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ABSTRACT 

Load shedding is an operating condition whereby the electrical grid is 

temporarily disconnected or suspended from the load. The idea is to minimize the 

deficit between generation capacity and load demand, while ensuring a fair level of 

supply availability for all consumers. Load shedding is a prominent problem for many 

developing countries and thus, this thesis investigates the prospects of hybrid 

renewable energy system (HRES) to mitigate its effect at the distribution level. The 

proposed HRES in this work is configured using the photovoltaic (PV) array, wind 

turbine (WT), energy storage unit (ESU) and diesel generator (Gen). Despite the 

substantial amount of literatures on HRES, limited work is directly related to load 

shedding mitigation in grid-connected system. Furthermore, it is unclear what would 

be the cost of installing HRES and under what operating conditions the system would 

perform optimally. Thus, the main design objective of the proposed system is to ensure 

supply availability with minimum levelized cost of electricity (LCOE) and payback 

period (PBP). A small residential locality in Quetta, Pakistan is selected as a case study 

to test the system. The proposed HRES is equipped with the energy management 

scheme (EMS), which is designed in MATLAB/Stateflow. The sizes of HRES 

components (i.e., PV, WT and ESU) are optimized by the grasshopper optimization 

algorithm (GOA) and the results are verified with particle swarm optimization 

algorithm (PSO). The objective function of the optimization is characterized by three 

variables: LCOE, PBP and the loss of power supply probability (LPSP). Scenario-

based simulations are performed in MATLAB to validate the functionality of the EMS 

and the behaviour of optimized HRES for various load shedding and meteorological 

conditions. In addition, it is compared with the conventional solutions for load 

shedding, namely the diesel generator (only), uninterruptable power supply (UPS), and 

the combination of both. The results based on one-year climatic data shows that the 

LCOE for the HRES is 6.64 cents/kWh, with PBP of 7.4 years. The LCOE of HRES 

is 77.6% cheaper than the LCOE for generator (only), 49.8% for the UPS, and 66.7% 

for the combined solution. Accordingly, the PBP is also shorter compared to diesel 

generator (12.9 years), UPS (9.8 years) and the combined system (11.3 years). 

Furthermore, the integration of HRES alleviates the annual grid burden by 32.9, 47.2 

and 42.3%, respectively. These results confirm the superiority of the HRES over the 

conventional solutions. Finally, sensitivity analysis is performed to observe the 

changes in the LCOE and PBP with respect to the variation in the components prices, 

feed-in-tariff rate, metrological conditions and load demand. It can be concluded that 

a well-designed and optimized HRES has the potential to effectively mitigate the 

problem of load shedding with reasonable cost. 

 

 

 

 



 

 

vii 

 

ABSTRAK 

Penyisihan beban ialah keadaan pengendalian di mana grid elektrik diputuskan 

sementara atau terampai daripada beban. Ideanya adalah untuk meminimumkan defisit 

antara kapasiti penjanaan dan permintaan beban, sambil memastikan tahap 

ketersediaan bekalan yang adil untuk semua pengguna. Penyisihan beban adalah 

masalah utama bagi kebanyakan negara membangun maka dengan itu, tesis ini 

menyiasat prospek sistem tenaga kacukan yang boleh diperbaharui (HRES) untuk 

mengurangkan kesannya pada peringkat agihan. HRES yang dicadangkan dalam kerja 

ini dikonfigurasi menggunakan tatasusunan fotovolta (PV), turbin angin (WT), unit 

simpanan tenaga (ESU) dan penjana diesel (Gen). Walaupun terdapat banyak literatur 

tentang HRES, kerja secara langsung berkaitan dengan pengurangan penyisihan beban 

dalam sistem yang disambungkan dengan grid adalah terhad. Tambahan pula, adalah 

tidak jelas berapakah kos pemasangan HRES dan dalam keadaan pengendalian yang 

mana sistem akan berfungsi secara optimum. Oleh itu, objektif reka bentuk utama 

sistem yang dicadangkan adalah untuk memastikan ketersediaan bekalan dengan 

meratakan kos elektrik (LCOE) dan tempoh bayaran balik (PBP) yang minimum. 

