1–4.
- 143. Button, V. L. D. S. N. *Electrodes for Biopotential Recording and Tissue Stimulation*, Academic Press. 2015, 25–76.
- Paradiso, R., Caldani, L. and Pacelli, M. *Knitted Electronic Textiles*, Academic Press. 2014, 153–174.
- Pallas-Areny, R. Comments on "Capacitive Biopotential Measurement for Electrophysiological Signal Acquisition: A Review". *IEEE Sensors Journal*, 2017. 17(8): 2607–2609.
- Acar, G., Ozturk, O., Golparvar, A. J., Elboshra, T. A., Böhringer, K. and Yapici, M. K. Wearable and Flexible Textile Electrodes for Biopotential Signal Monitoring: A review. *Electronics*, 2019. 8(5): 479.
- 147. Yokus, M. A. and Jur, J. S. Fabric-Based Wearable Dry Electrodes for Body Surface Biopotential Recording. *IEEE Transactions on Biomedical Engineering*, 2016. 63(2): 423–430.

- Guimard, N. K., Gomez, N. and Schmidt, C. E. Conducting polymers in biomedical engineering. *Progress in polymer science*, 2007. 32(8-9): 876– 921.
- Gerard, M., Chaubey, A. and Malhotra, B. Application of conducting polymers to biosensors. *Biosensors and bioelectronics*, 2002. 17(5): 345– 359.
- 150. Adhikari, B. and Majumdar, S. Polymers in sensor applications. *Progress in polymer science*, 2004. 29(7): 699–766.
- 151. Tronstad, C., Kalvøy, H., Grimnes, S. and Martinsen, G. Improved estimation of sweating based on electrical properties of skin. *Annals of biomedical engineering*, 2013. 41(5): 1074–1083.
- Yamamoto, T. and Yamamoto, Y. Dielectric constant and resistivity of epidermal stratum corneum. *Medical and biological engineering*, 1976. 14(5): 494–500.
- 153. Cattarello, P. and Merletti, R. Characterization of dry and wet Electrode-Skin interfaces on different skin treatments for HDsEMG. 2016 IEEE International Symposium on Medical Measurements and Applications (MeMeA). 2016. 1–6.
- 154. Gruetzmann, A., Hansen, S. and Müller, J. Novel dry electrodes for ECG monitoring. *Physiological measurement*, 2007. 28(11): 1375.
- 155. Myers, A. C., Huang, H. and Zhu, Y. Wearable silver nanowire dry electrodes for electrophysiological sensing. *Rsc Advances*, 2015. 5(15): 11627–11632.
- Jung, H., Moon, J., Baek, D., Lee, J., Choi, Y., Hong, J. and Lee,
   S. CNT/PDMS Composite Flexible Dry Electrodesfor Long-Term ECG Monitoring. *IEEE Transactions on Biomedical Engineering*, 2012. 59(5): 1472–1479.
- 157. Guo, X., Pei, W., Wang, Y., Gong, Q., Zhang, H., Xing, X., Xie, Y., Gui, Q. and Chen, H. A Self-Wetting Paper Electrode for Ubiquitous Bio-Potential Monitoring. *IEEE Sensors Journal*, 2017. 17(9): 2654–2661.
- 158. Peng, H.-L., Jing-Quan, L., Tian, H.-C., Dong, Y.-Z., Yang, B., Chen, X. and Yang, C.-S. A novel passive electrode based on porous Ti for EEG recording. *Sensors and Actuators B: Chemical*, 2016. 226: 349–356.

- 159. Griss, P., Enoksson, P., Tolvanen-Laakso, H., Merilainen, P., Ollmar, S. and Stemme, G. Spiked biopotential electrodes. *Proceedings IEEE Thirteenth Annual International Conference On Micro Electro Mechanical Systems*. IEEE. 323–328.
- 160. Forvi, E., Bedoni, M., Carabalona, R., Soncini, M., Mazzoleni, P., Rizzo, F., O'Mahony, C., Morasso, C., Cassarà, D. G. and Gramatica, F. Preliminary technological assessment of microneedles-based dry electrodes for biopotential monitoring in clinical examinations. *Sensors and Actuators A: Physical*, 2012. 180: 177–186.
- 161. Wang, L.-F., Liu, J.-Q., Yang, B. and Yang, C.-S. PDMS-based low cost flexible dry electrode for long-term EEG measurement. *IEEE Sensors Journal*, 2012. 12(9): 2898–2904.
- 162. Wang, R., Jiang, X., Wang, W. and Li, Z. A microneedle electrode array on flexible substrate for long-term EEG monitoring. *Sensors and Actuators B: Chemical*, 2017. 244: 750–758.
- Ren, L., Xu, S., Gao, J., Lin, Z., Chen, Z., Liu, B., Liang, L. and Jiang,
   L. Fabrication of Flexible Microneedle Array Electrodes for Wearable Bio-Signal Recording. *Sensors*, 2018. 18(4).
- Ferree, T. C., Luu, P., Russell, G. S. and Tucker, D. M. Scalp electrode impedance, infection risk, and EEG data quality. *Clinical Neurophysiology*, 2001. 112(3): 536–544.
- 165. Wang, Z. L. On Maxwell's displacement current for energy and sensors: the origin of nanogenerators. *Materials Today*, 2017. 20(2): 74–82.
- Mahdi, A. E. and Faggion, L. New displacement current sensor for contactless detection of bio-activity related signals. *Sensors and Actuators A: Physical*, 2015. 222: 176–183.
- Richardson, P. C., Coombs, F. K. and Adams, R. Some new electrode techniques for long-term physiologic monitoring. *Aerospace medicine*, 1968. 39(7): 745. ISSN 0001-9402.

