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ABSTRACT 

Frequency-hopping spread spectrum (FHSS) spreads the signal over a wide 

bandwidth, where the carrier frequencies change rapidly according to a pseudorandom 

number making signal classification difficult. Classification becomes more complex 

with the presence of additive white Gaussian noise (AWGN) and interference due to 

background signals. In this research, a hybrid convolutional neural network (HCNN) 

system with the fusion of handcrafted and deep features is proposed to classify FHSS 

signals in the presence of AWGN and the background signal. The CNN is used as a 

deep feature extractor by transforming the intermediate frequency (IF) signal to the 

time-frequency representation (TFR) and used as a two-dimensional (2D) input image, 

whereas the handcrafted features of the FHSS signal such as hop frequency and hop 

duration are estimated from the TFR. A proper network structure of the three-layer 

fully connected network (TLFCN) is determined and used as a classifier. The TLFCN 

is a machine learning algorithm that requires training with a proper dataset to classify 

the various types of FHSS signals. Ideally, the dataset size must be sufficiently large 

as well as balanced to optimize the classification performance. A pseudorandom 

sequence of hopping frequencies observed from an FHSS signal represents one 

observation of all the possible hopping sequences of the signal. Therefore, an 

observation calculating technique is developed that can derive the total number of 

possible hopping sequences of an FHSS signal by using the frequencies to determine 

the observations in the dataset. The majority of the machine learning algorithms 

assume that the training set is evenly distributed among classes. However, in many 

real-world applications, the number of observations among classes is often 

imbalanced, which reduces the classification performance of the algorithm. The 

number of observations of an FHSS signal depends on the number of hop frequencies. 

Therefore, a given set of FHSS signals with a varying number of hop frequencies 

among the FHSS signals results in an uneven number of observations, thereby building 

an imbalanced dataset. Thus, resampling and data augmentation methods such as 

synthetic minority oversampling technique (SMOTE) and random erasing (RE) are 

performed to balance the dataset for the increased learning and decision-making 

capacity of a machine learning algorithm. Monte Carlo simulation is performed to 

verify the classification performance of the linear discriminant (LD), TLFCN, CNN, 

and HCNN for various signal-to-noise ratio (SNR) levels. Based on the SNR range at 

90% probability of correct classification (PCC) in the presence of AWGN and the 

background signal, the LD performed worst from 1 to 15 dB among all the methods, 

whereas the HCNN performed best from −1.58 to −0.66 dB. Moreover, the HCNN 

with the balanced dataset performed better by 0.14 to 1.06 dB of SNR than with the 

imbalanced dataset. Therefore, the HCNN system improved the classification 

performance and performed better than conventional machine learning-based 

algorithms. 
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ABSTRAK 

Spektrum penyebaran frekuensi-lompat (FHSS) menyebarkan isyarat ke atas 

lebar jalur yang luas, di mana frekuensi pembawa berubah dengan cepat mengikut 

nombor pseudorandom yang menyukarkan klasifikasi isyarat. Pengelasan menjadi 

lebih kompleks dengan kehadiran hingar Gaussian putih tambahan (AWGN) dan 

gangguan akibat isyarat latar belakang. Dalam penyelidikan ini, sistem rangkaian 

neural perlingkaran hibrid (HCNN) dengan gabungan ciri buatan tangan dan 

mendalam dicadangkan untuk mengklasifikasikan isyarat FHSS dengan kehadiran 

AWGN dan isyarat latar belakang. CNN digunakan sebagai pengekstrak ciri dalam 

dengan mengubah isyarat frekuensi perantaraan (IF) kepada perwakilan frekuensi 

masa (TFR) dan digunakan sebagai imej input dua dimensi (2D), manakala ciri buatan 

tangan isyarat FHSS seperti kekerapan lompat dan tempoh lompat dianggarkan 

daripada TFR. Struktur rangkaian yang betul bagi rangkaian bersambung sepenuhnya 

tiga lapisan (TLFCN) ditentukan dan digunakan sebagai pengelas. TLFCN ialah 

algoritma pembelajaran mesin yang memerlukan latihan dengan set data yang betul 

untuk mengklasifikasikan pelbagai jenis isyarat FHSS. Sebaik-baiknya, saiz set data 

mestilah cukup besar serta seimbang untuk mengoptimumkan prestasi klasifikasi. 

