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ABSTRACT

Dielectric materials play crucial roles in the non-contact recording of
electrocardiograms (ECGs), allowing cardiac physiological signals to be monitored
and abnormalities detected early. Previous dielectrics are rigid, unstable, require
expensive fabrication, and induce severe noise. PDMS is a polymer with remarkable
biomedical properties suitable for non-contact bioelectrodes. However, the poor
dielectric capability of PDMS has led to costly attempts to improve it. This research
introduces an affordable technique to explore and characterize unblended PDMS films
as dielectrics for non-contact ECG bioelectrodes by varying the weight mix ratio
of Sylgard 184 TM silicone elastomer and its crosslinker. Capacitance and relative
permittivity were measured and estimated using the parallel-plate technique in the
frequency range of the LCR meter. Skin impedance values were also measured for
different skin conditions using the Hioki impedance analyzer test frequency of 4 Hz -
1 MHz. Non-contact ECG measurements are affected by morphology of the dielectric,
bioelectrode conductor, contact area, and skin conditions. To investigate the impact
of these factors on skin impedance, the skin bioelectrode interface was modeled using
equivalent circuits for wet, direct contact, and non-contact modes and analyzed using
least-squares non-linear curve fit. Finally, the proposed approach was verified by
recording ECG using different bioelectrodes and dielectrics. Due to susceptibility to
motion artifacts and electrical interferences, digital filters were introduced to improve
the quality of ECG recorded. The results demonstrate the effectiveness of the proposed
method for improving the dielectric performance of unblended PDMS films, with a
steady increase in capacitance (50.53 pF to 102.86 pF) and relative permittivity (0.19
to 0.69) observed with an increase in the proportion of the crosslinker. Good agreement
was found between the measured skin impedance and equivalent circuit models, but
differences exist in estimated circuit parameters. The unblended PDMS films with
the highest mix ratio (10:2) successfully recorded visible P-QRS-T peaks in ECG.
Skin conditions, bioelectrode conductivity, dielectric thickness and porosity, and the
OpenBCI board filtering parameters affect the ECG recordings. This study confirms
the potential of unblended PDMS films for non-contact bioelectrodes to detect heart
abnormalities early.
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ABSTRAK

