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ABSTRACT 

 

 

 

 

Next generation broadband access networks are gaining more interest from 

many key players in this field. The demands for more extended reach and higher 

bandwidth are among the driving factors for such a network. The advantages of this 

network include a wider coverage area reaching 100 km, even beyond; increased 

bandwidth capacity and transmission speed, but with low cost and energy 

consumption. One promising candidate is the Long Reach Passive Optical Network 

(LR-PON). LR-PON is a term that refers to the consolidation of the metro and the 

access networks in the traditional PON, which also means the merger of the multiple 

Optical Line Terminals (OLTs) and the Central Offices (CO) in the network. LR-

PON can simplify the network by reducing the number of network elements, 

equipment interfaces, and even nodes which significantly reduces the network’s 

Capital Expenditure (CAPEX) and Operational Expenditure (OPEX). Although the 

LR-PON can provide extended reach, this results in increased propagation delay of 

Dynamic Bandwidth Allocation (DBA) messages exchanged between the OLT and 

Optical Network Units (ONUs), leading to degradation of DBA and Quality of 

Service (QoS) support. Longer round-trip-time (RTT) in LR-PON causes redundancy 

in the DBA mechanism as the ONU polling cycle becomes smaller than RTT. 

Therefore, this thesis focuses on deploying an efficient QoS-aware bandwidth 

allocation algorithm with an appropriate Service Interval (SI) setup for LR-PON to 

ensure the delay is maintained under ITU-T G.987.1 standard requirement, named as 

Service Interval-based Bandwidth Algorithm (SIBA). OMNeT++ software is used to 

run a discrete event simulation of the network. Simulation findings reveal SIBA’s 

superior performance for all the traffic classes where the mean upstream delays of 

Transmission Container (T-CONT) 2 and T-CONT 3 improved up to 88% and 85% 

respectively, compared to Immediate Allocation Colourless Grant (IACG) algorithm. 

SIBA also surpasses the mean upstream delay of the Efficient Bandwidth Utilization 

(EBU) algorithm by up to 90% for both T-CONT 2 and T-CONT 3, and by 83% for 

T-CONT 4 compared to the Comprehensive Bandwidth Allocation algorithm for LR 

XG-PON (CBA-LR) . 
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ABSTRAK 

 

 

 

 

Rangkaian capaian jalur lebar generasi hadapan semakin menarik perhatian 

para penyelidik dalam bidang ini. Permintaan rangkaian dengan jangkauan yang 

lebih panjang dan lebar jalur yang lebih tinggi adalah antara faktor pendorong. 

Antara kelebihan rangkaian ini adalah kawasan liputan yang lebih luas mencecah 

lebih 100 km, kapasiti lebar jalur dan kelajuan penghantaran yang tinggi dengan kos 

dan penggunaan tenaga yang rendah. Salah satu teknologi berpotensi ialah rangkaian 

optik pasif jangkauan panjang (LR-PON). LR-PON merujuk kepada penyatuan 

metro dan rangkaian akses dalam rangkaian optik pasif (PON) tradisional, justeru 

penyatuan sejumlah pangkalan talian optik (OLT) dan pejabat pusat (CO) di dalam 

rangkaian. LR-PON berupaya meringkaskan rangkaian dengan mengurangkan 

bilangan elemen, kelengkapan antara muka, dan juga nod, sekaligus mengurangkan 

perbelanjaan modal (CAPEX) dan perbelanjaan operasi (OPEX). Namun, kelewatan 

perambatan pertukaran mesej peruntukan jalur lebar dinamik (DBA) antara OLT dan 

unit rangkaian optik (ONU) boleh meningkat dan membawa kepada kemerosotan 

sokongan DBA dan kualiti perkhidmatan (QoS). Masa perjalanan pergi balik (RTT) 

yang lebih lama dalam LR-PON menyebabkan lelebihan dalam mekanisme DBA 

kerana kitar tinjauan ONU yang lebih kecil daripada RTT. Oleh itu, tesis ini 

memfokuskan penggunaan algoritma peruntukan lebar jalur sedar QoS yang cekap 

dengan selang perkhidmatan (SI) yang sesuai untuk LR-PON bagi memastikan 

kelewatan dikekalkan di bawah keperluan standard ITU-T G.987.1, dinamakan 

sebagai peruntukan jalur lebar berasaskan selang perkhidmatan (SIBA). Perisian 

OMNeT++ digunakan untuk menjalankan simulasi rangkaian secara diskret. 