Kawasan kediaman kecil di Quetta, Pakistan dipilih sebagai sebuah kajian kes untuk 

menguji sistem tersebut. HRES yang dicadangkan dilengkapi dengan skim pengurusan 

tenaga (EMS), yang direka dengan menggunakan MATLAB/Stateflow. Saiz 

komponen HRES (iaitu, PV, WT, ESU dan Gen) dioptimumkan oleh algoritma 

pengoptimuman belalang (GOA) dan hasilnya disahkan menggunakan algoritma 

pengoptimuman kerumunan zarah (PSO). Fungsi objektif pengoptimuman dicirikan 

oleh tiga pembolehubah: LCOE, PBP dan kebarangkalian kehilangan bekalan kuasa 

(LPSP). Penyelakuan berasaskan senario dilakukan di MATLAB untuk mengesahkan 

fungsi EMS dan tingkah laku HRES yang dioptimumkan untuk pelbagai penyisihan 

beban dan keadaan meteorologi. Di samping itu, ia dibandingkan dengan penyelesaian 

konvensional untuk penumpahan beban, iaitu penjana diesel (sahaja), sistem bekalan 

kuasa tanpa gangguan (UPS), dan gabungan kedua-duanya. Keputusan berdasarkan 

data iklim setahun menunjukkan bahawa LCOE untuk HRES ialah 6.64 sen/kWj, 

dengan PBP selama 7.4 tahun. Ini adalah 77.6% lebih murah daripada LCOE untuk 

penjana (sahaja), 49.8%, untuk UPS dan 66.7% untuk penyelesaian gabungan. Selain 

itu, penyepaduan HRES mengurangkan beban grid tahunan masing-masing sebanyak 

32.9, 47.2 dan 42.3%. Keputusan ini mengesahkan keunggulan HRES berbanding 

penyelesaian konvensional. Akhir sekali, analisis kepekaan dilakukan untuk melihat 

perubahan dalam LCOE dan PBP berkenaan dengan variasi dalam harga komponen, 

kadar tarif galakan, keadaan metrologi dan permintaan beban. Dapat disimpulkan 

bahawa HRES yang direka bentuk dengan baik serta dioptimumkan berpotensi untuk 

mengurangkan masalah penyisihan beban secara berkesan dengan kos yang 

berpatutan. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background 

For decades, many developing countries are grappling with energy crisis that 

severely hindered their economic growth and social transformation programs [1]. Due 

to regular, long-term electric power shortages, consumers in these affected regions 

must rely on alternative source of power such as diesel generators and battery banks 

to meet their own energy needs. Often, electricity derived from these sources is 

insufficient to meet their needs and, in most cases, it is more expensive than the grid 

tariff. But since options are limited, they have to make do with these solutions. On the 

utility side, one of the most effective short-term measures to alleviate this problem is 

to impose load shedding—a regimented operating condition whereby the grid is 

disconnected from customers within a specified region for several hours per day. In 

essence, it removes or curtail certain amount of load when the demand for electricity 

exceeds the supply capability of the network [2]. The idea is to minimize the deficit 

between generation capacity and demand, while ensuring a fair level of supply 

availability for all consumers [3]. Although this constraint is undesirable, load 

shedding is necessary to prevent systemic power failure, which can be detrimental to 

the transmission and distribution infrastructures [4].  

Normally, the supply disconnection is scheduled on a rotational basis i.e., the 

electricity is made available (or conversely, unavailable) to different consumers during 

different window, within the 24 hours. Whilst load shedding is supposedly to be a 

temporary solution, unfortunately, for many developing countries, the inability of the 

utility operator (or the government) to build power generators results in no immediate 

prospect in sight [5]. Failure to provide continuous electricity supply has negative 

consequences on the economy, productivity, security and social well-being of the 

population [6]. Since the impact of the load shedding is adverse, the operator is left 
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with little choice but to upgrade the generation capacity [7]. However, in countries 

where load shedding is in place, the projected supply-demand gap continues to rise 

exponentially—primarily due to the rapid growth and the changing lifestyles of the 

population. With little prospect of investment, it seems that the problem of supply 

availability will persist for a foreseeable future. 

