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ABSTRACT

This thesis presents a microfluidic impedance flow cytometry-dual 

microneedle device for cell detection. Single-cell detection plays a significant role in 

biomedical diagnostics, such as early cancer cell detection and pathogenic bacteria 

cells in the blood. The growing need for simple and low-cost microfluidic device 

fabrication led to the invention of numerous microfluidic-based impedance flow 

cytometry (IFC) techniques. The current method for impedance flow cytometry 

technique is limited to an expensive and complex fabrication process of gold 

microelectrode. Therefore, the IFC-dual microneedle device with a simple design 

structure and uncomplicated fabrication process for cell detection is presented. The 

device utilized the two Tungsten microneedles with 25 |im of tip diameter, placed at 

the half-height of the microchannel as the measurement electrode. The design was 

characterized and optimized in terms of physical dimension, leakage conditions and 

sensitivity. The polystyrene (PS) microbeads with three different sizes (5 |im, 7 |im 

and 10 |im), yeast cells with different concentrations and red blood cells (RBC) were 

utilized to perform the cell detection of this IFC device. This IFC device was able to 

detect as low as 1 .2 x 1 04 cfu/mL cells of yeast cells in a solution medium. 

Moreover, the ratio of the impedance at high frequency vs. low frequency, known as 

opacity, was used to discriminate between the PS microbeads and RBC. In addition, 

the proposed device demonstrated that the specific membrane capacitance of an RBC 

is 9.42 mF/m- , with the regression coefficients, p at 0.9895. Measured results were 

found to lie in the comparable range with the previous technique (7-14.3 mF/m ). 

The presented IFC-dual microneedle device provides an opportunity for simple 

medical and food safety screening processes in developing countries.
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ABSTRAK

Tesis ini membentangkan peranti mikrobendalir sitometri aliran galangan-dwi 

jarum mikro untuk pengesanan sel. Pengesanan sel tunggal memainkan peranan yang 

penting dalam diagnostik bioperubatan, seperti pengesanan awal sel kanser dan 

patogenik bakteria sel dalam darah. Keperluan yang semakin meningkat untuk 

fabrikasi peranti mikrobendalir yang mudah dan berkos rendah, telah membawa 

kepada penciptaan pelbagai teknik mikrobendalir berasaskan sitometri aliran 

galangan (IFC). Kaedah terkini untuk teknik sitometri aliran galangan adalah terhad 

kerana proses fabrikasi mikroelektrod emas yang mahal dan kompleks. Oleh itu, 

peranti IFC-dwi jarum mikro dengan struktur reka bentuk yang mudah dan proses 

fabrikasi yang tidak rumit bagi pengesanan sel dibentangkan. Peranti ini 

menggunakan dua jarum mikro Tungsten bersamaan 25 hujung diameter, diletakkan 

pada separuh ketinggian saluran mikro sebagai elektrod pengukuran. Reka bentuk ini telah 
dicirikan dan dioptimumkan dari segi dimensi fizikal, keadaan kebocoran dan kepekaan. 

Manik mikro polisterina (PS) dengan tiga saiz berbeza (5 |im, 7 |im dan 10 |im), sel yis 

dengan kepekatan yang berbeza dan sel darah merah (RBC) telah digunakan untuk 

melakukan pengesanan sel peranti IFC ini. Peranti IFC ini berkebolehan untuk 

mengesan serendah 1 . 2 x 1 04 cfu/mL sel dalam medium larutan sel yis. Selain itu, 

nisbah galangan pada frekuensi tinggi berbanding frekuensi rendah, yang dikenali 

sebagai kelegapan, digunakan untuk mendiskriminasi antara manik mikro PS dan 

RBC. Sebagai tambahan, peranti yang dicadangkan menunjukkan bahawa kapasiti 

membran spesifik RBC ialah 9.42 mF/m-2, dengan pekali regresi, p pada 0.9895. 