Keputusan simulasi mendedahkan prestasi unggul SIBA untuk semua kelas trafik di 

mana kelewatan hulu min kontena penghantaran (T-CONT) 2 dan T-CONT 3 

masing-masing diperbaiki sehingga 88% dan 85%, berbanding algoritma geran tanpa 

warna peruntukan terdekat (IACG). SIBA juga melepasi kelewatan hulu min bagi 

algoritma penggunaan jalur lebar cekap (EBU) sehingga 90% untuk kedua-dua  

T-CONT 2 dan T-CONT 3, dan sebanyak 83% untuk T-CONT 4 berbanding 

algoritma peruntukan jalur lebar komprehensif untuk LR XG-PON (CBA-LR). 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background 

 

 

Entering the zettabytes era, the subscribers are demanding for higher and 

longer coverage of internet, as far as possible. Since decades, fiber optical network 

has been providing the best service to the end users involving urban and rural areas. 

Fiber optical network, specifically Passive Optical Network (PON) is widely known 

as the last mile solution due to its high bandwidth, long reach, low power 

consumption, easier deployment and upgradation (1–5). It is reflected by the 

standards introduced by the full service access network (FSAN) group of 

International Telecommunication Union (ITU-T) which cover PON solutions 

operating at gigabit rates, especially G-PONs (6,7). PON is named based on the fact 

that it functions only using passive elements in the distribution network (8–11). 

Thus, the network can minimize the operating and maintenance costs of the access 

network with the absent of active element. 

 

 

Ethernet PON (E-PON) and Gigabit PON (G-PON) are the main contributors 

in PON technology, standardized by Institute of Electrical and Electronics Engineer 

(IEEE) and ITU-T respectively. Among these two systems, G-PON surpasses E-PON 

in terms of capacity, scalability and splitter ratio. EPON offers bit rate up to 1 Gbps, 

while G-PON serves bit rate up to 2.4 Gbps for downstream transmission. E-PON 

supports fiber split ratio up to 16 users, while G-PON supports up to 64 split ratios 

which is much higher than E-PON. This is due to the application of Reach Extender 

(RE) by G-PON at the Optical Distribution Network (ODN). The use of RE can 
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increase the power budget and in the same time, increase the reach and the split ratio 

(3). In term of cost, G-PON cannot beat E-PON as it requires tighter physical of the 

transport components due to its complexity, but G-PON has the best support of all 

the PONs for heterogeneous networking (12). 

 

 

 

Figure 1.1 TDM operation concept in upstream transmission of G-PON. 

 

 

 G-PON has become an excellent candidate for Fiber-to-the-Home (FTTH) 

access networks because of its high quality of services (QoS). In the downstream 

operation, G-PON is a point-to-multipoint network in which data is broadcast to all 

Optical Network Units (ONUs) while in the upstream transmission; each ONU will 

have to send the data in time-division-multiplexing (TDM) manner (as shown in 

Figure 1.1). To control the upstream bandwidth transmission between ONUs, a 

bandwidth allocation algorithm is used in the Optical Line Terminal (OLT) so that 

the collision of the data between ONUs can be avoided. 

 

 

According to literatures (1,3,6,7,9,13–21), there are two main methods of 

bandwidth allocation in G-PON, which are static bandwidth allocation (SBA) and 

dynamic bandwidth allocation (DBA). SBA is a TDM-like allocation where each 

ONU gets its predefined bandwidth allocation whether it uses it or not. This method 

is suitable for network which requires constant bandwidth allocation such as voice 

over Internet Protocol (VoIP) or TDM. If there is no congestion occurs in the 

transmission and the total required upstream bandwidth is less than 1.24 Gbps, the 
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upstream channel available bandwidth is sufficient to service all ONUs with virtually 

no queuing. The unused bandwidth of certain ONUs could be utilized by other ONUs 

to offer high speed connections and better upstream QoS to the end users. The DBA 

mechanism is required to fulfil this objective.  

 

 

 Since decades, many G-PON DBA algorithms have been proposed, but there 

were only a few works on G-PON FSAN-compliant DBA algorithms which have 

been physically implemented, named as GigaPON access network (GIANT), 

Immediate Allocation Colourless Grant (IACG) and Efficient Bandwidth Utilization 

(EBU) algorithms. GIANT (6) is the first physically implemented DBA algorithm 

which introduced a down counter for bandwidth allocation. The OLT can assign 

bandwidth to a queue only when the down counter of the queue has expired. GIANT 

is indeed simple and feasible, but it causes higher delay since a request of a queue 

cannot be granted until the down counter expired. This degrades the overall 

performance of a G-PON system. 