To many customers, the most practical mitigation method is to self-install their 

own uninterruptible power supply system (UPS), diesel generators, or a combination 

of both [8]. Although these conventional solutions are widely adopted, they inherit 

several drawbacks. For instance, the UPS must be charged from the grid electricity, 

which is already under stress from the insufficient generation and over-demand. 

Further, due to the crude infrastructure, the power wastage of UPS can be as high as 

25% during the charging and discharging process [9]. On the other hand, the generators 

have numerous disadvantages: their running cost (in Dollar/Watt) is very high, while 

their economic viability is extremely vulnerable to the price of fossil fuel (diesel). 

Generators are also noisy, require regular maintenance and exhibit much lower 

efficiency. Furthermore, they contribute significantly to the greenhouse gas 

emission—thus,  posing serious negative impact to the environment [10]. Despite these 

drawbacks, UPS and generators are still indispensable due to their rapid deployment 

and their ability to overcome load shedding at any time of the day.  

In the wake of growing environmental concerns,  the energy sector is urged to 

reduce the reliance on fossil fuel and is encouraged to utilize renewable sources for 

electricity generation [11][12]. Under these circumstances, the developing countries 

face two-fold energy challenges. They have to meet the need of their growing 

population that still lack access to basic electricity services, while simultaneously 

adhere to the pressure to participate in the global transition towards clean and 

sustainable, low-carbon energy production [13]. Nevertheless, most of these countries 

have numerous sources of renewable that can be tapped at a reasonable cost. Among 

them, solar and wind energy are recognized as the most promising due to their 

abundance and environment friendly nature [14]. These systems are simple to install, 

low in maintenance, and do not require fuel to sustain their operation. Furthermore, 

the energy harvesting technologies, which include photovoltaic module (PV), wind 
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turbine (WT) and power electronic converters have reached high level of maturity and 

are readily available in the market. Despite these advantages, renewable sources still 

face obstacles to become fully dependable power generator. The sporadic behaviour 

of sun and wind, coupled with reliance on weather conditions and high capital costs 

are major barriers to their acceptance [15].  

However, research has shown that if the system cost over the lifetime of the 

project are considered, PV or WT can be a serious competitor to the conventional 

energy systems [16]. This is coupled with the fact that the prices of PV modules and 

wind turbines have dropped significantly over the past decades. The concerns 

regarding intermittency can be addressed by integrating the renewables with other 

sources such as battery banks and diesel generator [17]. Against this background, the 

hybrid renewable energy system (HRES) incorporating PV, WT, ESU, and stand-by 

diesel generator is being proposed as an innovative concept to deal with the load 

shedding problem. The hybridization of the renewable sources in HRES improves the 

energy security by reducing the reliance on the grid uncertainty. Furthermore, the 

exploitation of the locally available renewable sources in the close proximity to the 

end users enable the HRES to offer potential environmental, economic, and societal 

benefits [18]. Thus, the installation of HRES represents a significant step towards the 

transition to more sustainable energy systems.  

Although HRES is an attractive proposition, the interaction between the 

intermittent renewable sources and the interrupted grid (due to shedding) greatly 

increases the complexity of the plant. Inevitably, an energy management scheme 

(EMS) is needed to coordinate these sources and load to achieve an efficient and stable 

HRES operation during load shedding. The primary function of EMS is to manage the 

energy production, exchange, and utilization, such that uninterrupted power flow from 

the sources to the load is ensured. In addition, other objectives, such as minimizing 

operational cost and maximizing the usage of the renewables  may be set according to 

the localized requirements [17].  