- 168. Lopez, A. and Richardson, P. C. Capacitive electrocardiographic and bioelectric electrodes. *IEEE Transactions on Biomedical Engineering*, 1969.
   (1): 99–99.
- Potter, A. and Menke, L. Capacitive Type of Biomedical Electrode. *IEEE Transactions on Biomedical Engineering*, 1970. BME-17(4): 350–351. ISSN 1558-2531. doi:10.1109/TBME.1970.4502765.
- 170. Teichmann, D., Brüser, C., Eilebrecht, B., Abbas, A., Blanik, N. and Leonhardt, S. Non-contact monitoring techniques Principles and applications. 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2012. 1302–1305.
- Wu, T. PPGI: New Development in Noninvasive and Contactless Diagnosis of Dermal Perfusion Using Near InfraRed Light. 2003, vol. 7. 17–24.
- 172. Electromechanical Film Technology Ltd (EMFIT). BALLISTOCARDIO-GRAPHY: The science behind EMFIT QS. https://www.emfit.com/ ballistocardiography. Retrieved January 2021.
- Abbas, A. K., Heimann, K., Jergus, K., Orlikowsky, T. and Leonhardt,
   S. Neonatal non-contact respiratory monitoring based on real-time infrared thermography. *BioMedical Engineering OnLine*, 2011. 10(1): 93.
- Spinelli, E. and Haberman, M. Insulating electrodes: a review on biopotential front ends for dielectric skin–electrode interfaces. *Physiological Measurement*, 2010. 31(10): \$183–\$198.
- Fernandez, M. and Pallas-Areny, R. Ag-AgCl electrode noise in highresolution ECG measurements. *Biomedical instrumentation technology*, 2000. 34(2): 125–130.
- 176. Huigen, E., Peper, A. and Grimbergen, C. Investigation into the origin of the noise of surface electrodes. *Medical and biological engineering and computing*, 2002. 40(3): 332–338.
- 177. Grimnes, S. and Martinsen, G. *Bioimpedance and Bioelectricity Basics*. 3rd ed. Academic Press. 2015.

- 178. Castrillón, R., Pérez, J. J. and Andrade-Caicedo, H. Electrical performance of PEDOT:PSS-based textile electrodes for wearable ECG monitoring: a comparative study. *BioMedical Engineering OnLine*, 2018. 17(1): 38.
- Edelberg, R. Relation of electrical properties of skin to structure and physiologic state. *Journal of Investigative Dermatology*, 1977. 69(3): 324–327.
- Sem, A. SKIN CONTACT IMPEDANCE CHARACTERIZATION OF DRY ELECTROCARDIOGRAM ELECTRODE, 2020.
- Tagawa, T., Tamura, T. and Oberg, P. A. *Biomedical sensors and instruments*. CRC press. 2011.
- 182. Kusche, R., Kaufmann, S. and Ryschka, M. Dry electrodes for bioimpedance measurements—design, characterization and comparison. *Biomedical Physics Engineering Express*, 2018. 5(1): 015001.
- 183. Boyakhchyan, A. A., Lezhnina, I. A., Samolutchenko, M. I., Ivanov, M. A. and Aristov, A. A. Study of the Skin-Electrode Contact Effect on the Electrocardiography Signal Recorded by Capacitive Electrodes. 2019 20th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM). IEEE. 2019. 643–647.
- 184. Ueno, A., Akabane, Y., Kato, T., Hoshino, H., Kataoka, S. and Ishiyama, Y. Capacitive sensing of electrocardiographic potential through cloth from the dorsal surface of the body in a supine position: A preliminary study. *IEEE Transactions on biomedical engineering*, 2007. 54(4): 759–766.
- 185. Ahmad, Z. Polymer dielectric materials, IntechOpen. 2012.
- 186. Umar, A. H., Harun, F. K. C. and Yusof, Y. Characterization of Polydimethylsiloxane Dielectric Films for Capacitive ECG Bioelectrodes. 7th International Conference on Electrical Engineering, Computer Sciences and Informatics (EECSI). 2020. 127–131.
- 187. Jiao, Y. Measurement techniques of electrical properties for food quality evaluation, Woodhead Publishing. 2019, 595–616.
- 188. Al Hadeethi, S., Petrescu, L., Tirgoviste, C. I., Petrescu, C.-D. and Mihailescu,D. Low-frequency Electrical Impedance Meat Measurements. *Proceedings of*

*the Romanian Academy. Series B, Chemistry, Life Sciences and Geosciences,* 2018. 20(3): 173–178.

