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ABSTRACT

Conventional convolutional neural networks (CNNs), which are realized in the

spatial domain, present a high computational workload and memory access cost (CMC).

Spectral domain CNNs (SpCNNs) offer a computationally efficient approach for

performing CNN training and inference. State-of-the-art SpCNNs propose activation

functions (AFs) that are computationally costly or realize AFs in the spatial domain

necessitating multiple and expensive spatial-spectral domain transformations. This

work proposes a complex-valued AF for SpCNNs that transmits inputs unaltered or

scaled depending on the activation area. This AF is computationally inexpensive and

provides sufficient non-linear transformation that ensures high classification accuracy.

This work also investigates the CMC of SpCNNs and its contributing components

analytically and then proposes a methodology to optimize CMC, under three strategies,

to enhance inference and training performance. The strategies involve the reduction of

the output feature map (OFM) size, OFM depth, or both under an accuracy constraint

to compute performance-optimized CNN inference and training. The proposed AF

denoted as complex-valued leaky ReLU (CLReLU), was employed in a LeNet-5

SpCNN architecture and achieves an accuracy gain of up to 3% for MNIST and 8% for

Fashion MNIST dataset, while providing up to 2.3 times higher throughput in inference,

over state-of-the-art AFs applied to the same model. The proposed CMC reduction

methodology was applied to LeNet-5 and AlexNet architectures. For instance, the

optimal AlexNet model achieves up to 34 times higher throughput in inference, and

up to 16 times greater energy efficiency in training, with a minor accuracy loss of 2%,

as compared to related state-of-the-art work. The proposed AF and CMC reduction

methodology helps develop an SpCNN model that provides faster and more energy-

efficient computation as well as high test accuracy.
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ABSTRAK

Rangkaian neural konvolusi (CNNs) konvensional, yang direalisasikan dalam

domain spatial, memberikan beban kerja pengiraan dan kos akses memori yang

tinggi (CMC). CNN domain spektrum (SpCNNs) menawarkan pendekatan yang cekap

dari segi pengiraan untuk melaksanakan latihan dan inferens CNN. SpCNN termaju

mencadangkan fungsi pengaktifan (AFs) yang secara pengiraan sangat mahal atau

merealisasikan AF dalam domain spatial yang memerlukan transformasi domain

spatial-spektrum yang banyak dan komputasi yang tinggi. Kerja ini mencadangkan

AF bernilai kompleks untuk SpCNN yang menghantar input sebenar atau berskala

bergantung kepada kawasan pengaktifan. AF ini adalah kecil dari segi beban pengiraan

dan menyediakan ketaklinearan transformasi yang mencukupi untuk memastikan

ketepatan pengelasan yang tinggi. Kerja ini juga menyiasat CMC SpCNN dan

komponen penyumbangnya secara analitikal dan kemudian mencadangkan metodologi

untuk mengoptimumkan CMC, di bawah tiga strategi, untuk meningkatkan prestasi

inferens dan latihan. Strategi tersebut melibatkan pengurangan saiz peta ciri output

(OFM), kedalaman OFM, atau kedua-duanya sekali di bawah kekangan ketepatan

untuk mengira inferens dan latihan CNN dengan prestasi yang optimum. AF yang

dicadangkan dinamakan sebagai ReLU bocor bernilai kompleks (CLReLU), telah

digunakan dalam seni bina LeNet-5 SpCNN dan mencapai peningkatan ketepatan

sehingga 3% untuk MNIST dan 8% untuk dataset MNIST Fesyen, sambil menyediakan

sehingga 2.3 kali daya pemprosesan yang lebih tinggi dalam inferens, ke atas AF

termaju yang digunakan pada model yang sama. Metodologi pengurangan CMC yang

dicadangkan telah digunakan untuk seni bina LeNet-5 dan AlexNet. Sebagai contoh,

model AlexNet yang optimum mencapai sehingga 34 kali daya pemprosesan yang lebih

tinggi dalam inferens, dan sehingga 16 kali kecekapan tenaga yang lebih besar dalam

latihan, dengan kehilangan ketepatan kecil hanya sebanyak 2%, berbanding dengan

kerja terkini yang berkaitan. Metodologi pengurangan AF dan CMC yang dicadangkan

membantu membangunkan model SpCNN yang menghasilkan pengiraan yang lebih

pantas dan lebih cekap tenaga serta ketepatan yang tinggi.
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CHAPTER 1

