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ABSTRACT 

Pulsed Electric Field (PEF) is a technique that does not use any heating 

element in inactivating food borne pathogens and spoilage microorganisms. The 

advantage of this technique is that it can preserve the physical properties of food, 

such as colour, flavour, and nutritional value while extending its shelf life. With the 

straightforward working principle and well-known advantages, this technique can 

replace the traditional method for food pasteurisation which uses heat. However, 

existing PEF devices lack several features: low voltage amplitude, limited control of 

pulse properties, and expensive besides no optimal range of treatment parameters 

clearly defined for specific foods. These shortcomings limit their function in the 

subset of pulse applications. Therefore, this study was conducted to fill the available 

innovation space to solve or at least reduce the shortcomings in PEF devices today. 

In this thesis, a compact high-voltage pulse generator was developed by 

implementing the concept of capacitor discharge to produce a square pulse (mono 

polar fashion) to inactivate microbes inherently in raw goat’s milk. The development 

phase began with a simulation study regarding the design of a compact high voltage 

pulse generator circuit and a treatment chamber that produced the desired results. 

Then, it was tested practically on sodium chloride (NaCl) solution with the 

conductivity of 100 mS/m, and the result was the same as the simulation with few 

insignificant differences. From the experiments performed on raw goat’s milk, the 

results obtained suggest that a frequency of 10 Hz, a voltage amplitude of 4 kV, and 

a pulse width between 1 – 4 µs promise the best results in the treatment process. The 

inherent microorganisms have been successfully reduced from 2.98 × 106 Colony 

Forming Unit (CFU)/ml to 1.64 × 106 CFU/ml, an almost 60% reduction or 0.55 

survival ratio. This thesis also suggests that the compact high-voltage pulse generator 

has a vast potential to inactivate other types of microorganisms in various kinds of 

liquid food. This is due to the flexibility and reliability offered by the compact high 

voltage pulse generator developed in this study. 
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ABSTRAK 

Medan Elektrik Terdenyut (PEF) merupakan teknik yang tidak menggunakan 

sebarang unsur pemanasan dalam menyahaktifkan patogen bawaan makanan dan 

mikroorganisma pembusuk. Kelebihan teknik ini ialah ia dapat mengekalkan sifat 

fizikal makanan, seperti warna, rasa, dan nilai pemakanan disamping memanjangkan 

jangka hayatnya. Dengan prinsip kerja yang mudah dan kelebihan yang telah 

dikenali, teknik ini boleh menggantikan kaedah tradisional untuk pempasteuran 

makanan yang menggunakan haba. Walau bagaimanapun, peranti PEF sedia ada 

kekurangan beberapa ciri: amplitud voltan rendah, kawalan sifat dedenyut yang 

terhad, dan mahal selain tiada julat optimum parameter rawatan yang ditakrifkan 

dengan jelas untuk makanan tertentu. Kelemahan ini mengehadkan fungsinya dalam 

subset aplikasi dedenyut. Oleh itu, kajian ini dijalankan bagi mengisi ruang inovasi 

yang ada untuk menyelesaikan atau sekurang-kurangnya mengurangkan kekurangan 

pada peranti PEF yang sedia ada. Dalam tesis ini, penjana dedenyut voltan tinggi 

padat telah dibangunkan dengan melaksanakan konsep nyahcas kapasitor untuk 

menghasilkan dedenyut persegi (fesyen monopolar) untuk menyahaktifkan mikrob 

yang wujud dalam susu kambing mentah. Fasa pembangunan dimulakan dengan 

kajian simulasi berkaitan reka bentuk litar penjana dedenyut voltan tinggi padat dan 