Keputusan yang diukur telah didapati berada dalam julat yang setaraf dengan teknik 
sebelumnya ini (7-14.3 mF/m2). Peranti IFC-dwi jarum mikro yang dibentangkan ini 
memberi peluang untuk proses pemeriksaan perubatan dan keselamatan makanan yang 
mudah di negara membangun.
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CHAPTER 1

INTRODUCTION

1.1 Research Background

The cell study has emerged as a distinct new field, as they acknowledged 

being one of the fundamental building blocks of life. The cell consists of the nucleus 

and other organelles such as the Golgi complex, endoplasmic reticulum, 

mitochondria, lysosomes and vacuole enclosed by their own membranes seen in 

Figure 1.1. Organelles have a wide range of responsibilities for the proper health and 

functioning of the cell. The cytosol (the intracellular fluid) contains various enzymes, 

and organic molecules dissolve in water and occupy most of the cytoplasm. The 

concentrations of charged ions such as sodium (Na+), potassium (K+), calcium 

(Ca2+), and chloride (Cl) consist in the cytosol cause electrically highly conductive 

to the cytosol [1]. The cell membrane (also called the plasma membrane) is made up 

of a phospholipid bilayer that maintains protecting the integrity of the cell structure 

[1]. The phospholipids contain a hydrophilic polar head (charged phosphates) and 

two hydrophobic fatty acid (hydrocarbon) chains. It is an excellent electrical 

insulator and is used to regulate the passive and active transport of materials to and 

from the cell interior. For that reason, the plasma membranes are most suitable to 

describe as electrical capacitors due to their insulated property. In addition, the 

plasma membrane is a very high specific membrane capacitance (~1 |iF/cm2 or 0.01 

F/m2) due to the thickness of the plasma membrane, which is only (~3.5nm) thick 

[1].

Moreover, the cells have unique biophysical and biochemical properties to 

maintain and sense the surrounding physiological environment to fulfill its specific 

functions [2], [3]. Cellular biophysical properties analysis, such as the electrical, 

mechanical, optical and thermal characterization of cells, plays critical knowledge to 

diagnostics, clinical science and the pharmaceutical industry [2]. The identification
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of cell types based on the biophysical properties is significant to academic and 

practical purposes. Most of the biophysical changes of cells show an early sign of 

disease or abnormal condition to the human body, which make it more reliable to 

become as potential markers for identifying the cell types such as cancers [4]-[8], 

bacteria [9]—[11], toxin detection [12] and the status of tissues [13], [14].

Furthermore, the rapid growing technologies (e.g. conventional patch-clamp, 

dual nanoprobe-ESEM and microfluidics) to investigate the biophysical properties of 

cells have been invented and developed by researchers in the last decades. The 

technologies experience the evolution of enhancement every year to meet the 

requirement and make substantial contributions to the biology and clinical research 

community [14], [15]. Microfluidic has been widely utilized to provide the optimum 

benefit to this field because of inadequate and straightforward sample volume 

preparation, high throughput, and real-time measurement. Hence, the development of 

microfluidic technologies for single-cell biophysical characterization has been 

sparked recently.

Figure 1.1: The basic structure of the animal cell [16].
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1.1.1 Single Cell Analysis

Single-cell analysis (SCA) has become a trend and major topic to engineers 

and scientists for 20 years to develop the experimental tools and technologies able to 

carry out the single-cell measurement. In addition, in-depth analysis and more fully 

described cell differentiation and cancer activities can only be accomplished with 

single-cell analysis [17]. Several studies reported significant heterogeneity among 

cells that were previously treated as essentially homogeneous [18]. In conventional 

methods of cellular analysis, population-based studies have been utilized for cellular 

processes such as metabolism, motility, cell growth and proliferation. Population 

methods use averages of cell properties to measure and predict the biophysical and 

biochemical parameters of the cell. However, this method suffers from inaccuracy 

measurement and often overlook the essential information available at cell due to the 

heterogeneity of cell (e.g., specific gene expression level) [19]. One group has 

described the disconnection between single-cell and average measurements, in which 

eight individual Jurkat cells treated with siRNA were introduced to the GAPDH gene 

expression experiment. The results were divided into two distinct groups: partial 

knockdown (50%) and complete knockdown (0%). While the bulk measurement 

performed on 50 cells under the same conditions was reduced to 21±4% (n = 4). This 

value did not represent any result that was measured with single cells.

In this method, the behavior of small populations will be averaged out, and 

then the behavior of the majority has been used to present a result. For instance, an 

average of 50% protein expression in a cell population can present either a 100% 

response in half the cells or a 50% response in all. This can lead incorrectly because 

the cancer relapse and metastasis may be caused by these small sub-populations in 

the tumor. For this reason, single-cell studies have been emphasized to provide 

biologists and scientists to peer into the molecular machinery of individual cells. 