INTRODUCTION

Deep neural networks (DNNs) have recently evolved as the prevalent solution

for a range of challenging problems in computer vision [1], language processing [2]

and autonomous systems [3]. Convolutional neural networks (CNNs) [4, 5], a class

of DNNs, have achieved unprecedented success in various fields of computer vision,

audio analysis, and text processing including–inter alia–object classification [6, 7],

object detection [8,9], semantic segmentation [10,11], face verification [12,13], video

understanding [14], audio classification [15,16], and natural language processing [17].

In the last few years, CNNs have been deployed in diverse applications such as

autonomous driving [18], navigation systems [19] for drones, skin cancer detection [20],

and VLSI physical design [21].

CNNs possess excellent recognition capabilities because they can autonomously

extract complex and sophisticated features from incoming data through their

convolution (CONV) layers. However, because the CONV layers exhibit high

computational workload and memory access cost (CMC), CNN-based artificial

intelligence (AI) solutions are power-hungry and inefficient in terms of throughput

and energy efficiency [22]. This becomes a concern for the applications discussed in

the previous paragraph.

CNN can be computed in the spectral domain to lower the computational

workload (CW) of conventional CNN realizations. However, spectral domain CNNs

(SpCNN) lack activation functions (AF) that are computationally inexpensive and

exhibit sufficient non-linearity to provide high accuracy [23]. Additionally, few studies

have looked into approaches to lower memory access costs (MemACs) for SpCNNs.

Furthermore, for systems with limited resources and energy, the CW reduction might

not be enough. Therefore, it is essential that AFs for SpCNNs are designed that
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are computationally inexpensive and exhibit adequate non-linearity, and SpCNN is

computed with lower CMC than state-of-the-art SpCNN models.

1.1 Convolutional Neural Network

CNN is a variant of DNNs that is built as a series of CONV layers that are

interleaved with AF and pooling (POOL) layers, followed by fully-connected (FC)

layers, and ends with an AF, such as softmax, that performs multi-class classification.

The CONV layers process higher-level data called feature maps [22]. The input and

output of a CONV layer are thus called input feature map (IFM) and output feature

map (OFM), respectively. Figure 1.1 depicts this high-level functional architecture

of CNNs. Conventional CNNs, which are typically realized in the spatial domain,

implement CONV operation by repeatedly performing dot-products between a moving

patch of IFM and a pre-computed kernel. The moving patch is a local region of

IFM, called the receptive field, which has the same size as the kernel. The dot-

products are generated from accumulating element-wise products between elements of

the receptive field and kernel elements [4–6]. It is worth noting that the kernel values

are learned (progressively fine-tuned) by CNN through analyzing large amounts of

example data—a process called learning or training. When a CNN processes unseen

data–a process called inference–the pre-computed kernel values coming out of training

are utilized.
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Figure 1.1 High-level functional architecture of CNNs

In CNNs, CONV layers play a central role in feature-extraction [4–6] but

demand high computational resources [22]. They account for 90% of CNN operations
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[24]. The computational complexity (CC) of a CONV operation is 𝑂 (𝑀2𝑘2), where

𝑀 × 𝑀 and 𝑘 × 𝑘 represent the sizes of the OFM and the kernel, respectively [25, 26].