ruang rawatan yang menghasilkan keputusan yang diinginkan. Kemudian, ia diuji 

secara praktikal pada larutan natrium klorida (NaCl) dengan kekonduksian 100 

mS/m, dan hasilnya adalah sama dengan simulasi, cuma dengan sedikit perbezaan 

yang tidak ketara. Daripada eksperimen yang dilakukan terhadap susu kambing 

mentah, keputusan yang diperoleh menunjukkan bahawa frekuensi 10 Hz, amplitud 

voltan 4 kV, dan lebar dedenyut antara 1 – 4 µs menjanjikan hasil terbaik dalam 

proses rawatan. Mikroorganisma yang wujud telah berjaya dikurangkan daripada 

2.98 × 106 Colony Forming Unit (CFU)/ml kepada 1.64 × 106 CFU/ml, pengurangan 

hampir 60%. Tesis ini juga mencadangkan bahawa penjana dedenyut voltan tinggi 

padat ini mempunyai potensi besar untuk menyahaktifkan jenis mikroorganisma lain 

dalam pelbagai jenis makanan cecair. Ini disebabkan oleh fleksibiliti dan 

kebolehpercayaan yang ditawarkan oleh penjana dedenyut voltan tinggi padat yang 

dibangunkan dalam kajian ini.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background Study 

In food processing, pasteurisation kills pathogens and extends shelf life by 

using moderate heat, usually less than 100 °C. Through this process, all organisms 

and enzymes liable to contribute to food spoilage or foodborne illness, including 

vegetative bacteria, are killed (or destroyed if possible) (Tewari and Juneja, 2008; 

Fellows, 2009). It is undeniable that there are advantages to the process. However, 

there are also disadvantages, as processed food changes its physical properties, such 

as colour, flavour, and nutritional value (Lado and Yousef, 2002; Toepfl et al., 2006; 

Kishore et al., 2007; Chauhan and Unni, 2015). 

In addition to the problems faced, consumer awareness of food content and 

processing methods also contributed to searching for new food treatment approaches 

(Evans and Cox, 2006; Mohamed and Eissa, 2012). As a result, electrical engineers 

and food technologists collaborate to develop alternative methods that remove 

thermal elements involved in food processing to resolve the stated problems and 

ensure that consumers get healthier and fresher food. Therefore, a nonthermal 

technique approach is proposed. 

Several nonthermal techniques have been studied recently because of their 

potential for inactivating pathogenic microorganisms. It is therefore explored 

globally, causing research on it to increase. Ultimately, all of this is done to ensure 

consumers are provided with a microbiologically safe product. Table 1.1 shows some 

of the known nonthermal methods with their comparisons that have prospective as an 

alternative to conventional methods. 
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Table 1.1 Summary of known nonthermal methods by comparison 

Technology Intensity 
Type of food 

Approval Reference 
Solid Liquid 

Pulsed 

electric field  

5-55 

kV/cm 

Beef 

muscles, 

potato 

tubers 

Fruit juice, 

liquid eggs, 

milk 

Limited approval in 

the US (FDA, no 

objection letter from 

07/07/1995) 

(Faridnia, 

2015; Qin et 

al., 1996) 

High-pressure 

processing 

100-1000 

MPa 

Ham, 

seafood 

Fruit juice, 

guacamole, jam, 

salad dressing, 

milk 

Japan, North 

America, Europe 

(Hoover et al., 

1989; Smelt, 

1998) 

Ultraviolet 

radiation 

0.5-20 

J/m2 

Meat 

surface, 

shell egg 

surface 

Orange juice 
Approval pending in 

the US 

(Bintsis et al., 

2000; Kuo et 

al., 1997) 

Gamma 

irradiation 
2-10 kGy 

Raw 

poultry 

meat, raw 

Liquid eggs 
More than 41 

countries  

(Farkas, 1998; 

Agrawal and 

Goyal, 2017) 

 

The nonthermal methods showcased in Table 1.1 are recognised as a novel 

process due to their ability to inactivate microorganisms at ambient, sub-ambient, or 

slightly above ambient temperature (Butz and Tauscher, 2002; Kumar et al., 2016). 

These techniques are specifically designed to eliminate thermal components in 

processing while maintaining food’s flavour, appearance, and nutritional value 

(Barbosa-Canovas et al., 1999; Jambari, 2014).  

Among the nonthermal methods presented here, the pulsed electric field 

(PEF) appears to be the most extensively studied in addition to high hydrostatic 

pressure (HPP) and high-intensity ultrasound combined with pressure. It is due to the 

short treatment time, which reduces the heating effect compared to other 

technologies. On the other hand, regarding gamma irradiation, although it has a high 

potential for commercialisation, this method has been hampered by the bad 

perception of society in the past (Resurreccion et al., 1995). 