- Richardson, P. The insulated electrode: A pasteless electrocardiographic technique. 20th Annual conference on engineering in medicine and biology. vol. 9. 15.7.
- David, R. M. and Portnoy, W. M. Insulated electrocardiogram electrodes. Medical and biological engineering, 1972. 10(6): 742–751.
- 191. Therese, G. H. A. and Kamath, P. V. Electrochemical Synthesis of Metal Oxides and Hydroxides. *Chemistry of Materials*, 2000. 12(5): 1195–1204.
- Davidse, P. D. and Maissel, L. I. Dielectric Thin Films through rf Sputtering. Journal of Applied Physics, 1966. 37(2): 574–579.
- Pliskin, W. A. Comparison of properties of dielectric films deposited by various methods. *Journal of Vacuum Science and Technology*, 1977. 14(5): 1064–1081.
- 194. Ko, W. H., Neuman, M. R., Wolfson, R. N. and Yon, E. T. Insulated Active Electrodes. *IEEE Transactions on Industrial Electronics and Control Instrumentation*, 1970. IECI-17(2): 195–198.
- 195. Lagow, C., Sladek, K. and Richardson, P. Anodic insulated tantalum oxide electrocardiograph electrodes. *IEEE Transactions on Biomedical Engineering*, 1971. (2): 162–164.
- 196. Griffith, M., Portnoy, W., Stotts, L. and Day, J. Improved capacitive electrocardiogram electrodes for burn applications. *Medical and Biological Engineering and Computing*, 1979. 17(5): 641–646.
- 197. Vlach, K., Kijonka, J., Jurek, F., Vavra, P. and Zonca, P. Capacitive biopotential electrode with a ceramic dielectric layer. *Sensors and Actuators B: Chemical*, 2017. 245: 988–995.
- Namba, A., Wada, O., Toyota, Y., Fukumoto, Y., Wang, Z. L., Koga, R., Miyashita, T. and Watanabe, T. A simple method for measuring the relative permittivity of printed circuit board materials. *IEEE Transactions on electromagnetic compatibility*, 2001. 43(4): 515–519.

- 199. Grove, T. T., Masters, M. F. and Miers, R. E. Determining dielectric constants using a parallel plate capacitor. *American Journal of Physics*, 2005. 73(1): 52–56. doi:10.1119/1.1794757. URL https://doi.org/10.1119/1.1794757.
- 200. Tereshchenko, O. V., Buesink, F. J. K. and Leferink, F. B. J. An overview of the techniques for measuring the dielectric properties of materials. 2011 XXXth URSI General Assembly and Scientific Symposium. 2011. 1–4. doi: 10.1109/URSIGASS.2011.6050287.
- Furusawa, Y., Ueno, A., Hoshino, H., Kataoka, S., Mitani, H. and Ishiyama,
   Y. Low invasive measurement of electrocardiogram for newborns and infants.
   *IEEE EMBS Asian-Pacific Conference on Biomedical Engineering*. IEEE.
   2003. 256–257.
- 202. Leonhardt, S., Aleksandrowicz, A. and Steffen, M. Magnetic and Capacitive Monitoring of Heart and Lung Activity as an Example for Personal Healthcare. *3rd IEEE/EMBS International Summer School on Medical Devices and Biosensors*. 2006. 57–60.
- Lim, Y. G., Kim, K. K. and Park, S. ECG measurement on a chair without conductive contact. *IEEE Transactions on Biomedical Engineering*, 2006. 53(5): 956–959.
- 204. Lim, Y. G., Kim, K. K. and Park, K. S. ECG recording on a bed during sleep without direct skin-contact. *IEEE Transactions on Biomedical Engineering*, 2007. 54(4): 718–725.
- 205. Steffen, M., Aleksandrowicz, A. and Leonhardt, S. Mobile noncontact monitoring of heart and lung activity. *IEEE Transactions on Biomedical Circuits and Systems*, 2007. 1(4): 250–257.
- Oehler, M., Ling, V., Melhorn, K. and Schilling, M. A multichannel portable ECG system with capacitive sensors. *Physiological measurement*, 2008. 29(7): 783.
- 207. Zhu, D.-H., Wang, L. and Zhang, Y.-T. A non-contact ECG measurement system for pervasive heart rate detection. *International Conference on*

*Information Technology and Applications in Biomedicine*. IEEE. 2008. 518–519.

- Leonhardt, S. and Aleksandrowicz, A. Non-contact ECG monitoring for automotive application. 5th International Summer School and Symposium on Medical Devices and Biosensors. IEEE. 2008. 183–185.
- 209. Míšek, J., Gála, M. and Babušiak, B. Capacitive electrocardiography measurement with indirect skin contact. *2014 ELEKTRO*. 2014. 603–606.
- 210. Mathias, D. N., Kim, S.-i., Park, J.-s. and Joung, Y.-H. Real time ECG monitoring through a wearable smart T-shirt. *Transactions on Electrical and Electronic Materials*, 2015. 16(1): 16–19.
- Spinelli, E., Guerrero, F., García, P. and Haberman, M. A simple and reproducible capacitive electrode. *Medical Engineering Physics*, 2016. 38(3): 286–289.
- 212. Chen, C.-C., Chang, W.-Y. and Xie, T. Y. Shielded capacitive electrode with high noise immunity. *IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW)*. IEEE. 2017. 157–158.
- 213. Maier, G. Low dielectric constant polymers for microelectronics. *Progress in polymer science*, 2001. 26(1): 3–65.
- Guo, B., Glavas, L. and Albertsson, A.-C. Biodegradable and electrically conducting polymers for biomedical applications. *Progress in polymer science*, 2013. 38(9): 1263–1286.
- Zhao, X. and Liu, H. Review of polymer materials with low dielectric constant.
   *Polymer International*, 2010. 59(5): 597–606.
- 216. Kim, K. K., Lim, Y. K. and Park, K. S. The electrically noncontacting ECG measurement on the toilet seat using the capacitively-coupled insulated electrodes. *The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society*. IEEE. 2004, vol. 1. 2375–2378.
- 217. Yong Kyu, L., Ko Keun, K. and Kwang Suk, P. The ECG measurement in the bathtub using the insulated electrodes. *The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society*. 2004, vol. 1. 2383–2385.