Urutan pseudorandom frekuensi lompat yang diperhatikan daripada isyarat FHSS 

mewakili satu pemerhatian bagi semua kemungkinan jujukan lompat isyarat. Oleh itu, 

teknik pengiraan pemerhatian dibangunkan yang boleh memperoleh jumlah jujukan 

lompat yang mungkin bagi isyarat FHSS dengan menggunakan frekuensi untuk 

menentukan pemerhatian dalam set data. Kebanyakan algoritma pembelajaran mesin 

mengandaikan bahawa set latihan diagihkan sama rata antara kelas. Majoriti algoritma 

pembelajaran mesin menganggap bahawa set latihan diagihkan sama rata di antara 

kelas. Walau bagaimanapun, dalam banyak aplikasi dunia sebenar, bilangan 

pemerhatian antara kelas sering tidak seimbang, yang mengurangkan prestasi 

pengelasan algoritma. Bilangan cerapan isyarat FHSS bergantung pada bilangan 

frekuensi lompat. Oleh itu, set isyarat FHSS yang diberikan dengan bilangan frekuensi 

lompat yang berbeza-beza antara isyarat FHSS menghasilkan bilangan pemerhatian 

yang tidak sekata, dengan itu membina set data yang tidak seimbang. Oleh itu, kaedah 

pensampelan semula dan penambahan data seperti teknik pensampelan minoriti 

sintetik (SMOTE) dan pemadaman rawak (RE) dilakukan untuk mengimbangi set data 

bagi peningkatan kapasiti pembelajaran dan membuat keputusan bagi algoritma 

pembelajaran mesin. Simulasi Monte Carlo dilakukan untuk mengesahkan prestasi 

pengelasan diskriminasi linear (LD), TLFCN, CNN dan HCNN untuk pelbagai 

peringkat nisbah isyarat-ke-hingar (SNR). Berdasarkan julat SNR pada 90% 

kebarangkalian pengelasan betul (PCC) dengan kehadiran AWGN dan isyarat latar 

belakang, LD menunjukkan prestasi paling teruk dari 1 hingga 15 dB antara semua 

kaedah, manakala HCNN menunjukkan prestasi terbaik dari −1.58 hingga −0.66 dB. 

Selain itu, HCNN dengan set data seimbang menunjukkan prestasi yang lebih baik 

sebanyak 0.14 hingga 1.06 dB SNR berbanding set data tidak seimbang. Oleh itu, 

sistem HCNN meningkatkan prestasi klasifikasi dan berprestasi lebih baik daripada 

algoritma berasaskan pembelajaran mesin konvensional. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background 

Multi-signal environment contains different types of wireless technologies 

which share a common frequency band [1]. An example would be Bluetooth, Wi-Fi, 

and Zigbee sharing the 2.4 GHz frequency [2]. Depending on the wireless technology, 

the signals may have either a fixed or variable carrier frequency. Most important there 

should not be any overlap of carrier frequency between the various wireless 

technologies which could cause interference between the various users. For example, 

two different Wi-Fi users can interfere with each other. Thus, a spectrum monitoring 

system can be utilized to manage the use of carrier frequency between the various 

wireless technologies as well as to detect unknown or unauthorized signal sources [3]. 

Among the functions that a spectrum monitoring system performs includes the 

detection, estimation of modulation parameters, classification, and geolocation of 

signals of interest over a wide area in a range of complex spectrum environments [3]. 

Its features are application-dependent and performed by regulatory bodies for 

compliance to the allocated spectrum. The system should be able to continuously sense 

weak signals over a large bandwidth, allocates definite spectrum to users, and 

identifies unlicensed spectrum users and sources of interference [4, 5]. For the military, 

spectrum monitoring is known as electronic support (ES) that estimates the parameters 

of signals such as communication and radar from the radio frequency (RF) emission 

by non-cooperative intercept [6, 7]. The information can be used for electronic attack 

(EA) by targeting the sources and locations of radio emissions. All electronic 

countermeasures such as electromagnetic jamming and deception approaches are 

covered by EA. The ES system can analyze complex communication signals, radar 

signals and low probability of intercept (LPI) signals such as frequency hopping spread 

spectrum (FHSS) signals which are difficult to intercept and process [8, 9]. The aim 
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of the ES system is to intercept the emission from radar and communication of the 

target system. It is also used in EA to identify the frequency used by the adversary and 

take necessary actions to jam the emitter. 