1.2 Overview of Pulsed Electric Field 

The PEF approach has been used in studies since the 1960s to take advantage 

of its influence on the inactivation of microorganisms, mainly bacteria found in 

liquid foods. On the other hand, Sale and Hamilton were among the first to give a 
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thorough and scientific study of this method in a series of papers published in 1967 

and 1968 (Sale and Hamilton, 1967; Hamilton and Sale, 1967; Sale and Hamilton, 

1968). Later, Zimmerman and his colleagues expanded on this work by establishing 

the theory of dielectric rupture and publishing several papers (Coster and 

Zimmermann, 1975; Zimmermann et al., 1976). Their research was performed in the 

1970s at the University of Wurzburg in Germany. 

Since then, scholars have become increasingly passionate about PEF 

research, gaining traction. This topic rapidly grew in popularity, with published 

papers delivering discussion after discussion. The study of PEF treatment technology 

encompasses a wide range of subjects, including the characteristics of suitable 

microorganisms, the construction of modern electroporators and their deployment in 

the industry, as well as food safety policies (Campbell et al., 2008; Reberšek and 

Miklavčič, 2011b; Toepfl, 2011; Stankevič et al., 2013; Raso et al., 2016). 

The fundamental principles of PEF technology can be defined by applying 

short electrical pulses to food located between electrodes separated by an insulator. 

The electrical pulses can range between microseconds to milliseconds and typically 

yield an electric field intensity of 10 - 80 kV/cm. This approach is commonly used to 

treat liquid foods, but there is no doubting that it may also be used to treat semi-solid 

and solid foods (Ramaswamy et al., 2005). 

PEF technology is more suitable for pasteurizing liquid foods such as milk, 

juices, yoghurt, soups, and liquid eggs (Vega-Mercado et al., 1997; Bendicho et al., 

2003; Puc et al., 2004). It is because of the fluid properties that can transfer 

electricity due to the presence of several ions and causing it to obtain a certain degree 

of electrical conductivity. Therefore, the electric current flowing is scattered to every 

point in the liquid due to the presence of the charged molecules (Zhang et al., 1995). 

PEF treatment involves a phenomenon known as electroporation or electro-

permeabilisation, which is the permeability of cell membranes as a result of being 

subjected to an electric field (Jordan et al., 2013). If the applied field strength 

exceeds the critical field strength, it may experience cell disintegration; otherwise, it 
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may revert to its original state. These circumstances could have both reversible and 

irreversible effects on the cell membrane, demonstrating that the impact of PEF 

treatment can be well controlled depending on its application by accurately altering 

the field strength. 

The benefits of using PEF treatment technology are no longer foreign as it 

can preserve a high-quality fresh-like natural flavour, high nutritional value, and 

extend shelf life (Castro et al., 1993; Qin, 1995). It is achieved by eliminating 

pathogens and spoilage microorganisms without using thermal elements. However, 

some foods, such as fruit juice, must be refrigerated after being treated to retain their 

aroma and flavour and increase their shelf life (Ramaswamy et al., 2005; Jambari, 

2014). 

Studies also show that PEF treatment techniques can reduce energy 

consumption by 10% for each treatment compared to thermal processing (Charles-

Rodríguez et al., 2007). This scenario occurs because the temperature increase of 

each treatment is minimal and is highly dependent on the total pulse delivered, pulse 

width, frequency, and velocity of the food flow (in a continuous system). This 10% 

reduction in energy use may pique the interest of industry participants because it is a 

source of profit for them in the long run and may reduce manufacturing expenses. As 

a result, PEF-treated food can be sold at competitive rates.  