- 218. Chi, Y. M., Deiss, S. R. and Cauwenberghs, G. Non-contact Low Power EEG/ECG Electrode for High Density Wearable Biopotential Sensor Networks. Sixth International Workshop on Wearable and Implantable Body Sensor Networks. 2009. 246–250.
- 219. Jeong, J., Kim, M. K., Cheng, H., Yeo, W., Huang, X., Liu, Y., Zhang, Y., Huang, Y. and Rogers, J. A. Capacitive epidermal electronics for electrically safe, long-term electrophysiological measurements. *Advanced healthcare materials*, 2014. 3(5): 642–648.
- Fang, H., Yu, K. J., Gloschat, C., Yang, Z., Song, E., Chiang, C.-H., Zhao, J., Won, S. M., Xu, S., Trumpis, M., Zhong, Y., Han, S. W., Xue, Y., Xu, D., Choi, S. W., Cauwenberghs, G., Kay, M., Huang, Y., Viventi, J., Efimov, I. R. and Rogers, J. A. Capacitively coupled arrays of multiplexed flexible silicon transistors for long-term cardiac electrophysiology. *Nature Biomedical Engineering*, 2017. 1(3): 0038.
- 221. Sharma, M., Ritchie, P., Ghirmai, T., Cao, H. and Lau, M. P. Unobtrusive acquisition and extraction of fetal and maternal ECG in the home setting. *IEEE SENSORS*. IEEE. 2017. 1–3.
- 222. Dong, W., Cheng, X., Xiong, T. and Wang, X. Stretchable bio-potential electrode with self-similar serpentine structure for continuous, long-term, stable ECG recordings. *Biomedical Microdevices*, 2019. 21(1): 6.
- 223. Rachim, V. P. and Chung, W.-Y. Wearable noncontact armband for mobile ECG monitoring system. *IEEE transactions on biomedical circuits and systems*, 2016. 10(6): 1112–1118.
- Wang, T. W., Zhang, H. and Lin, S. F. Influence of Capacitive Coupling on High-Fidelity Non-Contact ECG Measurement. *IEEE Sensors Journal*, 2020. 20(16): 9265–9273.
- Sullivan, T. J., Deiss, S. R. and Cauwenberghs, G. A low-noise, non-contact EEG/ECG sensor. *IEEE Biomedical Circuits and Systems Conference*. IEEE. 2007. 154–157.

- 226. Yang, G., Xie, L. and Zheng, L.-R. Evaluation of non-contact flexible electrodes connected with a customized IC-steps towards a fully integrated ECG sensor. *NORCHIP*. IEEE. 2013. 1–5.
- 227. Sun, S. W. Understanding the Capacitive Coupling with Influence Factors and Applications. *Journal of Physics: Conference Series*. 2018, vol. 1087. 042011.
- 228. Khan, Y., Ostfeld, A. E., Lochner, C. M., Pierre, A. and Arias, A. C. Monitoring of vital signs with flexible and wearable medical devices. *Advanced Materials*, 2016. 28(22): 4373–4395.
- 229. Lin, Y. and Schmidt, D. *Biosensors and Human Behavior Measurement*, CRC Press. 2018, 229–242.
- Xu, C., Yang, Y. and Gao, W. Skin-Interfaced Sensors in Digital Medicine: from Materials to Applications. *Matter*, 2020. 2(6): 1414–1445.
- Dias, D. and Paulo Silva Cunha, J. Wearable Health Devices—Vital Sign Monitoring, Systems and Technologies. *Sensors*, 2018. 18(8): 2414.
- 232. McMullen, J. and Pryor, M. The Relation Between Passivation, Corrosion, and the Electrical Characteristics of Aluminum Oxide Films. *Proc. 1st Intern. Congr. on Metallic Corrosion, Butterworth, London*, 1961: 149–156.
- Keir, D., Pryor, M. and Sperry, P. Galvanic corrosion characteristics of aluminum alloyed with group IV metals. *Journal of The Electrochemical Society*, 1967. 114(8): 777.
- Cardu, R., Leong, P. H., Jin, C. T. and McEwan, A. Electrode contact impedance sensitivity to variations in geometry. *Physiological measurement*, 2012. 33(5): 817.
- 235. Meziane, N., Yang, S., Shokoueinejad, M., Webster, J., Attari, M. and Eren, H. Simultaneous comparison of 1 gel with 4 dry electrode types for electrocardiography. *Physiological measurement*, 2015. 36(3): 513.
- 236. Russell, L. M., Wiedersberg, S. and Delgado-Charro, M. B. The determination of stratum corneum thickness An alternative approach. *European journal of pharmaceutics and biopharmaceutics*, 2008. 69(3): 861–870.