Biolektrod tanpa sentuh telah digunapakai bagi pemantaun isyarat fisiologi
jantung disamping mengesan keabnormalan jantung. Di mana, bahan dielektrik
merupakan komponen utama yang digunakan dalam merakan isyarat elektrokardiogram
(ECG) tanpa sentuh. Sebelumnya, dielektrik bukan polimer adalah bersifat tegar, tidak
stabil, memerlukan kos fabrikasi yang mahal serta menghasilkanhingar yang teruk. Satu
bahan dielektrik yang dipanggil sebagai polimer polydimethylsiloxane (PDMS) adalah
tidak berbahaya kepada tisu manusia, memberikan sentuhan kulit ergonomik yang
lebih baik terhadap artifak gerakan dan cas triboelektrik, dan ianya berpotensi untuk
digunakan sebagai dielektrik bioelektrod ECG tanpa sentuhan. Oleh kerana PDMS
mempunyai pemalar dielektrik yang rendah, beberapa percubaan untuk memperbaiki
sifat penebat PDMS telah dibuat. Penyelidikan ini telah meneroka dan mencirikan filem
PDMS yang tidak dicampur sebagai dielektrik untuk digunakan sepagai bioelektrod
ECG tanpa sentuhan. Dengan mengubah nisbah campuran berat elastomer silikon
Sylgard 184TM dan penyambung silangnya, filem PDMS didepositkan secara manual
pada Mylar dan kesan dielektrik bagi ketebalan filem yang berbeza akan diperiksa
dan dianalisis. Jumlah kapasitan dan kebolehtelapan relatif adalah antara parameter
dielektrik penting yang diukur dan dianggarkan menggunakan teknik plat selari untuk
frekuensi ujian yang berbeza dalam julat frekuensi meter LCR pratetap (100 Hz - 100
kHz). Disamping itu, nilai impedans kulit diukur untuk keadaan kulit yang berbeza
iaitu dengan menggunakan julat impedans Hioki antara 4 Hz hingga 1 MHz. Antra
faktor penting yang akan mempengaruhi pengukuran fisiologi bukan sentuhan adalah
seperti morfologi dan keliangan dielektrik, jenis konduktor bioelektrod dan kawasan
sentuhan, dan keadaan kulit. Bioelektrod kulit telah dimodelkan sebagai litar setara bagi
beberapa mod ECG seperti basah, sentuhan langsung dan bukan sentuhan bagi mengkaji
kesan faktor biopenderiaan pada impedan kulit, dan dianalisis menggunakan kesesuaian
lengkung tak linear kuasa dua terkecil. Akhir sekali, ECG telah direkodkan dengan
menggunakan bioelektrod yang mempunyai dielektrik yang berbeza untuk pengesahan
prestasi. Oleh kerana rakaman ECG mudah dipengaruhi oleh artifak gerakan dan
gangguan elektrik, maka penapis digital telah diperkenalkan untuk memproses dan
memeriksa kualiti ECG yang direkodkan oleh papan biopenderia OpenBCI Cyton
pada kulit bergel, kering dan berpeluh. Hasil kajian menunjukkan keberkesanan
kaedah yang dicadangkan untuk meningkatkan prestasi dielektrik filem PDMS yang
tidak dicampur. Sepanjang julat frekuensi 100 Hz hingga 100 kHz, peningkatan
yang stabil dalam bahagian pemaut silang mengakibatkan peningkatan nilai kapasitan
daripada 50.53 pF kepada 102.86 pF dan kebolehtelapan relatif daripada 0.19 kepada
0.69. Selain itu, kesesuaian yang baik dengan model litar setara telah diperoleh
untuk impedan kulit yang diukur, akan tetapi terdapat perbezaan antara parameter
litar yang dianggarkan. Perbandingan prestasi antara dielektrik dan bioelektrod telah
disahkan dengan melihat rakaman ECG dengan puncak P-QRS-T yang boleh dilihat
menggunakan filem PDMS yang tidak dicampur dengan nisbah campuran tertinggi
(10:2). Hasil kajian juga menunjukkan bahawa keadaan kulit, jenis bioelektrod dan
kekonduksian mempengaruhi kadar dielektrik dan ukuran fisiologi. Pada masa yang
sama, kualiti ECG yang ditapis didapati bergantung pada masa penderia OpenBCI,
frekuensi pensampelan dan potongan serta susunan penapis. Buat pertama kalinya,
kajian ini telah mencadangkan dan mengesahkan bahawa potensi dielektrik PDMS yang
tidak dicampur boleh digunakan dalam bioelektrod bukan sentuhan untuk pemantauan
jangka panjang dan pengesanan awal keabnormalan jantung.
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CHAPTER 1

INTRODUCTION

1.1 Problem Background

Cardiovascular diseases (CVDs) are non-communicable lifetime illnesses and

the highest cause of deaths globally [1]. At present, CVD has a global presence as

the supreme health threat to all demography of people across different genders and

ages [2]. In 2019, the World Health Organization (WHO) reported ischaemic-CVD

as the most deadly disease (Figure 1.1(a)) [3]. Furthermore, in 2020, the Malaysian

Department of Statistics reported that ischaemic-CVD is the leading cause of death at

the national level, as shown in Figure 1.1(b) [4]. Consequently, many countries bear

a heavy financial burden to manage affected citizens with heart abnormalities [5–8].

In 2022, the the Ministry of Health Malaysia published a report confirming that the

country spent RM3.93 Billion as the total healthcare cost for CVDs [9].

Heart diseases are silent-killers. In light of the primary health concerns, patients

with a high risk of CVD are highly recommended to regularly monitor their health status

to detect heart dysfunction and prevent sudden heart failure or damage of organs that

rely on the cardiac conduction system [10, 11].

Electrocardiography is a non-invasive medical procedure for acquiring

bioelectrical signals generated by the heart in the form of an interpretable waveform

[12]. To date, Cardiologists use the electrocardiogram (ECG) to identify heart problems

such as infarction, ischemia, and other cardiac abnormalities [13–15]. Since the

coronavirus was reported in 2020, the ECG has been attracting the interest of the

healthcare communities. For example, an irregularity in the ECG waves pattern

indicates infection by the COVID-19 [16]. Therefore, there is a universal increase

in the application of non-invasive ECG recording systems to evaluate the potential

threat and influence of cardiac diseases on the COVID-19 prognosis [17–22].
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Figure 1.1 The Ischaemic-CVD is the principal cause of death (a) worldwide as
reported by the WHO in 2019 [3] and (b) domestically by the Malaysian Department
of Statistics [4] (modified).