Notwithstanding the number of research works on HRES and EMS, most of 

them focused on the off-grid systems [17][19][20]. There are fundamental differences 
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between the off-grid and grid-connected with regard to load shedding. Since the former 

is stand-alone, i.e., not connected to the grid, load shedding is never of any concern 

[21]. On the other hand, for grid-connected system—although it provides more 

flexibility, the load shedding results in system vulnerability as the grid is expected to 

fulfil the load demand in the absence of a sustainable source. Obviously, the 

conventional solution (diesel generator or UPS) can overcome this problem, but the 

cost of fuel and equipment maintenances might not be favourable. For HRES, the 

situation is more complicated because the grid must simultaneously cope with several 

constraints, namely the intermittency of renewables, the fluctuating power demand, 

the state of charge of the ESU, and the fuel consumption of the generators.  

Numerous possible combinations of renewable technologies for HRES are 

reported in literature. For example, there are studies involving two energy sources:  

PV-WT [22][23][24][25], PV-ESU [26][27][28][29][30], PV-solar thermal [31][32], 

and WT-ESU [33][34]. In addition, several works on three sources of HRES are also 

reported: PV-WT-ESU [21], WT-PV-biomass [35], PV-ESU-Gen [36][37], PV-WT-

fuel cell [38] and WT-PV-hydroelectricity system [39]. For comparative purposes, 

different grid and off-grid configurations have also been examined [40][41][42]. 

Furthermore, HRES are continually being applied in various regions of the world, for 

example in Hong Kong [43], Australia [44], France [45] and Iran [46]. Besides EMS, 

most of the works focuss on optimal system sizing to determine cost-effective 

combination of renewables and batteries system [47][48]. In recent years, heuristic 

algorithms such as particle swarm optimization (PSO) [49], cuckoo search (CS) [50], 

genetic algorithm (GA) [51], simulated annealing (SA) [52], bee algorithm (BA) [53] 

and grasshopper optimization (GOA) [54] are considered to solve the complex HRES 

sizing problems. In the light of the forgoing, this research intends to design and 

optimize HRES to address the load shedding problem.   

1.2 Problem Statement 

Despite many studies concerning HRES, limited research has been done on its 

application to mitigate the load shedding problem [9][55][56][57][58][59][60][61]. In 
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particular, there is no published work that evaluates the performance of HRES 

compared to the conventional solution, namely the diesel generators and UPS. This is 

rather surprising, as the latter is very popular in countries where load shedding is an 

issue. Thus, it is of great interest to learn if the HRES is a more viable substitute to the 

diesel generation and UPS under this condition. Furthermore, it is unclear what would 

be the cost of installing HRES (in comparison with the conventional solution), and 

under what operating conditions the system would perform optimally. This is taken in 

the context of time of use (ToU) tariff structure and the impact of feed-in tariff (FiT) 

on the overall system design.   

To investigate the effectiveness of HRES (in comparison to the conventional 

solutions), optimization of HRES should be performed from technical and economic 

perspective simultaneously. Indeed, optimizing the HRES under this condition is a 

complex task because the supply cut-offs must be synchronized with the intermittency 

of the renewables sources and varying load. In addition, the performance of HRES 

involves conflicting objectives namely minimizing the levelized cost of electricity 

(LCOE) and payback period (PBP), while fulfilling the dynamics of the load and 

weather conditions. 

Due to the radically different variable types involved, plus the highly non-

linear and non-convexities nature of the system, the deterministic method has never 

been a preferable choice to solve the component sizing problem. It has been concluded 

in literature that the exact mathematical formulation for such system is very complex 

and rarely leads to a manageable solution. Furthermore, the deterministic approach has 

high probability of non-convergence in polynomial computation time. It is widely 

believed that a good and stable sizing solution can be achieved using efficient 

optimization or metaheuristics algorithms. On the other hand, for the EMS, it is related 

to the sequential execution of the system operation; hence the deterministic method 

such as the rule-based [19][62] is more appropriate because it is more amenable for 

decision-making in real-time environment. Thus, this mixed approach, i.e., 

metaheuristic (for sizing) and deterministic rule-based (for EMS) will be explored in 

this work.  
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1.3 Research Objectives 

To address these challenges, the optimal design of HRES should consider 

techno-economic approach both in design and operation phases. To realize this, the 

following research objectives are proposed: 

1. To propose a HRES of PV-WT-battery-diesel generator system such that 

uninterrupted power supply operation under varying weather and load shedding 

conditions is ensured. 