Single-cell analysis has also been essential to our understanding of some 

fundamental questions, such as what makes single cells different biophysically, 

biochemically and functionally.
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The accumulation of average and individual cell information from huge 

populations of cells can offer early detection symptoms of infection or abnormal 

situations in the human body. For instance, tumor cells discharged into the 

circulation offer data on tumour growth and therapy efficiency [20]. The presence of 

irregular red blood cells (RBCs) in the blood can be utilized to detect illnesses such 

as sickle cell anaemia and polycythemia vera [21]. Single-cell analysis has been a 

key in the probing of cancer [5], [22], and thus helps doctors to develop a prognosis 

and design a treatment plan for particular patients.

Technology development in the context of single cells has emerged in the 

early 1900s through the present micro-and nanotechnology. In the last few decades, 

rapid development in micro-and nanofabrication technologies has accelerated the 

potential of sensors to be made in miniature dimensions up to nanoscale, and these 

developments offer great opportunities for a single cell. Moreover, several miniature 

sensors have been utilized to characterize the single-cell electrical properties such as 

impedance, conductivity and others. In this research, the study will focus on the 

measurement of the electrical properties of a single cell.

1.1.2 Single Cell Electrical Properties Characterization for Cancer Detection

Cancer is abnormal growths of cells caused by genes responsible for 

regulating cell division is damaged. This may invade tissues and metastasize to the 

other parts of the body to establish new colonies. The cancer cell can cause 

significant death of the host if untreated [15]. According to Cancer Research UK, an 

estimated 8.2 million people died from cancer worldwide in 2012. The most common 

causes of cancer death are breast, lung, stomach and prostate cancer, which is 50% of 

all cancers death. The cancer death rate can be reduced by early detection. For 

example, breast cancer can be detected by using X-ray mammography [23]. 

However, the capability to detect breast cancer in a thick layer of breast tissue was 

reduced [24]. Furthermore, ultrasound and magnetic resonance imaging (MRI) also 

were utilized in breast cancer detection. However, ultrasound has low sensitivity in 

detecting small and pre-invasive breast cancers from normal tissues due to the
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overlapping ultrasonic characteristics of these tissues [25]—[28]. On the other hand, 

the major problem of MRI is costly and cannot be utilized to diagnose the patient 

with a pacemaker [29].

In the last few decades, studies on single-cell electrical properties have 

become a useful method to analyze and characterize the property of single-cell 

cancer. The cancer cell has a different electrical property (e.g., membrane 

capacitance and cytoplasm conductivity) than a normal cell. It has become 

increasingly clear since many researchers have shown their work to differentiate 

between various cancer (e.g., breast cancer and cervical cancer) cells from the 

normal cell by utilizing microfluidic technology [5], [30]-[33]. For instance, micro­

electrical impedance spectroscopy (^EIS) was utilized to measure the electrical 

properties of head and neck cancer (HNC) cells [5]. Figure 1.2 shows the phase angle 

of (HNC) cells at different cancer stages. Based impedance phase value, it can be 

seen the significant change in electrical properties of cancer cells due to the different 

cancer cell stages. In addition, this technique may lead to the early cancer detection 

device. In other words, microfluidic techniques are a handy tool to study the 

electrical properties of cancer cells for early cancer detection and diagnosis 

application. Table 1.1 below summarises the previous microfluidic work reported on 

the cancer cell analysis.

Figure 1.2: Electrical impedance of the different HNC cancer stages [5].
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Table 1.1: Summary of research reports on cancer cell analysis by using a 
microfluidic device.

Cancer Type Cell line Summaries

Breast Cancer MCF-10A, MCF7,

MDA-MB-231,

MDA-MB-435

Membrane capacitance of the single 

trapped cell was calculated at 100 kHz to 

distinguish cancer cell lines from 

different cancer stages [30]

Cervical Cancer Hela The impedance of single-cell trapped by 

micro pillars was measured at a low- 

frequency range (1-100 kHz) [34]

Head and Neck 

Cancer

686LN-M4e,

686LN

Differentiate the poorly metastatic from 

the highly metastatic cell by observing 

the phase angle of a single trapped cell 

[5].

Lung, Breast and 

Kidney Cancer

H1299, CRL- 

5803, CCL-185, 

A549, 95D, 95C, 

EMT6/AR1.0, 

786-O

Specific membrane capacitance and 

cytoplasm conductivity of single cells 

aspirated through a constriction channel 

was characterized [6], [8], [35], [36]

Oral Cancer OEC-M1 The impedance of cells in the 3D cell 

culture was measured to monitor the cell 

proliferation and chemosensitivity [37]
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1.2 Problem Background

Single-cell analysis based on electrical properties is important to provide 

essential data for understanding cellular functions and status. Although highly 

versatile can be achieved, commercial impedance based flow cytometry are bulky, 

require complex optics, label and expensive reagents and is highly operator skill- 

dependent. [38], [39]. The bulky system is hard to introduce as a common device for 

cell analysis used in the hospital laboratory. More users in clinical research are 

interested in using a small and portable device.