- Farage, M. A. and Maibach, H. I. Sensitive skin: closing in on a physiological cause. *Contact dermatitis*, 2010. 62(3): 137–149.
- 238. Berardesca, E., Farage, M. and Maibach, H. Sensitive skin: an overview. *International journal of cosmetic science*, 2013. 35(1): 2–8.
- Rosell, J., Colominas, J., Riu, P., Pallas-Areny, R. and Webster, J. G. Skin impedance from 1 Hz to 1 MHz. *IEEE Transactions on Biomedical Engineering*, 1988. 35(8): 649–651.
- 240. Bora, D. J. and Dasgupta, R. Estimation of skin impedance models with experimental data and a proposed model for human skin impedance. *IET Systems Biology*, 2020. 14(5): 230–240.
- 241. Lee, J. S., Heo, J., Lee, W. K., Lim, Y. G., Kim, Y. H. and Park, K. S. Flexible Capacitive Electrodes for Minimizing Motion Artifacts in Ambulatory Electrocardiograms. *Sensors*, 2014. 14(8): 14732–14743.
- 242. Tang, K.-P. M., Chau, K.-H., Kan, C.-W. and Fan, J.-t. Assessing the accumulated stickiness magnitude from fabric–skin friction: effect of wetness level of various fabrics. *Royal Society open science*, 2018. 5(8): 180860.
- 243. Potey, P. and Tuckley, K. Variation in properties of wearable textile antennas due to sweat in Erratic Climatic conditions. 2018.
- 244. Yokus, M. A. and Daniele, M. A. Skin Hydration Sensor for Customizable Electronic Textiles. *MRS Advances*, 2016. 1(38): 2671–2676.
- 245. Cheng, Y.-L., Leon, K.-W., Huang, J.-F., Chang, W.-Y., Chang, Y.-M. and Leu,
  J. Effect of moisture on electrical properties and reliability of low dielectric constant materials. *Microelectronic Engineering*, 2014. 114: 12–16.
- 246. Mukherjee, P. K. Dielectric properties in textile materials: a theoretical study. *The journal of the Textile Institute*, 2019. 110(2): 211–214.
- 247. Björklund, S., Ruzgas, T., Nowacka, A., Dahi, I., Topgaard, D., Sparr, E. and Engblom, J. Skin membrane electrical impedance properties under the influence of a varying water gradient. *Biophysical journal*, 2013. 104(12): 2639–2650.
- 248. Li, G., Wang, S. and Duan, Y. Y. Towards conductive-gel-free electrodes: Understanding the wet electrode, semi-dry electrode and dry electrode-skin

interface impedance using electrochemical impedance spectroscopy fitting. *Sensors and Actuators B: Chemical*, 2018. 277: 250–260.

- 249. Merletti, R. The electrode–skin interface and optimal detection of bioelectric signals. *Physiological measurement*, 2010. 31(10).
- Kaniusas, E. Sensing and Coupling of Electric Biosignals, Springer. 2019, 399–550.
- 251. Pateraki, M., Fysarakis, K., Sakkalis, V., Spanoudakis, G., Varlamis, I., Maniadakis, M., Lourakis, M., Ioannidis, S., Cummins, N. and Schuller, B. Biosensors and Internet of Things in smart healthcare applications: challenges and opportunities, Elsevier. 2020, 25–53.
- 252. Pantelopoulos, A. and Bourbakis, N. G. A survey on wearable sensor-based systems for health monitoring and prognosis. *IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)*, 2009. 40(1): 1–12.
- Parente, F. R., Santonico, M., Zompanti, A., Benassai, M., Ferri, G., D'Amico,
   A. and Pennazza, G. An electronic system for the contactless reading of ECG signals. *Sensors*, 2017. 17(11): 2474.
- 254. Santonico, M., Zompanti, A., Pennazza, G., Ferri, G., Parente, F. R. and Benassai, M. Contactless detection of ECG Signals: Sensor Architecture and Simulation. *IEEE 41st Annual Computer Software and Applications Conference (COMPSAC)*. IEEE. 2017, vol. 2. 314–316.
- 255. Casas, O. and Pallas-Areny, R. Electrostatic Interference in Contactless Biopotential Measurements. 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2007. 2655–2658.
- 256. Lim, Y. G., Lee, J. S., Lee, S. M., Lee, H. J. and Park, K. S. Capacitive measurement of ECG for ubiquitous healthcare. *Ann Biomed Eng*, 2014. 42(11): 2218–27.
- 257. Ottenbacher, J. and Heuer, S. Motion Artefacts in Capacitively Coupled ECG Electrodes. World Congress on Medical Physics and Biomedical Engineering. 2009.
- 258. Barrett, J. F. and Keat, N. Artifacts in CT: Recognition and Avoidance. *RadioGraphics*, 2004. 24(6): 1679–1691.