 

 

Then, the author of (19) introduced IACG where each queue has an available 

byte counter in addition of a down counter. The available byte counter with positive 

value allows the OLT to immediately allocate a bandwidth to a queue without having 

to wait for the down counter to expire. The available byte counter is decreased by the 

grant amount and recharged when its down counter has expired. It was proven that 

IACG surpasses GIANT in (6), but on the contrary of its good performance, it does 

not effectively utilize the unused bandwidth of queues. The unused bandwidth of a 

queue cannot be used by other starving queues. It is necessary that the unused 

bandwidth is utilized by queues whose request sizes are greater than their reserved 

service bandwidth. 

 

 

Thus, EBU is introduced in (22) to efficiently overcome the unallocated 

bandwidth problem of IACG. Similar to IACG, every queue has an available byte 

counter and a down counter. The minor change is: the available byte counter can be 

negative in EBU. Furthermore, at the end of scheduling, the unused remainder of the 
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available byte counter is added to the negative available byte counters. EBU is 

proven to increase the utilization of the unallocated bandwidth compared to IACG. 

 

 

 As the work of DBA grows rapidly, the demand for further coverage yet cost 

effective network also increases. Here came the efforts to improve the existing 

system either by modifying the physical layer or the network layer technology. There 

is a proposal to extend PON towards next generation-PON to get higher bandwidth 

capacity and to serve larger number of subscribers. Long Reach PON (LR-PON) is 

one of the next generation-PON technologies which aims to extend the optical access 

network up to 100 km. LR-PON is a term that refers to the consolidation of the metro 

and the access networks in the traditional PON (3,9,10,23–27), which also means the 

consolidation of the multiple OLTs and the Central Offices (CO) where they are 

located in the network (24), as shown in Figure 1.2.  

 

 

 

Figure 1.2 Consolidation of the metro and access network in Long Reach PON. 

 

 

 As the metro and access networks can be combined into one extended 

backhaul fiber, it will be an alternative to more cost-effective solution for the 

extended reach optical access network. The longer reach also can cover larger splitter 

size, which results in increasing number of components shared between all 

subscribers. Cost savings are established as the synchronous digital hierarchy (SDH) 

rings are replaced with a single backhaul fiber. The local exchange site can be 
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removed as the combined access and metro networks are terminated at the core node 

to simplify the network, thus giving substantial reduction in overall network costs 

(27–32). 

 

 

Many work has been done to address the extension of reach in next 

generation-PON technologies such as PLANET SuperPON (33), British Telecom 

LR-PON (34), DWDM-TDM LR-PON (35), LR-WC PON (36), and PIEMAN (37). 

Following these developed technologies, the researchers are looking deeply into the 

system as there are pros and cons of the LR-PON technology. Regarding long reach 

in G-PON, most of the previous work are working with 10G-PON (XG-PON) as it 

can offer an evolving potential technology to carry multiple services for the first-mile 

access network (1,14,22,38–43). XG-PON per ITU-T Recommendation G.983.4 (44) 

provides increased capacity up to 10 Gbps and have been deployed in DBA projects 

with longer reach beyond traditional 20 km PON. This will be discussed more in 

Chapter 2. 

 

 

 

 

1.2 Project Contribution 

 

 

a) To our knowledge, this work is the first attempt to consider service interval (SI) 

for Long Reach XG-PON beyond 100 km.  

b) Delay, frame loss and bandwidth utilization analysis of the proposed bandwidth 

allocation algorithm for Long Reach XG-PON. 

c) Comparative study between existing bandwidth allocation algorithm and 

proposed bandwidth allocation algorithm. 
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1.3 Problem Statement 

 

 

According to Skubic et al., node consolidation of PON is significant in 

reducing cost and components for the future next generation access networks. 

However, it is limited by the reach of conventional PON system due to optical power 

budget constraint to support up to 32 ONUs. To achieve larger degree of node 

consolidation, extended reach beyond 20 km is needed (3,24,26,35,45–47). In this 

term, LR-PON is the most suitable and promising technology which can fulfil the 

criteria needed. Reaching longer coverage and wider subscribers are the main 

focuses of LR-PON, with fiber distance reaching up to 100 km and beyond. 

 

 

On the other hand, extending the reach creates serious challenges for medium 

access control (MAC) layer in LR-PON. As the reach is extended until beyond 100 

km, the Round-Trip-Time (RTT) also grows. In PON technology, RTT is the 

duration in milliseconds (ms) it takes for a network request to go from the OLT to an 

ONU and back again to the OLT. In a traditional PON, RTT is only 0.1 ms with 10-

km span, while in a LR-PON, the RTT is increased to 1 ms with 100 km of OLT-

ONU distance, which results in 10x the idle time in a traditional PON (24). 