 

2. To optimize the HRES, based on techno-economic aspects that include system 

sizing, LPSP, LCOE and PBP minimization within the constraints of shedding 

schedule, ToU and FiT incentive using grasshopper optimization algorithm.   

 

3. To compare the performance of the HRES to the conventional solutions (UPS 

and generator) and to suggest recommendations on the best conditions to operate 

the former.  

 

 

1.4       Research Scope  

The scopes of the research to be carried out in this thesis is defined as follows: 

1. The load shedding is categorized as planned and unplanned. This thesis only 

considers the former because the latter is rare and not relevant to the real power 

system operating condition. The planned load shedding is announced 

beforehand and its schedule is publicly available.  

 

2. The research considers HRES that incorporates PV, WT, ESU, and diesel 

generators to fill the load energy deficit created by the load shedding. The PV 

and WT serve as the main energy sources; the ESU serves as the primary 

backup and the generators serve as a secondary backup supply during load 

shedding intervals. The performance of the HRES is assessed based on LPSP, 

LCOE and the PBP. The performance is then compared with the conventional 
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load shedding mitigation methods that include diesel generator, UPS, and the 

combination of both.  

 

3. The proposed model is integrated with the existing grid at distribution feeder 

level. As case study, the HRES is intended to supply the electricity demand of 

a small residential community situated in the city of Quetta, Pakistan.  

 

4. In principle, HRES operation can be viewed either  as a power management or 

energy management strategy [63]. The concern of the former is the transients 

of such as voltage, current and frequency, while the latter is into system 

scheduling, cost, and the lifetime system performance. Due to the long-term 

evaluation of the proposed HRES, this work is limited to energy management 

only.  

 

5. Due to the unavailability of actual systems of the appropriate size, the research 

is primarily based on the mathematical simulation model using 

MATLAB/Stateflow simulation package, and no hardware implementation is 

involved.  

 

1.5 Research Significance  

The renewed interest for power generation using renewables due to the global 

trends provide an opportunity to rethink the approach to address old yet existing load 

shedding problem. The problem requires intervention from the state-of-the-art as it is 

likely to remain significant for the near and medium term in the developing countries 

[64]. In this regard, proposed HRES incorporating the renewable and non-renewable 

energy sources (generators and batteries) considers optimized load scheduling of the 

sources to execute smooth power supply operation by taking into account the FiT 

incentive of RES and ToU grid electricity tariff. The GOA has been utilized for the 

very first time to optimize the size of HRES components according to the amount of 

load shedding. The potential application of the Stateflow in this thesis provides energy 

researchers an alternative to design event-driven systems. The research via a case study 



 

 

8 

 

of Pakistan (a representative developing country) can help policy makers to ascertain 

the competitiveness of HRES in comparison to UPS and standalone diesel generator 

for regions with weak or inadequate power supply. In addition, it helps the investors 

to investigate the PBP of the project before its installation. On a practical level, HRES 

can be integrated with existing infrastructure and their installation can contribute to 

improve the performance of overall system in both technical and economic terms. 

Furthermore, this work supports the United Nation’s Sustainable Development Goal 

(SDG) under Goal Number 7, i.e., clean and affordable energy. 

1.6 Research Methodology 

In order to accomplish the proposed research, following methodology has been 

followed: 

 

1. A comprehensive literature review on load shedding is performed focusing 

mainly on the root causes of the load shedding and its mitigation strategies. 

The renewable based hybrid system commonly known as HRES is selected as 

most feasible option to overcome the effect of load shedding. The literature 

review aims to highlight the strengths and limitations of the various aspects 

regarding HRES integration into the existing grid for further research. 