Here, each OFM element produced by a CONV layer requires 𝑘2 multiply-accumulate

operations, or MAC operations in short, as shown in Figure 1.2. Since CONV layers in

CNNs process many IFMs and produce even a greater number OFMs (in some cases,

hundreds), the actual number of arithmetic operations for even a moderately deep

CNN model such as AlexNet [6] can exceed 700 thousand MAC operations [27]. This

amounts to 1.4 million arithmetic operations in total as one MAC operation involves

two arithmetic operations.

CONV operation in the spatial domain is also expensive in terms of the number

of memory accesses required. For a kernel of size 𝑘 × 𝑘 , computation of one OFM

element requires 4𝑘2 memory accesses in total, where reading IFM pixels, kernel

elements and partial sums generated during dot-product computations requires 𝑘2

memory accesses each. Another 𝑘2 memory accesses are needed to store either the

updated partial sums or the computed OFM element. Therefore, each MAC operation

needs three memory-read operations and one memory-write operation [22]. This is

illustrated in Figure 1.2.

Computing training and inference for CNNs require storage of kernel values

(also known as parameters) and the OFMs of CONV layers (also known as activations)

during both deployments, i.e., inference, and offline training [22, 28]. Memory

consumed for the former is called parameter memory, while that of the latter is called

activation memory. Deeper CNNs (with more CONV layers), which tend to produce

higher accuracy, possess a larger number of parameters and activations. This results

in increased memory requirements [22]. For example, a deep CNN model such as

VGG-19 [29] (containing 19 CONV layers) possess over 140 thousand parameters and

hence, requires over 500 megabytes (MB) of parameter memory [27].

Researchers have shown that activation memory dominates the memory

footprint during training [30]. In certain scenarios, activation memory can take up

more space than parameter memory during inference as well. This can occur when

the CNN model is deeper [31] or the inputs are high-resolution images [10]. In some
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Figure 1.2 (a) CW and (b) MemAC of computing one OFM element in spatial-
domain CONV. In spatial domain CONV, IFMs and kernels with sizes 𝐹 × 𝐹 and k×k,
respectively, produce OFMs with a size 𝑀 ×𝑀 , where 𝑀 = 𝐹 − (𝑘 − 1). For instance,
an 8×8 IFM convolved with a 3×3 kernel produces a 6×6 OFM.
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of these cases, activation memory can be ten to a hundred times larger than parameter

memory [10]. Therefore, conducting training and, in some cases, inference necessitates

the storage of parameters or activations or both in off-chip memory devices such as

dynamic random access memory (DRAM). However, accessing data from DRAMs

consumes more power and energy than computations [22, 32]. In fact, for devices

limited by memory bandwidth, the MemAC can be the main bottleneck for power

consumption and inference latency including in GPU-based platforms [10, 33, 34].

1.2 Spectral Domain Convolutional Neural Network

An effective approach to reduce the CW of conventional CNNs is to

represent CNNs, especially CONV, in spectral domain using Fourier transformation

[25, 26, 35, 36]. Furthermore, SpCNNs can achieve high accuracy in character and

face recognition [23]. It is worth noting that the word ”spectral domain” in this work

refers to the frequency domain, where data is transformed from the spatial domain to

the spectral domain using Fourier transformation. Spectral domain CNNs (SpCNNs)

compute CONV operation as element-wise multiplication (EWM) in Fourier space,

which significantly reduces the CW. Here, each OFM element can be computed from

one complex-valued product, instead of many real-valued products accumulated over

the receptive field, as is the case in spatial domain [25, 26, 35, 36]. This is illustrated

in Figure 1.3. CONV operation realized as EWM in spectral domain exhibits a CC of

𝑂 (𝐹2), where 𝐹 × 𝐹 represents the size of the OFM, which is computationally much

lighter than the 𝑂 (𝑀2𝑘2) complexity of spatial-domain CONV operation [25].