Over a century since Augustus Waller invented the first heart monitoring device

to record heart rhythms using five zinc bioelectrodes [23]. In 1893, the Dutch

Physiologist improved the work of Waller and successfully reduced the number of ECG

bioelectrodes from five to three [24, 25]. The conventional approach of measuring

heart biopotential is the 12-lead ECG system [26] and Holter monitor [27]. Despite

the advantages of these clinical ECG systems, they rely on non-invasive bioelectrodes

that are effective for a short period and restricted to clinical settings. As such, patients

that require constant monitoring are at high risk when they experience sudden heart

failure [28].

In physiological signal monitoring, non-invasive bioelectrodes are necessary to

acquire the electrical potentials on the skin. Regarding the placement of bioelectrodes,

bioelectrodes are classified as invasive when embedded within human tissue to record

physiological signals and non-invasive when attached to the outer skin layer [29].

The focus of this study is entirely on non-invasive bioelectrodes. Non-invasive

ECG bioelectrodes are sub-classified, based on skin conditions, into wet and dry

bioelectrodes. The wet silver/silver-chloride (Ag/AgCl) bioelectrodes were the foremost

and the most popular bioelectrodes for acquiring heart electrical signals [30, 31]. The

wet bioelectrodes require conductive gel before use. The gel creates a low impedance
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path for easy movement of ionic current from the cardiac tissues to produce a detectable

electrical potential with high resolution.

Over the past years, there has been a growing effort towards long-term ECG

monitoring. The long-term monitoring ensures physicians do not miss any useful

indicators of heart abnormalities and allows early diagnosis of critically affected patients

[32–36]. In long-term ECG monitoring, the performance of the wet bioelectrodes is

greatly restricted. The conductive gel may dehydrate after extended use, leading

to severe signal instability and attenuation [30]. Besides, the placement of wet

bioelectrodes requires clinical experience and sensitive skin abrasion. When the ECG

is frequently recorded, the chemical reaction between the gel and metal conductor

can result in skin irritations and contact dermatitis infections [37, 38]. Since wet

bioelectrodes are not often reusable and biodegradable, their waste can contribute to

substantial environmental pollution [36, 39].

Studies have proposed that by constantly monitoring the ECG, many heart

patients could be better examined and protected from sudden death [40–43].

Unfortunately, the wet bioelectrodes are constrained by the problems mentioned earlier.

Dry bioelectrodes are biopotential sensors capable of operating without skin abrasion

and conductive gels. In the last decade, non-invasive bioelectrodes have been researched

to support telemedicine and real-time monitoring of physiological activities [44,45]. In

addition, patients benefit from constant health monitoring and enjoy better comfort [46].

Dry bioelectrodes are of three types: direct contact, micro-needles, and non-contact

(capacitive), as classified in Figure 1.2.

Direct contact bioelectrodes are alternative to the wet bioelectrodes and operate

through physical contact with the skin. They can be used in long-term ECG monitoring

because they guarantee ease without skin preparations, and offers the safest approach

to prevent skin irritations [47, 48]. Several studies have explored direct contact

bioelectrodes utilizing diverse materials. Some of the bioelectrodes were implemented

using stainless-steel [49, 50], brass [51], silver, gold [52], and silver-coin [53, 54].

Despite being good conductors, metal-based ECG bioelectrodes have drawbacks.

They are rigid, un-ergonomic, induce motion artifacts, and are highly vulnerable to
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Figure 1.2 Categories of non-invasive ECG bioelectrodes

electrical interference [30]. Furthermore, the performance demonstrated by direct

contact bioelectrodes is dependent on skin condition. For instance, dry skin exhibit

high impedance than when moisturized by sweat, which is responsible for unstable

biosignal quality in dry ECG bioelectrodes [55].

Fabrics are the most accessible and used materials by humans. Fabrics have

been investigated by many researchers for wearable and long-term ECG monitoring,

such as conductive-threads, inks, and printed-fabrics [56]. Many other bioelectrodes

include yarns of silver-coated threads stitched to fabrics [57, 58] and screen-printed

fabrics using conductive inks [59, 60]. Fabric-based bioelectrodes have the advantage

of being soft and flexible. However, they still require excessive pressure to attach

them to the skin firmly. Furthermore, skin exudates could produce unpleasant skin

reactions [61] and cause the coated ink to fade, resulting in low and unstable ECG

quality [62, 63]. Also, triboelectric charges are more frequent in fabrics.