1.3 Problem Statement 

Implementing PEF in inactivating microorganisms is now a phenomenon and 

attracts researchers' interest. This method causes minimal impact on the physical 

properties of food; among them are flavour, colour, and nutritional value. In addition, 

it causes the quality and freshness of the food to be well preserved. With all its 

advantages, it is seen to be raised as an alternative way to replace conventional food 

treatment methods that use heat as the main instrument. To achieve this, it is 

inevitable to have a high-powered pulse generator capable of producing consistent 

pulses whose properties can be controlled. 
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Pulse generators available today consist of two types of power electronic 

converter circuits: conventional and non-conventional. Transmission lines and PFNs 

are among the popular conventional circuits while Multi Stacked MOSFETs and 

Cascade H-Bridge Multilevel Inverters are among the emerging non-conventional 

techniques for generating high voltage pulses (Baker and Johnson, 1993; 

Roodenburg et al., 2005; Sun and Wang, 2014; Jambari, 2014). However, most of 

the proposed circuits implement many components which end with complex system 

of circuitry and control. Some of it use more than one MOSFET to generate high 

voltage and high current pulses which results in intricate triggering algorithm and 

employing numerous MOSFET’s drivers. Not only that, the use of transmission lines 

and spark gaps restricts the flexibility to produce a wide range of pulse widths and 

slow switching which constrain the generation of nanosecond pulse. The use of 

transformers to obtain high voltage limit the compactness of the pulse generator, 

thus, result in expensive, heavy, and bulky generator as well as consume more space. 

Furthermore, employment of transformers requires maintenance from time to time 

and increasing the system power loss due to higher number of winding coils. 

Referring to the stated problem, this study proposes the use of capacitor-

discharge technique with MOSFET implementation for fast switching and 

microcontroller to generate flexible pulse properties. This suggested solution can 

improve the ability of PEF treatment to achieve effective food pasteurisation while 

also being able to change pulse properties to achieve desired pulse specifications for 

specific pulse applications. In addition, this capacitor discharge technique uses less 

components which makes it easier to control and does not require a complex 

algorithm because a single high-power MOSFET unit is implemented. As well, this 

method does not require transformers to obtain high voltage pulses because it can be 

achieved using flyback transformers that are small but high durability and do not 

require maintenance yet easy to control. Therefore, the finish product can be 

compacted, low power consumption, low cost, and flexible compared to transmission 

line, PFN, Multi Stacked MOSFETs, and Cascade H-Bridge Multilevel Inverters 

techniques. Non-complex circuit layout allows it to be comfortably packed, easy to 

install and can have portable features. 
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1.4 Research Objectives 

The objectives of the research are: 

(a) To develop a compact high-voltage pulse generator using a capacitor 

discharge approach to generate complete control over square wave pulse 

properties for PEF treatment applications. 

(b) To verify the operation of the whole system of the pulse generator via 

simulation and hardware implementation to obtain optimum development by 

reducing the effect of parasitic circuit elements.  

(c) To analyse the performance of the compact high voltage pulse generator in 

delivering the intended pulse properties and inactivating pathogens and 

spoilage microorganisms present in raw goat milk including characterizing 

the best pulse parameters for it. 

1.5 Scope of Research 

This research highlights the overall development of a compact high voltage 

pulse generator using the capacitor discharge method. Despite underutilised 

components, this method also can guarantee the generation of a square pulse whose 

properties can be controlled accordingly - the width and frequency can vary in a 

broad domain selection. Square pulse in pulsed electric field treatment technology is 

superior due to its significant advantage in inactivating microorganisms than other 

pulse forms such as exponential decay and oscillation. 

This study considers the implementation of microcontrollers regarding pulse 

signal controllers. The well-known advantages and low price are the main reasons it 

is chosen. With suitable programming methods and algorithms, it can generate pulse 

signals that can be controlled easily and systematically. In addition, the generated 

pulse signal is TTL and CMOS compatible, which can be used to drive any solid-

state switching device such as IGBTs and MOSFETs. Since the production of 
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nanosecond pulses requires a fast-switching device, the implementation of 

MOSFETs is employed. 

The PEF treatment system is incomplete without the treatment chamber. A 

treatment chamber is a place where food is treated. It can be batch or continuous; 

though, continuous is more suitable for implementation in the industry due to 

production demands. However, the treatment chamber is not merely for food 

accommodation but also to house electrodes. The electrode arrangement may be in 

the order of parallel, coaxial, or collinear. Usually, they are positioned in parallel to 

obtain the most uniform electric field distribution compared to coaxial and colinear. 