SpCNNs require a comparatively lesser number of memory accesses for

computing OFM elements through EWM as compared to spatial-domain CONV

computation since CONV operation in an SpCNN is computed in an element-wise

manner. Instead of 4𝑘2 memory accesses required for computing one OFM element

in spatial-domain, EWM can compute the same OFM element with just three memory

accesses [22]. Here, reading the IFM element and the kernel element requires one

memory access each, while one memory access is needed for writing the computed

OFM element to memory. Even though the complex-valued product required to
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compute each OFM element involves 4 real-valued products and two real-valued

additions [25], the computations do not involve any accumulation with previously

computed sums. Therefore, intermediate results do not read to be stored in or read

from memory. This is illustrated in Figure 1.3.

1.3 Problem Statement

One of the key issues in spectral domain CNNs is the lack of activation functions

(AFs) that are effective in the spectral domain [35]. AFs provide non-linearity to

CONV layers so that they can extract complex features. The non-linear nature of AFs

is incompatible with the linear time-invariant (LTI) property of spectral domain [23].

Therefore, early SpCNNs computed only CONV operation in spectral domain [25, 26]

as non-linear layers such as pooling (POOL), employed for dimensionality reduction,

and AF were not formulated yet. This required domain transformations before and

after each CONV layer (using FFT and inverse FFT (IFFT)) so that CONV layers can

perform computations in the spectral domain, while non-linear layers can do so in the

spatial domain. This architecture is depicted in Figure 1.4. These multiple domain

transformations, with a CC of 𝑂 (𝐹2𝑙𝑜𝑔2𝐹) [25], are computationally expensive. The

computational cost of these transformations negated some of the gains in computational

efficiency achieved with SpCNNs [23, 36]. Even after spectral POOL (SPOOL)

operation was developed by Rippel et al. [35] multiple domain transformations could

not be avoided as AFs were still computed in the spatial domain. Previous attempts at

spectral domain AF had the drawbacks of insufficient non-linearity [37] or exhibited

high CC [23]. It is worth noting that recently proposed AFs (such as the one proposed

by [23]) require CONV operation to compute them. This goes against the rationale

for computing CNN in the spectral domain in the first place, which is to replace

computationally costly CONV operation with computationally inexpensive EWM.

Therefore, computing AF in the native spectral domain and in a computationally

inexpensive manner is an important problem in the field of SpCNN.

As discussed previously, SpCNNs can reduce CW significantly as compared

to conventional spatial-domain approaches. However, certain scenarios may demand
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Figure 1.4 Domain transformations in conventional SpCNNs. The POOL layers
reduce OFM dimensions from 𝐹 × 𝐹 to 𝑃 × 𝑃, where 𝑃 < 𝐹.

further reduction in CW For instance, the reduction of CW for SpCNNs becomes

important for deeper models and resource-constrained platforms. Existing approaches

that attempt to further reduce the CW of SpCNNs include a quantization approach

[38] to represent data (kernels, IFMs, OFMs) with reduced precision and the use

of fused CONV layers [23]. The quantization approaches are tailored for specific

implementation platforms and hence, require a dedicated hardware accelerator to take

advantage of these approaches. In fused CONV, POOL operation is performed before

CONV, so that CONV layers process smaller-sized IFMs and consequently produce

smaller-sized OFMs. This approach optimizes OFM sizes across all CONV layers

without considering where the size reduction (which CONV layer) would be impactful.

Furthermore, works that employ these approaches do not consider optimizing OFM

depths, which is a significant contributor to both CW and MemAC. Therefore,

an analytical formulation for CW and an associated optimization methodology are

necessary for identifying factors affecting CW and where, i.e., in which CONV layer,

optimizing it would be most effective.

A feature of SpCNNs is that they require larger-sized kernels as compared to

spatial-domain CNNs [23]. Because of the element-wise nature of EWM computation,

kernels in SpCNNs have to be the same size as IFMs. As a result, a CNN architecture

implemented as an SpCNN has a larger parameter memory than a spatial-domain

implementation. For instance, it can be shown that an SpCNN realization of LeNet-5
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or AlexNet architectures requires twice the number of parameters and hence a two-fold

larger parameter memory as compared to their spatial-domain counterparts. It is worth

noting that kernels in SpCNNs are typically computed in the spatial domain during the

training phase [23, 25]. So the pre-computed kernels are transformed from the spatial

domain to the spectral domain through fast Fourier transform (FFT) first. Then kernels

for each CONV layer are resized to match the size of IFMs of that layer before providing

them to the CNN for computing inference [23].