 

 

 In PON development, DBA is required to prevent collisions, distribute the 

available bandwidth among the subscribers, and managing QoS (6,48–56), but this 

mechanism performance relies on the RTT. There will be impact on the delay of the 

DBA control loop as the reach increases due to an ONU polling cycle or Service 

Interval (SI) smaller than the RTT (51). The growth of the RTT in LR-PON degrades 

the system performance, as it causes redundancy of reservation and bandwidth waste 

due to over-granting (10). 

 

 

Extended reach results in increased propagation delay of DBA messages 

exchange between OLT and ONUs (25), which then leads to degradation of DBA 

and QoS support, plus inefficient utilization of upstream channels. Thus, some 
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modification is needed to improve the existing DBA algorithm to ensure that the 

algorithm can properly allocate bandwidth to the end users accordingly while 

minimizing the upstream delays. 

 

 

 

Based on the findings and problem as mentioned above, the following are 

research gap: 

a) The existing G-PON FSAN-compliant DBA algorithms do not consider the 

longer reach beyond the traditional 20 km fiber distance, while the existing 

LR-PON DBA algorithms either neglect the impact of SI value on network 

performance e.g. mean delay, throughput, loss, and bandwidth utilization, or 

assume it to be perfectly working regardless the distance. 

b) Most of the existing DBA algorithms focused on high priority traffic class 

with little support for low priority traffic class, the unutilized bandwidth of 

currently deployed PON leads to bandwidth wastage, whereas it can be 

necessarily shared among all traffic classes. 

 

 

 

 

1.4 Objectives of Project 

 

 

The main objective of this project is to enhance the QoS-aware network 

transmission in a LR-PON network. Therefore, in achieving this goal, the project is 

conducted with the objectives stated below: 

 

a) To evaluate the performance of bandwidth allocation algorithms for QoS over 

LR-PON in terms of upstream delay, throughput, frame loss and bandwidth 

utilization. 

b) To propose new Service Interval-based Allocation Algorithm (SIBA) with 

improved performance for LR-PON. 

 



8 
 

1.5 Scope of Work 

 

 

                     

Figure 1.3 Scope of work. 

 

 



9 
 

The purpose of this research work is to investigate the possibilities of 

improvements in the existing bandwidth allocation algorithms for long reach next 

generation PON, so that the mean delay, frame loss and bandwidth utilization 

parameters can be optimized. Figure 1.3 shows the scope of work to be carried out in 

this study. We started with a broader literature review on PON. Currently, the 

deployed PON network is TDM based. Other alternative PON option were studied 

but TDM PON is chosen in this study as it is most economic and commercially 

popular. 

 

 

The bandwidth assignment schemes in PON, narrowly down to ITU-T G-

PON FSAN-compliant DBA are studied, focusing on extended reach beyond 100 

km. In selected XG-PON, the upstream bandwidth is shared between all ONUs using 

a static bandwidth allocation or dynamic bandwidth allocation. The dynamic 

bandwidth allocation schemes are focused on as they allocate bandwidth efficiently 

and fairly among ONUs. We proposed a more reliable and effective QoS-aware 

bandwidth allocation scheme for long reach ITU PONs while studied the impact of 

longer distance to DBA scheme. Finally, we presented a Service Interval-based 

Bandwidth Allocation (SIBA) scheme to support longer reach better than the existing 

schemes.  

 

 

 

 

1.6 Outline of Thesis 

 

 

This thesis consists of six chapters. The first chapter discusses about the 

objectives and scopes of this project ending with a summary of works. Theory and 

literature reviews that have been done were discussed in Chapter 2. The chapter 

introduces next generation-PON, LR-PON, QoS for the networks and overview of 

the bandwidth allocation algorithms. 
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In Chapter 3, the discussion will be on the proposed scheduling algorithms 

for the LR-PON. It consists of the methodology used in this study, the network 

downstream and upstream operation, MAC layer study through LR-PON system, 

case study on existing DBA algorithms and deep explanation of the proposed 

bandwidth allocation algorithm.  

 

 

The simulation setup for OMNeT++ will be presented in Chapter 4, including 

all the parameters, scenarios and assumptions considered in the simulation. The 

results and discussions will be presented in Chapter 5. This chapter also involves the 

effects of multiple scenarios to the network system, in terms of mean delay, frame 

loss and bandwidth utilization performance. 

 

 

Finally, Chapter 6 discusses the conclusion of this project, recommendations 

and future work that can be done to improve the project in the future. 
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