Materials and fabrication techniques have greatly influenced bioelectrode

technology in the past decade. Polymers have inspired the development of polymeric

materials and nano-metallic conductors with special properties for biomedical

applications. Typical examples are the direct contact bioelectrodes fabricated
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using multi-wall carbon nanotube (MWCNT)/polydimethylsiloxane (PDMS) [64, 65];

polypyrrole (PPy)/patterned-vertical carbon nanotube [66]; silver nanowires, MWCNT,

and adhesive PDMS [67]; graphene-oxide (GO)/Ag-NWs [68]; and polyvinyl

butyral/Ag-NWs [69]. The disadvantages of nano-materials are that fabrication

methods are expensive and require hazardous laboratory experiments.

In skin anatomy, the stratum corneum (SC) is the outer-most layer of the

epidermis. When bioelectrodes are applied in direct contact mode, they are placed

on the surface of the SC. The SC has a dry structure, short lifespan, and the ability

to regenerate [70]. The thickness of the SC varies with the region of the body (6 –

40 µm) [71] and is weakly conductive [72]. This makes the SC the primary cause

of high skin impedance that hinders biopotential signal recording [73, 74]. In wet

ECG, the SC is usually abraded to minimize its influence. Dry bioelectrodes with

micro-needles can overcome the restrictions of the SC layer. The micro-needles are

invented to penetrate the SC layer and minimize its influence on the skin impedance.

In addition, the micro-needles ensure stable contact with the skin and prevent motion

artifact [75, 76]. Examples of the dry micro-needles bioelectrodes reported can be

found in the studies conducted by [77–81]. However, the micro-needles can cause

inconveniences such as pains, bleeding, and infection in prolonged use. Moreover, the

fabrication of micro-needles requires stringent laboratory procedures and expensive

facilities [75].

Non-contact ECG bioelectrodes were researched long ago and are presently

investigated because of their potentials [82–84]. In contrast to the dry, direct skin

contact bioelectrodes, the non-contact bioelectrodes are capable of recording ECG from

unabraded skin via dielectric materials. Dielectrics provide non-contact bioelectrodes

the advantage to operate for an extended period with much convenience and assurance

to detect heart abnormalities in good time [85]. Table 1.1 shows a comparison of

different ECG bioelectrodes.
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Table 1.1 Comparison of ECG bioelectrodes
Bioelectrodes Skin Condition Advantages Disadvantages

Wet Gelled

• Records high-quality
biosignal

• Suitable for short-term
ECG recording

• Acceptable in clinical
practice

• Gel causes skin allergies

• Requires skin abrasion

• Dehydration of gel af-
fects quality of biosignal

• Usage is restricted to
clinical settings

Direct contact Dry

• No gel or skin abrasion
is required

• No skin allergies

• Suitable for long-term
ECG recording and
wearable biosensors

• Biosignal quality de-
pends on skin condition

• Requires special front-
end bio-amplifiers with
a high input impedance

• Prone to powerline noise
and motion artifacts

Micro-needles Dry

• Requires no skin prepa-
ration

• Ensures proper skin con-
tact and low impedance

• Good ECG quality

• Inconvenient

• Could cause skin infec-
tion in long-term use

• Fabrication is expensive

Non-contact Dry

• No gel or skin abrasion
is required

• No skin allergies

• Suitable for long-term
ECG recording and
wearable biosensors

• Dielectrics provide bet-
ter skin comfort

• Biosignal quality de-
pends on the type of
dielectric material

• Requires front-end cir-
cuits with a high input
impedance

• Susceptible to powerline
noise, motion artifacts,
and triboelectric charge
effect

In non-contact ECG sensing, the performance of the bioelectrodes is greatly

influenced by the dielectric material, which makes the dielectric material worth

investigating. From non-contact ECG bioelectrodes developed previously, three

dielectrics were most common. They are metal-oxides, fabrics, and polymers. Metal

oxides were employed as dielectrics in non-contact ECG bioelectrodes because of their

high dielectric constant [82–84]. However, their rigid structure induces severe motion

artifacts and electrical interference [30].

Alternatively, previous research investigated natural and synthetic fabrics as

dielectrics [54, 86–89]. Fabric dielectrics are soft, breathable, and skin conformable.

Although, the aforementioned properties are desired in dielectrics used for wearable

medical bioelectrodes. However, in long-term ECG monitoring, fabrics can exhibit

unstable behaviour when they are moisturized by sweat and skin exudates. Also, they

6



can introduce triboelectric charges strong enough to distort weak biopotential signals

such as the ECG.

Among the enormous materials on the earth, polymers are well-known.