A few previous studies have explored methods to reduce memory usage in

SpCNNs. Many of these approaches aim to reduce either the size of parameter memory

by pruning [39] or quantizing kernels [38] or reducing the memory cost of domain

transformations [24]. These works do not address the reduction of activation memory.

In addition, these works require a dedicated hardware accelerator to take advantage of

these approaches. One work authored by Guan et al. [40] investigates the reduction

of activation memory for faster training by compressing IFMs for sparse storage of

activations (OFMs produced by CONV layers). Approaches such as [40] do not reduce

the number of memory accesses, and generally requires specialized libraries designed

for sparse matrices to take advantage of such approaches. It is worth noting that the

reduction of the number of memory accesses is critical for reducing power consumption

and improving the energy efficiency of any CNN model [22,32]. However, the existing

approaches do not analytically investigate factors that contribute to MemAC or offer a

structured strategy to optimize this cost.

1.4 Research Objectives

This thesis aims to develop an SpCNN model that employs a computationally

efficient AF with sufficient non-linear characteristics and that can be optimized to

produce faster and more energy-efficient training and inference with smaller memory

footprint as compared to state-of-the-art SpCNN models. The objectives of this thesis

are outlined below.
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1. To propose an AF for SpCNNs that can be computed in the native spectral

domain, which is computationally efficient and has sufficient non-linearity to

help achieve high classification accuracy when deployed in an SpCNN model.

2. To propose a baseline SpCNN model employing the proposed AF that offers

accurate and faster inference over SpCNN models that employ state-of-the-art

spectral-domain AFs.

3. To develop an analytical model for the CW and MemAC of SpCNNs to help

designers analyze and improve the computational and memory efficiency of

SpCNN models.

4. To propose an optimization methodology, based on the analytical model for

the CW and MemAC, that can optimize a baseline SpCNN model for higher

computational efficiency and smaller memory footprint under an accuracy

constraint.

1.5 Scope of Work

Research works on CNNs, including work on SpCNNs, have been conducted

on various aspects of CNN computations, applications, and deployment. The scope of

this work is outlined below.

1. The SpCNN models were evaluated on LeNet-5 and AlexNet CNN architectures.

These architectures are ideal for validating algorithms and optimization

strategies for higher computational and memory efficiency as they have

computationally expensive and parameter-heavy CONV layers. Therefore,

architectures with 1×1 CONV operations such as MobileNet [41] are not

considered for this work.

2. The effectiveness of the proposed methodology and SpCNN models are

demonstrated on the MNIST dataset [42] for handwritten digits and the Fashion

MNIST dataset [43] for fashion articles. These are two well-established

image classification datasets that are widely used in the deep learning research
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community for exploring and benchmarking new models, methodologies, and

algorithms.

3. The accuracy of SpCNN models is measured in terms of the total amount

of correct classifications conducted during inference in percentages, while

throughput in training and inference are measured in terms of the number

of classifications performed per second on the training and test set, respectively.

Power consumption is measured in Watt (Joule per second) and energy efficiency

in training and inference are measured in terms of the number of classifications

conducted on the training and test set, respectively, per unit amount of energy,

i.e., Joule. Memory consumption is measured in terms of the amount of off-

chip memory consumed in MB. These are standard performance metrics for

analyzing the performances of a CNN model in training and inference.

4. All the SpCNN models developed for this work are trained and tested in

MATLAB computing platform, developed by MathWorks, and utilizing the

MatConvNet deep learning library, developed by Vedaldi et al. [44] at Visual

Geometry Group of the University of Oxford.