- Galen S. Wagner, R. R. B., Dewar D. Finlay, T. H. L., G., D. and Straus. *Recording the electrocardiogram*, Lippincott Williams Wilkins. 2013, 45– 65.
- Zinc, R. Distortion and interference in the measurement of electrical signals from the skin (ECG, EMG, EEG). *Inno Tech Biol Med*, 1991. 12(special issue 1): 46–59.
- 261. Ödman, S. Potential and impedance variations following skin deformation. *Medical and Biological Engineering and Computing*, 1981. 19(3): 271–278.
- 262. Talhouet, H. d. and Webster, J. G. The origin of skin-stretch-caused motion artifacts under electrodes. *Physiological Measurement*, 1996. 17(2): 81–93.
- Hosseini, F., Schroeder, D. and Krautschneider, W. H. Capacitive sensors for detection of the movement artifacts in active capacitive electrocardiography electrodes. *The 5th Biomedical Engineering International Conference*. IEEE. 2012. 1–4.
- 264. Wartzek, T., Lammersen, T., Eilebrecht, B., Walter, M. and Leonhardt, S. Triboelectricity in capacitive biopotential measurements. *IEEE Transactions* on Biomedical Engineering, 2010. 58(5).
- 265. Gordon, D. H. Triboelectric interference in the ECG. *IEEE Transactions on Biomedical Engineering*, 1975. (3): 252–255.
- 266. Mizusako, M., Yasushi, M. and Hashimoto, H. Investigation of Non-Contact Biometric System Using Capacitive Coupling Electrodes. *IECON 44th Annual Conference of the IEEE Industrial Electronics Society*. IEEE. 2018. 2775– 2780.
- 267. Peng, S., Xu, K., Jiang, X. and Chen, W. Flexible Electrodes based Smart Mattress for Non-Contact Cardiac Signals Measurement. 42nd Annual International Conference of the IEEE Engineering in Medicine Biology Society (EMBC). 2020. 4059–4062.
- Linz, T., Gourmelon, L. and Langereis, G. Contactless EMG sensors embroidered onto textile. *4th International Workshop on Wearable and Implantable Body Sensor Networks (BSN)*. Springer. 2007. 29–34.

- 269. Uguz, D. U., Weidener, P., Bezek, C. D., Wang, T., Leonhardt, S. and Antink, C. H. Ballistocardiographic coupling of triboelectric charges into capacitive ECG. *IEEE International Symposium on Medical Measurements* and Applications (MeMeA). IEEE. 2019. 1–5.
- 270. Fukuyama, Y., Suzuki, R., Takayama, S. and Ueno, A. Multi-layered fabric electrode for movement artifact reduction in capacitive ECG measurement. 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE. 2013. 555–558.
- Pei, W., Zhang, H., Wang, Y., Guo, X., Xing, X., Huang, Y., Xie, Y., Yang, X. and Chen, H. Skin-potential variation insensitive dry electrodes for ECG recording. *IEEE Transactions on Biomedical Engineering*, 2016. 64(2): 463–470.
- 272. Zhang, H., Pei, W., Chen, Y., Guo, X., Wu, X., Yang, X. and Chen, H. A motion interference-insensitive flexible dry electrode. *IEEE Transactions on Biomedical Engineering*, 2015. 63(6): 1136–1144.
- 273. Griss, P., Enoksson, P., Tolvanen-Laakso, H. K., Merilainen, P., Ollmar, S. and Stemme, G. Micromachined electrodes for biopotential measurements. *Journal of Microelectromechanical Systems*, 2001. 10(1): 10–16.
- 274. Davis, S. P., Landis, B. J., Adams, Z. H., Allen, M. G. and Prausnitz, M. R. Insertion of microneedles into skin: measurement and prediction of insertion force and needle fracture force. *Journal of biomechanics*, 2004. 37(8): 1155– 1163.
- 275. Resende, G. V. and Souza, M. N. Insulated System for Capacitive ECG Measurement. Costa-Felix, R., Machado, J. C. and Alvarenga, A. V., eds. *XXVI Brazilian Congress on Biomedical Engineering*. Springer Singapore. 2019. 483–487.
- Pehr, S., Zollitsch, D., Güttler, J. and Bock, T. Development of a Non-Contact ECG Application Unobtrusively Embedded into a Bed. *IEEE Sensors Applications Symposium (SAS)*. 2019. 1–6.
- Tang, Y., Chang, R. and Zhang, L. An Interference Suppression Method for Non-Contact Bioelectric Acquisition. *Electronics*, 2020. 9(2): 293.