Polymers are primarily used in electronics as insulators because they are non-conductive

materials [90, 91]. Recent years have seen a high increase in the characterization

and application of polymers as biomaterials and biomedical electronics for several

reasons [92–97]. Polymers are exciting materials. They are easy to synthesize and

characterize to produce degradable medical devices [98]. Polymers are easy to fabricate

into any desired shape [99]. They are inert against most chemicals, light weight,

stretchable, skin conformable, and harmless to human tissue [100, 101].

Polydimethylsiloxane (PDMS) belongs to the siloxane group of polymers that

has gained broad research interest in biomedical engineering because of its outstanding

properties and compatibility [102–106]. More interestingly, PDMS has the following

qualities and potentials; (a) it is relatively cheap, (b) resembles and harmless to human

tissue when characterized and moulded [107], (c) flexible and stretchable, (d) can

be fabricated using a simple method to conform with skin structure, (e) bio-durable

and compatible with other polymers and nano-particles. Among the poly-siloxanes

group, PDMS has been extensively employed as a significant composite constituent

in developing polymer biosensors [65, 108], micro-fluidic devices [109–112], and

substrate materials [113–115].

In non-contact ECG measurement, the following qualities are essential in a

dielectric material; high dielectric constant, biocompatible, bio-durable, and ability to

conform with the skin. Another essential characteristic of a biomedical dielectric is

the capacity to protect any front-end electronics from short-circuit by sweat and enable

high coupling capacitance. Also, dielectric materials that induce triboelectric (electro-

static) charges are unsuitable since they can generate charges that can distort the ECG

signal.
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1.2 Problem Statement

Like most polymers, several investigators have explored PDMS to serve as

insulants in electronics [116, 117]. PDMS is a good insulator, but it has poor

dielectric performance. Many techniques have been proposed to enhance the weak

dielectric properties of PDMS using nano-particles as composites for non-biomedical

applications [111, 118–121]. However, the techniques employed require expensive

nano-particles, hazardous laboratory procedures, and expensive equipment. Strict

safety precautions are also required to characterize these materials. In some instances,

the experiment might fail, as reported in [122], leading to a waste of time and resources.

When undertaking the current study, we are yet to find literature on composite PDMS

dielectrics for capacitive bioelectrodes.

PDMS is commercially available as a single kit but in two parts; elastomer

base and curing agent (crosslinker). Mixing of these two parts results in a change

in molecular structure and dielectric properties of PDMS. It is feasible to modify the

dielectric properties of unblended PDMS without the need for expensive conducting

nano-particles. In this study, the term “unblended” means without electrical conducting

nano-particles. By adding more of the crosslinker, the polymer chains get shorter and

structurally affected [123–125]. This study intends to explore the dielectric performance

of unblended PDMS films for non-contact ECG sensing applications. By employing the

manual deposition technique, PDMS dielectric films can be characterized by varying

the proportion of the silicone elastomer (Sylgard 184T M) base and its curing agent. To

our knowledge, no direct study investigating the dielectric performance of unblended

PDMS for non-contact ECG bioelectrodes has been reported in the literature. Exploring

unblended PDMS elastomer for dielectrics will open up and better understand its

performance when applied in non-contact ECG bioelectrodes.

1.3 Research Objectives

The objectives of the present investigation are:
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(a) To experiment and fabricate by varying the polymer mix ratios, unblended

PDMS dielectric films.

(b) To characterize the electrical and dielectric properties of unblended PDMS

films.

(c) To model and simulate the bioelectrode skin interface equivalent circuit for a

porous and non-porous dielectric for non-contact ECG bioelectrode.

(d) To assess the dielectric performance of unblended PDMS dielectrics in non-

contact ECG recordings.

1.4 Scope of the Research

The primary focus of this research is to modify and fabricate by manual

deposition the dielectric properties of PDMS films. Thin PDMS films were

characterized by varying the proportion of the silicone elastomer liquid and its

crosslinker. The polymer mix ratios affect PDMS baking temperature. Consequently,

a trade-off was made between the PDMS mix ratios baking and its baking temperature

that can be tolerated by the glass substrates. Considering these factors, the weight ratio

method is applied on the elastomer and its crosslinker to generate three polymer mix

ratios; 10:1, 10:1.5, and 10:2. Also, the minimum thickness of the proposed PDMS

films is defined by the thickness of the spacer. The effects of polymer composition ratio

on PDMS dielectric properties are the main interest within the research scope. The

dielectric parameters are the capacitance and relative permittivity of the PDMS films.