1.6 Research Contributions

This work develops a computationally efficient AF that can be computed in the

native spectral domain, a baseline SpCNN model employing this AF that exhibits fast

and accurate inference, an analytical model for CMC for SpCNNs, and an optimization

methodology for SpCNN models to compute high-throughput and energy-efficient

training and inference with only a minor loss in accuracy.

The major contributions of this work are summarized below.

1. The proposed AF exhibits lower CC than state-of-the-art spectral-domain AFs

and exhibit high non-linearity. It has a CC of 𝑂 (𝐹2) and can be computed

without requiring any computationally-intensive operations (e.g., multiplication

or CONV). The AF can be computed in the native spectral domain and
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hence, removes the need for computationally expensive multiple sets of domain

transformations when employed in an SpCNN model.

2. The proposed baseline SpCNN model employing the proposed AF exhibits

lower CC and sufficient non-linearity to achieve up to 2.3× higher throughput

and up to 8% higher classification accuracy than the same model employing

state-of-the-art spectral-domain AFs.

3. The proposed analytical formulations for the CW and MemAC allow designers

to identify structural hyper-parameters that contribute more to the CW and

MemAC as well as how these affect different CONV layers. In addition, the

analytical formulations allow the CW and MemAC to be estimated before

conducting training or inference.

4. The proposed methodology, based on the analytical formulations, develops a

design flow for optimizing two structural hyper-parameters of an SpCNN model,

the OFM sizes and depths, under three strategies. The strategies involve the

reduction of the OFM size, OFM depth, or both, to compute performance-

optimized CNN inference and training under an accuracy constraint. When

the proposed methodology is applied to LeNet-5 SpCNN, the optimal model

achieves up to 5× higher throughput during inference, and up to 4× greater

energy efficiency in training with a maximum loss of accuracy of just 3%, when

compared to the state-of-the-art SpCNN models. The proposed methodology is

algorithmic and hence, does not require a dedicated accelerator or a specialized

module.

1.7 Thesis Organization

The remainder of the thesis is structured in the following manner. Chapter 2

introduces CNNs and SpCNNs, and reviews previous studies conducted on AFs for

SpCNNs and CMC reduction. Chapter 3 discusses architectures, datasets, design tools

and experimental environments for evaluating the SpCNN models. It also discusses

training and inference methodology as well as performance metrics and accuracy

constraint for the SpCNN models. Chapter 4 discusses the mathematical formulation

of the proposed AF and introduces the proposed baseline LeNet-5 SpCNN model to
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evaluate this AF. Chapter 5 presents an analytical model for the CMC of SpCNNs and

the proposed methodology for reducing the CMC to enhance inference and training

performance. This chapter also introduces the baseline LeNet-5 and AlexNet SpCNN

models for evaluating the proposed methodology. Afterward, Chapter 6 discusses the

experimental methodology and results. In the end, Chapter 7 presents the concluding

remarks.

13



REFERENCES

1. Alzubaidi, L., Zhang, J., Humaidi, A.J., Al-Dujaili, A., Duan, Y., AlShamma,

O., Santamar´ıa, J., Fadhel, M.A., Al-Amidie, M. and Farhan, L. Review of

deep learning-concepts, CNN architectures, challenges, applications, future

directions. Journal of Big Data, 2021. 8(1): 1–74.

2. Otter, D. W., Medina, J. R. and Kalita, J. K. A survey of the usages of

deep learning for natural language processing. IEEE Transactions on Neural

Networks and Learning Systems (TNNLS), 2021. 32(2): 604–624.

3. Grigorescu, S., Trasnea, B., Cocias, T. and Macesanu, G. A survey of deep

learning techniques for autonomous driving. Journal of Field Robotics, 2020.

37(3): 362–386.

4. LeCun, Y., Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard, W. and

Jackel, L. Handwritten Digit Recognition with a Back-Propagation Network.

Proceedings of the 2nd International Conference on Neural Information

Processing Systems (NIPS). Denver, CO, USA. 1989. 396—404.