The treatment media or the food to be treated habitually comes in a liquid 

form. It does not deny that this PEF method can treat semi-solid and solid foods, but 

it works better with liquid food. The liquid owns a certain degree of electrical 

conductivity due to the presence of several ions, which result in the flow of electrical 

current to every point in it. Therefore, this research appointed raw goat’s milk as a 

test subject. However, no specific microorganisms have been identified for 

inactivation but rather to kill any pathogens and spoilage microorganisms so that it is 

safe to consume. 

1.6 Research Significant 

PEF treatment technology has demonstrated its ability and reliability in 

killing the vegetative cells while colours, flavours, and nutrients are well preserved. 

Besides, there is no evidence of toxicity involved in using this method. Meanwhile, it 

consumes a relatively short treatment time to treat the media. Also, it can be used to 

decontaminate heat-sensitive foods suitable for the type of liquid diet. Research has 

shown beyond doubt about the pasteurisation of fruit juices, soups, liquid eggs, and 

milk. The most important thing is it offers no environmental hazard. 

This study’s result will help promote the implementation of PEF treatment 

technology on an industrial scale. The primary concern of industrial consortium 
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interested in PEF implementation is initial investments. This issue is one of the most 

important topics. To the present day, only several countries adopt the PEF method in 

producing safe, nutritious, and high-quality products, such as Pure Pulse 

Technologies, USA, and Thomson-CSF, France. Therefore, this study aims to reduce 

its development cost while optimizing the critical process factors. 

1.7 Contributions to Knowledge 

This research contributes to a wide range of knowledge as it incorporates 

several disciplines of expertise, including high voltage and high current, power 

electronics, and food technology. 

From the point of view of high voltage and high current fields, it contributed 

to the development of compact high voltage pulse generators that can be used in 

various pulse applications. In addition to low development costs and reliable results, 

it is also successfully compacted so that it can be taken anywhere. The success of 

developing this compact high voltage pulse generator is a superior manifestation of 

how high voltage and high current are well regulated. 

Whereas from the point of view of the field of power electronics, it shows 

success in generating pulse signals whose properties can be modified as needed. The 

use of a microcontroller along with its complex programming algorithms has been 

successfully utilised to change the properties of a pulse in terms of its pulse width 

and frequency. Pulses as small as 63 ns and as wide as 4 ms with frequencies as low 

as 1 Hz and as high as 1 kHz have been successfully generated stably. 

Finally, the point of view is taken from the food technology field. In this 

field, the studies are conducted to contribute to the production of food treatment 

technologies that do not use heat. Furthermore, this developed technology also 

provides benefits in understanding the response of microorganisms when exposed to 

a pulsed electric field which helps to develop further the mechanism of dielectric 
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breakdown theory for better understanding. The ultimate result is to produce food 

that is high quality, fresh, and lasts longer for the good of universal humanity. 

1.8 Thesis Organisation 

Chapter 2 consists of a literature review related to the application of PEF, 

including microbial inactivation mechanisms, and critical factors. In addition, it also 

touches on PEF system components, various PEF generator techniques, and 

commercial electroporation instruments. Thus, it covers almost essential topics 

associated with PEF treatment technology. 

Chapter 3 defines the development process of the compact high-voltage 

pulse generator based on the capacitor-discharge concept. Also, it explains in detail 

the suitable component used to develop the electroporator and proposed circuit 

design to ensure the reliability and stability of the output pulse. 

Chapter 4 describes the results obtained through simulations and practical 

studies regarding the performance of the developed compact high-voltage pulse 

generator. For the actual experiment, raw goat’s milk from Osman Goat Farm was 

treated via PEF. The results obtained were analysed to observe the effectiveness of 

the PEF technique in inactivating the inherent microorganisms. 

Chapter 5 defines the possible future work that can be done to uplift and 

enhance the application of PEF technology especially in industrial sector. It discusses 

more on the improvement of the technology itself like changing in treatment 

chamber design and encouraging the application of nanosecond pulse.   
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