Microfluidics has emerged as a field that offers vast advantages such as 

biocompatibility, label-free, low sample volume and simple sample preparation. 

Microfluidic impedance flow co-plannar electrode, as a well-established technique in 

single-cell analysis, potentially enabling high-throughput [40]. However, this design 

has poor sensitivity due to a non-homogenous electrical field across the main channel 

and requires the complex fabrication process of mircoelectrode. Therefore, the 

impedance flow parallel electrode was introduced to generate the homogeneous 

electric field distribution to improve the sensitivity. Current microfluidic based 

impedance flow cytometry parallel electrode configuration devices experience 

challenges in terms of fabrication complexity. The Au microelectode fabrication 

method requires several steps, including standard photolithography[41]. In addition, 

the standard Au microfabrication fabrication process are expensive (gold electrode) 

and time consuming, and all the processes are conducted in cleanroom eviroment. 

Moreover, the two alignment steps are needed for aligning the channel to the 

electrode pattern and aligning two chips with electrodes together. Precise alignment 

is needed to make the measurement reproducible [42]. In this view, a simple 

impedance flow cytometry- dual microneedle device will be designed to achieve the 

capability to detect and measure the electrical properties of a single cell with a 

comparable result with previous IFC.
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1.3 Research Objective

The objectives of this research are listed as follows:

1. To design and fabricate a simple structure of microfluidic impedance 

cytometry device for single cell detection.

2. To characterize and optimize the performance of fabricated microfluidic 

impedance cytometry devices.

3. To test the cell detection functionality of the microfluidic impedance 

cytometry device using biological and non-biological samples.

1.4 Scopes of W ork

The scopes of this research work are as the followings:

1. The commercially available Tungsten needles were utilized as a measuring 

electrodes due to their high hardness and excellent electrical conductivity.

2. The red blood cell and polystyrene microbeads with a range of diameter 

between 5-10 |im were used as a target sample for single cell detection. The 

RBCs were collected from a healthy patients with normal RBC properties.

3. As for single cell detection, the measurement frequency in the range of 100 

kHz to 2 MHz was used. Electrode double layer (EDL) effect was negligible 

in this range.

4. The low flow rate, 6 |il/min was used for single cell detection. The fluid is 

assumed to be laminar flow fluid.

5. The measuring specific membrane capacitance of red blood cell in the range 

of 7-14.3 mF/m2.
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1.5 Contribution

In this research, three significant contributions are listed as the followings:

1. A novel integrated dual microneedle-impedance flow cytometry microfluidic 

for single-cell detection based on impedance measurement has been 

successfully fabricated. A parallel facing microneedle is integrated with a 

microfluidic device by utilizing a commercially available Tungsten needle (as 

a measurement electrode)

2. The dual microneedles are reusable and feasible for electrode gap setting. The 

variable of electrode gap setting can measure the variety of cell sizes. The 

function of the device has been tested to measure the presence of a yeast cell 

concentration, single red blood cell and microbead in suspension.

3. The fabrication cost of this device is reduced compared with the impedance 

flow cytometry with an embedded electrode. Since the Tungsten microneedle 

is used as a measuring electrode, the fabrication cost of the lithography 

electrode is eliminated.

1.6 Thesis Outlines

Chapter 2 reviews the existing methods and techniques in the single-cell 

electrical property analysis from classical platforms to microfluidic platforms. The 

various microfluidic techniques also have been discussed in this chapter.

In chapter 3, the research methodology that was employed in this study is 

described in detail. This includes the design and optimization of microfluidic devices 

and the theory of electrical properties measurements. The chapter also provides the 

fabrication process of microfluidic microchannel using soft lithography technique 

and microneedle trim by using Focused Ion Beam (FIB). Lastly, the setup of the 

experiment is thoroughly explained.
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Chapter 4 presents the result of the experiments throughout the research 

work. The experimental results and analysis are well discussed in this chapter.

Finally, chapter 5 summarizes all the findings of this research work and puts 

forward recommendations for future works to enhance this microfluidic device in 

order to perform analysis of a single cell.
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