5. LeCun, Y., Bottou, L., Bengio, Y. and Haffner, P. Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 1998. 86(11):

2278–2324.

6. Krizhevsky, A., Sutskever, I. and Hinton, G. ImageNet Classification with

Deep Convolutional Neural Networks. Communications of the ACM, 2017.

60(6): 84–90.

7. Hu, J., Shen, L., Albanie, S., Sun, G. and Wu, E. Squeeze-and-Excitation

Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence

(TPAMI), 2020. 42(8): 2011–2023.

8. Cao, C., Wang, B., Zhang, W., Zeng, X., Yan, X., Feng, Z., Liu, Y. and Wu, Z.

An improved faster R-CNN for small object detection. IEEE Access, 2019. 7:

106838—106846.

9. Aziz, L., Haji Salam, M.S.B., Sheikh, U.U. and Ayub, S. Exploring deep

learning-based architecture, strategies, applications and current trends in

185



generic object detection: A comprehensive review. IEEE Access, 2020. 8:

170461—170495.

10. Shelhamer, E., Long, J. and Darrell, T. Fully convolutional networks for

semantic segmentation. IEEE Transactions on Pattern Analysis and Machine

Intelligence (TPAMI), 2017. 39(4): 640—651.

11. Li, C., Xia, W., Yan, Y., Luo, B. and Tang, J. Segmenting objects in day and

night: Edge-conditioned CNN for thermal image semantic segmentation. IEEE

Transactions on Neural Networks and Learning Systems (TNNLS), 2021. 32(7):

3069—3082.

12. Kang, S., Lee, J., Bong, K., Kim, C., Kim, Y. and Yoo, H.-J. Low-power

scalable 3-d face frontalization processor for CNN-based face recognition in

mobile devices. IEEE Journal on Emerging and Selected Topics In Circuits

and Systems (JETCAS), 2018. 8(4): 873—883.

13. Jiang, L., Zhang, J. and Deng, B. Robust RGB-D face recognition using

attribute-aware loss. IEEE Transactions on Pattern Analysis and Machine

Intelligence (TPAMI), 2020. 42(10): 2552—2566.

14. Khurana, K., Deshpande, U. Video question-answering techniques, benchmark

datasets and evaluation metrics leveraging video captioning: A comprehensive

survey. IEEE Access, 2021. 9:43799—43823.

15. Lin, Y., Guo, D., Zhang, J., Chen, Z. and Yang, B. A unified framework

for multilingual speech recognition in air traffic control systems. IEEE

Transactions on Neural Networks and Learning Systems (TNNLS), 2021. 32(8):

3608–3620.

16. Kim, T., Lee, J. and Nam, J. Comparison and analysis of sample CNN

architectures for audio classification. IEEE Journal of Selected Topics In Signal

Processing (JSTSP), 2019. 13(2): 285–297.

17. Ramisa, A., Moreno-Noguer, F. and Moreno-Noguer, K. BreakingNews:

Article annotation by image and text processing. IEEE Transactions on Pattern

Analysis and Machine Intelligence (TPAMI), 2018. 40(5): 1072–1085.

18. Chen, L., Lin, S., Lu, X., Cao, D., Wu, H., Guo, C., Liu, C. and Wang, F.-Y.

Deep neural network based vehicle and pedestrian detection for autonomous

186



driving: A survey. IEEE Transactions On Intelligent Transportation Systems

(TITS), 2021. 22(6): 3234—3246.

19. Miclea, V.-C. and Nedevschi, S. Monocular depth estimation with improved

long-range accuracy for UAV environment perception. IEEE Transactions On

Geoscience and Remote Sensing (TGRS), 2022. 60: 1—15.

20. Esteva, A., Kuprel, B., Novoa, R., Ko, J., Swetter, S., Blau, H. and Thrun, S.

Dermatologist-level classification of skin cancer with deep neural networks.

Nature, 2017. 542(7639): 115–118.