- 278. Xu, L., Rabotti, C., Zhang, Y., Harpe, P. J., Mischi, M., Meftah, M. and Ouzounov, S. Adaptive motion-artifact reduction in capacitive ECG measurements by using the power-line interference. *IEEE International Symposium on Medical Measurements and Applications (MeMeA)*. IEEE. 2018. 1–5.
- 279. Sharma, B. and Suji, R. J. ECG denoising using weiner filter and adaptive least mean square algorithm. *IEEE International Conference on Recent Trends in Electronics, Information Communication Technology (RTEICT)*. IEEE. 2016. 53–57.
- Manju, B. and Sneha, M. ECG Denoising Using Wiener Filter and Kalman Filter. *Procedia Computer Science*, 2020. 171: 273–281.
- 281. Young, R. J. and Lovell, P. A. Introduction to polymers. CRC press. 2011.
- LibreTexts Libraries Virtual TextBook. Polyethylene From the Battle of Britain to Bread Bags.
- Kulshrestha, A. S. and Mahapatro, A. *Polymers for biomedical applications*, ACS Publications. 2008.
- 284. American Chemistry Council. The Basics: Polymer Definition and Properties, 2019.
- 285. Major, I., Lastakchi, S., Dalton, M. and McConville, C. *Implantable drug delivery systems*, Elsevier. 2020, 111–146.
- Mark, J. E., Schaefer, D. W. and Lin, G. *The polysiloxanes*. Oxford University Press. 2015.
- Fujii, T. PDMS-based microfluidic devices for biomedical applications. *Microelectronic Engineering*, 2002. 61: 907–914.
- 288. Selim, M. S., Yang, H., Wang, F. Q., Fatthallah, N. A., Li, X., Li, Y. and Huang, Y. Superhydrophobic silicone/SiC nanowire composite as a fouling release coating material. *Journal of Coatings Technology and Research*, 2019. 16(4): 1165–1180. ISSN 1935-3804.
- 289. Parvez, A. N., Rahaman, M. H., Kim, H. C. and Ahn, K. K. Optimization of triboelectric energy harvesting from falling water droplet

onto wrinkled polydimethylsiloxane-reduced graphene oxide nanocomposite surface. *Composites Part B: Engineering*, 2019. 174: 106923.

- 290. Park, D. and Jeong, J. Low-resistance stretchable electrodes using a thick silver layer and a PDMS-PDMS bonding technique. *AIP Advances*, 2019. 9(2): 025016.
- 291. Chambon, F. and Winter, H. H. Linear viscoelasticity at the gel point of a crosslinking PDMS with imbalanced stoichiometry. *Journal of Rheology*, 1987. 31(8): 683–697.
- Liu, M., Sun, J. and Chen, Q. Influences of heating temperature on mechanical properties of polydimethylsiloxane. *Sensors and Actuators A: Physical*, 2009. 151(1): 42–45.
- 293. Designua. https://www.dreamstime.com, 2000. January 2021.
- 294. Leslie, D. C., Easley, C. J., Seker, E., Karlinsey, J. M., Utz, M., Begley, M. R. and Landers, J. P. Frequency-specific flow control in microfluidic circuits with passive elastomeric features. *Nature Physics*, 2009. 5(3): 231–235.
- 295. Kim, S. H., Moon, J.-H., Kim, J. H., Jeong, S. M. and Lee, S.-H. Flexible, stretchable and implantable PDMS encapsulated cable for implantable medical device. *Biomedical Engineering Letters*, 2011. 1(3): 199.
- Yu, Y., Wen, H., Ma, J., Lykkemark, S., Xu, H. and Qin, J. Flexible Fabrication of Biomimetic Bamboo-Like Hybrid Microfibers. *Advanced Materials*, 2014. 26(16): 2494–2499.
- 297. Lee, J. S., Romero, R., Han, Y. M., Kim, H. C., Kim, C. J., Hong, J.-S. and Huh, D. Placenta-on-a-chip: a novel platform to study the biology of the human placenta. *The Journal of Maternal-Fetal Neonatal Medicine*, 2016. 29(7): 1046–1054.
- 298. Zheng, Q., Zhang, H., Shi, B., Xue, X., Liu, Z., Jin, Y., Ma, Y., Zou, Y., Wang, X., An, Z., Tang, W., Zhang, W., Yang, F., Liu, Y., Lang, X., Xu, Z., Li, Z. and Wang, Z. L. In Vivo Self-Powered Wireless Cardiac Monitoring via Implantable Triboelectric Nanogenerator. ACS Nano, 2016. 10(7): 6510– 6518.

- 299. M.P, D., Das, B., Parameswaran, R., Dhara, S., Nando, G. B. and Naskar, K. Hybrid electrospun fibers based on TPU-PDMS and spherical nanohydroxyapatite for bone tissue engineering. *Materials Today Communications*, 2018. 16: 264–273.
- 300. Chowdhury, A. H., Khakpour, I., Jafarizadeh, B., Pala, N. and Wang, C. A Facile Fabrication of Porous and Breathable Dielectric Film for Capacitive Pressure Sensor. *IEEE Sensors*. IEEE. 2020. 1–4.
- 301. Shivashankar, H., Kevin, A., Manohar, S. and Kulkarni, S. Investigation on dielectric properties of PDMS based nanocomposites. *Physica B: Condensed Matter*, 2020: 412357.
- 302. Alyamani, A. and Lemine, O. M. FE-SEM Characterization of Some Nanomaterial. In: Kazmiruk, V., ed. Scanning Electron Microscopy. Rijeka: IntechOpen, chap. 23. 2012. doi:10.5772/34361. URL https: //doi.org/10.5772/34361.
- 303. Hitachi High-Tech Global. Hitachi High-Technologies Launches New SU8000 Family of Field Emission Scanning Electron Microscopes.
- Xue, C., Du, G.-Q., Chen, L.-J., Ren, J.-G., Sun, J.-X., Bai, F.-W. and Yang,
   S.-T. A carbon nanotube filled polydimethylsiloxane hybrid membrane for enhanced butanol recovery. *Scientific reports*, 2014. 4(1): 1–7.
- 305. Oxford Instrument. Energy Dispersive Spectroscopy (EDS), 2019.
- 306. Intertek Group plc. Energy Dispersive X-Ray Analysis (EDX).
- Koenig, J. L. *Infrared and Raman spectroscopy of polymers*. vol. 12. iSmithers Rapra Publishing. 2001.
- 308. Raman Spectroscopy Instruments. Polydimethylsiloxane Raman Spectrum.
- 309. Sales, F. C., Ariati, R. M., Noronha, V. T. and Ribeiro, J. E. Mechanical Characterization of PDMS with Different Mixing Ratios. *Procedia Structural Integrity*, 2022. 37: 383–388.
- McKeen, L. W. Introduction to plastics and polymers. *Film Properties of Plastics and Elastomers*, 2018. 4: 1–24.