PDMS is a low-k dielectric material. The parallel-plate technique is considered for

measuring the generated capacitances with an Agilent LCR meter of a preset frequency

range of 100 Hz to 100 kHz. Also, the instrument applied for measuring impedance

has fixed and restricted test frequencies. The possible range of frequency allowed is

4 Hz to 1 MHz. The equivalent circuit model for a non-porous PDMS dielectric was

simulated in Matlab 2019b to determine circuit parameters.

Furthermore, the relative permittivity of each film sample was estimated by the

general expression for parallel-plate capacitance. PDMS films with reliable dielectric

characteristics were selected and experimented. Separately, ECG waveforms were
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acquired with the Ambu Ag/AgCl, direct contact, and non-contact bioelectrodes with

fabric (porous) and PDMS (non-porous) dielectrics.

1.5 Significance of the Research

The study will provide benefits in the following ways:

(a) The model and simulation results of the equivalent circuit for a porous and non-

porous dielectric will provide invaluable information for designing biopotential

amplifiers and other front-end biosignal processing circuits.

(b) This is the first occasion the dielectric performance of unblended PDMS films

from Sylgard 184 TM elastomer is investigated for non-contact ECG sensing.

The results obtained will provide relevant insights on the characterization

of unblended PDMS as a safe biomedical dielectric without expensive

nanoparticles.

(c) Non-porous PDMS dielectric film is flexible, non-toxic, harmless to the skin,

and can satisfactorily protect the front-end circuit from skin exudates. The

recorded ECG signals with visible P-QSR-T peaks confirm the feasibility of

reliable non-contact measurement physiological signals for early detection,

diagnosis of cardiac abnormalities, and preventing sudden death of heart

patients.

1.6 Thesis Outline

The organization of the different chapters of the thesis is as follows:

In Chapter 1, essential information on cardiovascular diseases and the health

challenges are introduced. This is followed by a description of the techniques used to

record ECG signals and performance limitations of bioelectrodes in long-term ECG

measurement. Next, the problem statement and research objectives are outlined. The

remaining sections of the chapter define the scope and significance of the research.
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In Chapter 2, the literature review covers relevant aspects of the human cardiac

system, skin physiology, and the ECG extraction points. Further, an extensive review

is conducted on non-invasive ECG bioelectrode technologies, the skin bioelectrode

interface, and equivalent electrical models. The focus of the study is non-contact

bioelectrodes and biomedical dielectrics. Therefore, the final part of the chapter

provides a detailed assessment of three categories of dielectric materials and their

crucial role in non-contact ECG recording.

Chapter 3 elaborates the experimental procedures employed to modify and

boost the dielectric performance of pure Sylgard 184 TM PDMS films. The chapter

starts with a schematic narration of the experimental design, fabrication of PDMS

dielectrics, and morphological analyses. Next, the electrical and dielectric parameters

of selected samples PDMS films were measured using the parallel plate technique.

Equivalent circuit models for both porous and non-porous dielectrics are presented.

Matlab simulation was implemented to observe the output response of the proposed

capacitive biosensing system using the transfer function. The performance of the

proposed PDMS films is tested through a non-contact method to record ECG from a

human subject, processed using the digital filters, and compared with other types of

dielectric materials.

In Chapter 4, the results presented comprise the surface morphological analyses

of unblended PDMS films made from different mix ratios, dielectric properties,

equivalent circuit model simulations, ECG signal recordings, and denoising ECG

signal techniques. In addition, a detailed analysis is made and the implication of the

results in capacitive bioelectrodes and extended ECG monitoring.

Lastly, Chapter 5 completes the thesis with a conclusion and offers suggestions

for future research.
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S., Bojović, B. and Hadžievski, L. Properties of different types of dry

electrodes for wearable smart monitoring devices. Biomedical Engineering /

Biomedizinische Technik, 2020. 65(4): 405–415.

142



136. Ambu Cardiology Sensors. https://www.ambu.com, 2015. January 2021.

137. New V-Key Technology Co. Ltd. 26mm Dry Electrode By Stainless Steel.

https://www.nvk.com.tw, 2019.

138. Compumedics Neuromedical Supplies. Compumedics Gold cup electrode

60 touchproof. https://www.au.neuromedicalsupplies.com, Last

accessed January 2020.

139. Davis Medical Electronics Inc. Electrodes. https://www.davismedical.

com, Last accessed January 2020.

140. BIOPAC Systems Inc. Electrode Properties—Gel and Adhesive. https:

//www.biopac.com, Last accessed on February 2020.

141. Eggins, B. R. Skin contact electrodes for medical applications. Analyst, 1993.

118(4): 439–442.
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