21. Saraogi, E., Chouhan, G., Panchal, D., Patel, M. and Gajjar, R. CNN

based design rule checker for VLSI layouts. Proceedings of the 2nd IEEE

International Conference on Applied Electromagnetics, Signal Processing &

Communication (AESPC). Bhubaneswar, India. 2021. 1—6.

22. Sze, V., Chen, Y.-H., Yang, T.-J. and Emer, J. Efficient processing of deep neural

networks: A tutorial and survey. Proceedings of the IEEE, 2017. 105(12):

2295–2329.

23. Ayat, S., Khalil-Hani, M., Ab Rahman, A. and Abdellatef, H. Spectral-

based convolutional neural network without multiple spatial-frequency domain

switchings. Neurocomputing, 2019. 364: 152–167.

24. Abtahi, T., Shea, C., Kulkarni, A., Mohsenin, T. Accelerating convolutional

neural network with FFT on embedded hardware. IEEE Transactions on Very

Large Scale Integration Systems (TVLSI), 2018. 26(9): 1737–1749.

25. Mathieu, M., Henaff, M. and LeCun, Y. Fast training of convolutional networks

through FFTs. Proceedings of the 2nd International Conference on Learning

Representations (ICLR). Banff, AB, Canada. 2014. 1–9.

26. Vasilache, N., Johnson, J., Mathieu, M., Chintala, S., Piantino, S. and LeCun, Y.

Fast convolutional nets with fbfft: A GPU performance evaluation. Proceedings

of the 3rd International Conference on Learning Representations (ICLR). San

Diego, CA, USA. 2015. 1–17.

27. Abdelouahab, K., Pelcat, M. and Berry, F. Accelerating the CNN inference on

FPGAs. In: Fagerberg, J., Mowery, D.C. and Nelson, R.R., eds. Deep Learning

187



in Computer Vision: Principles and Applications. CRC Press Taylor & Francis

Group. 2020. 1–39.

28. Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S. and Zhang, C. Learning efficient

convolutional networks through network slimming. Proceedings of the 16th

IEEE International Conference on Computer Vision (ICCV). Venice, Italy.

2017. 2755—2763.

29. Simonyan, K. and Zisserman, A. Very Deep Convolutional Networks

for LargeScale Image Recognition. Proceedings of the 3rd International

Conference on Learning Representations (ICLR). San Diego, CA, USA. 2015.

1–14.

30. Jain, A., Phanishayee, A., Mars, J., Tang, L., Pekhimenko, G. Gist: Efficient

data encoding for deep neural network training. Proceedings of the 45th

International Symposium on Computer Architecture (ISCA). Los Angeles, CA,

USA. 2018. 776—789.

31. Minakova, S. and Stefanov, T. Buffer Sizes Reduction for Memory-efficient

CNN Inference on Mobile and Embedded Devices. Proceedings of the 23rd

Euromicro Conference on Digital System Design (DSD). Kranj, Slovenia. 2020.

133–140.

32. Chen, Y.-H., Krishna, T., Emer, J.S. and Sze, V. Eyeriss: An energy-

efficient reconfigurable accelerator for deep convolutional neural networks.

IEEE Journal of Solid-State Circuits (JSSC), 2017. 52(1): 127–138.

33. Ma, N., Zhang, X., Zheng, H.-T., Sun, J. ShuffleNet V2: Practical guidelines

for efficient CNN architecture design. Proceedings of the 15th European

Conference on Computer Vision (ECCV). Munich, Germany. 2018. 116–131.

34. Vaze, S., Xie, W. and Namburete, A. I. Low-memory CNNs enabling

realtime ultrasound segmentation towards mobile deployments. IEEE Journal

of Biomedical and Health Informatics (JBHI), 2020. 24(4): 1059–1069.

35. Rippel, O., Snoek, J. and Adams, R. Spectral representations for convolutional

neural networks. Proceedings of the 28th International Conference on Neural

Information Processing Systems (NIPS). Montréal, QC, Canada. 2015. 2449—
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