Moreover, the energy management schemes, energy management algorithms 

and optimal sizing methods used for HRES are analyzed.  

 

2. A critical and strategic literature review of HRES application in several 

developing countries facing energy crisis is performed. The review focusses on 

observing the tight operational constraints of HRES components in the realistic 

scenario of shedding schedule, ToU and FiT structure. Several performance 

indicators for HRES based on technical (LPSP) and economic aspects (LCOE, 

PBP) are highlighted. Besides, the objective of the review is to look for a gap 

in the existing literature.  
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3. EMS for HRES is proposed to ensure continuity of power supply during load 

shedding. EMS is developed using rule-based algorithm and implemented in 

Stateflow. The optimal sizing of HRES is proposed using GOA based on multi 

decision criteria. The ultimate goal of the fitness function is to minimize the 

LCOE, PBP and LPSP. The optimal sizing results obtained by GOA are 

benchmarked with PSO for verification.  

 

4. The performance of the HRES is examined via a long-term simulation study to 

ascertain its resiliency during extreme weather and load shedding conditions 

and to ensure the operating limit of the ESU is not violated. The performance 

of HRES is compared with conventional methods (generator, UPS, combined 

UPS-generator) used to mitigate the effect of load shedding. Analysis of the 

energy balance within the HRES, the dynamic payback period and breakdown 

of the cost analysis have also been performed in-depth. 

 

5. Lastly, sensitivity analysis is performed to examine the effect of uncertainties 

on the system inputs that may arise in the future. The analysis is carried out by 

assuming variations in economic parameters, climatological parameters and 

demand profile. Several scenarios are generated from sensitivity analysis and 

the impact of each individual variation is observed on the LCOE and the PBP 

of the HRES.  

 

1.7 Thesis Organization 

This thesis is organized into five chapters. Chapter 1 encompasses the 

background of the study, problem statement, research objectives, research scope, 

research significance and a brief description of the methodology. The contents of the 

remaining chapters are outlined as follows. 

Chapter 2 reviews the related research work in the literature and presents the 

research gap in the existing studies. Chapter is divided into two main parts. First part 

presents the essential background of the load shedding problem and various mitigation 
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strategies to overcome its effect. This is followed by the introduction of the HRES, 

their classification, mode integration topology and the control structure. Accordingly, 

second part investigates the current energy management schemes applied in HRES up 

to date. Afterward, the criteria for HRES optimisation and the different sizing methods 

are discussed. Lastly, gap analysis of the existing HRES and justification to perform 

the ongoing research are discussed. 

Chapter 3 presents the simulation model of HRES based on the components of 

the system, which are PV, WT, ESU, Gen and inverter along with utility grid. The 

model also integrates the economic modelling of these components based on the LCOE 

concept. Then, a brief description of the localized conditions (load shedding schedule, 

weather) of representative case study region along with load estimation to represent 

the demand profile for the simulation is given. Afterward, the development of 

proposed EMS for HRES is accomplished using Stateflow. Lastly, system sizing 

method using GOA and PSO to determine optimum size of PV modules, WT units and 

ESU batteries employing proposed EMS is discussed. 

Chapter 4 commences by presenting the results of optimal size of the HRES 

for considered demand profile using GOA. Then, the sizing results are compared and 

validated with the help of PSO. Chapter goes on to demonstrating the resiliency of 

HRES in providing uninterrupted supply under different weather conditions and year-

round operation. In the context of this work, resiliency is defined as the strength of the 

system to fulfil the demand under the given operating condition. Consequently, the 

comparison of HRES with diesel generator, UPS, and combined UPS-generator 

system is presented. At the end, sensitivity analysis is given to the test the impact of 

different economic, climate and demand data on the proposed HRES design.    

Chapter 5 summarises the main findings derived from this research work and 

highlights the contributions of the proposed work. In addition, several suggestions are 

given for possible directions of future work.
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