- Nielsen, L. E. Cross-linking–effect on physical properties of polymers. Journal of Macromolecular Science, Part C, 1969. 3(1): 69–103.
- 312. Kim, G.-M., Lee, S.-J. and Kim, C.-L. Assessment of the physical, mechanical, and tribological properties of PDMS thin films based on different curing conditions. *Materials*, 2021. 14(16): 4489.
- Mark, J. E., Schaefer, D. W. and Lin, G. *The polysiloxanes*. Oxford University Press. 2015.
- 314. Crow Polymerdatabase. Polysiloxanes (Silicones).
- 315. Keysight-Technologies. Agilent Solutions for Measuring Permittivity and Permeability with LCR Meters and Impedance Analyzers.
- 316. Open-source Brain-computer Interface (OpenBCI). OpenBCI Documentation:Citation List.
- 317. Open-source Brain-computer Interface (OpenBCI. OpenBCI Documentation.
- 318. Instruments, T. Low-power, 8-channel, 24-bit analog front-end for biopotential measurements. *SBAS459I datasheet, Jan*, 2010.
- Grimnes, S. and Martinsen, O. G. *Bioimpedance and bioelectricity basics*.Academic press. 2011.
- 320. Gandhi, N., Khe, C., Chung, D., Chi, Y. M. and Cauwenberghs, G. Properties of Dry and Non-contact Electrodes for Wearable Physiological Sensors. *International Conference on Body Sensor Networks*. 2011. 107–112.
- 321. Socrates, G. Infrared and Raman characteristic group frequencies: tables and charts. John Wiley Sons. 2004.
- 322. Estrada, M., Ulloa, F., Avila, M., Sánchez, J., Cerdeira, A., Castro-Carranza, A., Iñíguez, B., Marsal, L. F. and Pallarés, J. Frequency and voltage dependence of the capacitance of MIS structures fabricated with polymeric materials. *IEEE Transactions on Electron Devices*, 2013. 60(6): 2057–2063.
- 323. Novkovski, N. and Atanassova, E. Frequency Dependence of Characteristics of MOS Capacitors Containing Nanosized High-κ Ta2O5 Dielectrics. Advances in Materials Science and Engineering, 2017. 2017.

- 324. Nave, R. *HyperPhysics*. Georgia State University, Department of Physics and Astronomy. 2000.
- Olson, W., Schmincke, D. and Henley, B. Time and frequency dependence of disposable ECG electrode-skin impedance. *Medical instrumentation*, 1979. 13(5): 269–272.
- 326. Liu, B., Luo, Z., Zhang, W., Tu, Q. and Jin, X. Carbon nanotubebased self-adhesive polymer electrodes for wireless long-term recording of electrocardiogram signals. *Journal of Biomaterials science, Polymer edition*, 2016. 27(18): 1899–1908.
- 327. Taji, B., Chan, A. D. C. and Shirmohammadi, S. Effect of Pressure on Skin-Electrode Impedance in Wearable Biomedical Measurement Devices. *IEEE Transactions on Instrumentation and Measurement*, 2018. 67(8): 1900–1912.
- 328. Sun, Y., Ren, L., Jiang, L., Tang, Y. and Liu, B. Fabrication of composite microneedle array electrode for temperature and bio-signal monitoring. *Sensors*, 2018. 18(4): 1193.
- Huang, Y., Song, Y., Gou, L. and Zou, Y. A Novel Wearable Flexible Dry Electrode Based on Cowhide for ECG Measurement. *Biosensors*, 2021. 11(4): 101.
- 330. Terada, T., Toyoura, M., Sato, T. and Mao, X. Noise-Reducing Fabric Electrode for ECG Measurement. *Sensors*, 2021. 21(13): 4305.

## LIST OF PUBLICATIONS

## Journal with Impact Factor

 A. H. Umar, M. A. Othman, F. K. C. Harun and Y. Yusof, "Dielectrics for Non-Contact ECG Bioelectrodes: A Review," in IEEE Sensors Journal, vol. 21, no. 17, pp. 18353-18367, 1 Sept.1, 2021, doi: 10.1109/JSEN.2021.3092233. Q2, Impact Factor 3.301

## **Indexed conference proceedings**

 A. H. Umar, F. K. C. Harun and Y. Yusof, "Characterization of Polydimethylsiloxane Dielectric Films for Capacitive ECG Bioelectrodes," 2020 7th International Conference on Electrical Engineering, Computer Sciences and Informatics (EECSI), 2020, pp. 127-131, doi: 10.23919/EECSI50503.2020.9251882. Awarded Best Conference Paper