FHSS is a spread spectrum technique where the frequency is switched 

randomly according to a pattern known to both communicating parties for the 

synchronized communication [1]. The pseudo-noise (PN) sequence is used to generate 

the random number to change the carrier frequency [10, 11]. FHSS is used in both 

military and civilian applications. Examples of the FHSS applications are drones [12], 

military radios like single channel ground and airborne radio system (SINCGARS) 

[13], and low-power applications such as Bluetooth and LoRa [14]. Drones for 

example use FHSS to avoid interference from other drones by using a hopping 

sequence that is pre-shared between a sender and a receiver and each drone has a 

unique identification number programmed by its manufacturer. Thus, multiple drones 

can be flown in the same area without interfering with each other. FHSS is employed 

by the military to avoid eavesdropping and jamming by initializing the radio with an 

accurate time of day (TOD), a word of the day (WOD), and a network (NET) number 

[15]. Furthermore, the signal emitted from an FHSS transmitter is spread in frequency 

over a large bandwidth to reduce interception by an adversary. The use of FHSS 

systems is allowed by the Federal Communications Commission (FCC) in unlicensed 

frequency bands such as 2.4 GHz and 5.8 GHz where a user does not need any licence 

to use the spectrum. This can lead to FHSS abuse, for example, the use of drones in an 

abusive manner could be a rogue device [16]. Examples of recent incidents related to 

drone abuse: an oilfield in Abqaiq, Saudi Arabia was attacked by drones on September 

14, 2019, which caused a 50% cut in oil production [17] and a bag of drugs was tried 

to be smuggled with a drone that was spotted by the police at Kranji, Singapore, on 

June 17, 2020 [18]. The military needs to detect the frequency of an FHSS signal used 

by its adversary through ES and use the information to apply EA. To prevent the 

misuse of FHSS based wireless technologies, a system is required to monitor, identify, 

and classify the signals. 
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1.2 Problem Statement 

FHSS spreads the signal over a wide bandwidth, where the carrier frequencies 

change rapidly according to a pseudorandom number making signal classification 

difficult [19, 20]. Furthermore, interference occurs between the FHSS-based wireless 

technology (Bluetooth and drones) and fixed-frequency wireless technology (Wi-Fi) 

due to the sharing of a common frequency band such as 2.4 GHz [12] [21]. Therefore, 

classification becomes more complex with the presence of additive white Gaussian 

noise (AWGN) and interference due to background signals. 

A machine learning algorithm requires training with a proper dataset to classify 

the various types of FHSS signals [22]. Ideally, a dataset size must be sufficiently large 

as well as balanced to optimize the classification performance. A pseudorandom 

sequence of hopping frequencies observed from an FHSS signal represents one 

observation of all the possible hopping sequences of the signal. Therefore, a technique 

is required that can derive the total number of possible hopping sequences of an FHSS 

signal to determine the observations in the dataset.   

Most machine learning algorithms assume that the training set is evenly 

distributed among classes [23]. However, in many real-world applications, the number 

of observations among classes is often imbalanced, which reduces the classification 

accuracy of a machine learning algorithm [24-26]. The number of observations of an 

FHSS signal depends on the number of hop frequencies. Therefore, a given set of 

FHSS signals with varying hop frequencies among the FHSS signals results in unequal 

observations, thereby building an imbalanced dataset. Thus, a method is required to 

balance the dataset for increased learning and decision-making capacity of a machine 

learning algorithm. 

Deep learning is the subset of machine learning, where a prime issue for signal 

classification is to pre-process a signal and represent it in an appropriate format [27-

29]. Furthermore, a set of accurately conditioned images is required in the dataset to 

train an image classification network. Therefore, a given set of FHSS signals needs to 

be transformed into precise conditioned images to train a deep learning algorithm. 
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The majority of the existing algorithms lack the complementarities among 

different features as well as the significance of features fusion [30, 31]. For example, 

traditional machine learning and deep learning algorithms use either handcrafted or 

image features for training. The fusion of the handcrafted features with convolutional 

neural network (CNN)-based image features can be an effective method to form more 

discriminating features for further improving the classification performance, where 

these two types of features are complementary. 

1.3 Research Objectives 

The following are the objectives of this research: 

1. To propose a technique that can derive the total number of possible hopping 

sequences of an FHSS signal by using the frequencies to determine the 

observations in the dataset. 

2. To develop a system of pattern recognition by using the appropriate parameters 

of the FHSS signals such as hop frequency and hop duration for the 

classification in the presence of AWGN and background signal. 

3. To perform the resampling techniques for balancing the dataset of the FHSS 

signals by making synthetic observations from the minority class observations 

for the effective training of a machine learning algorithm. 

4. To develop a hybrid system by fusing CNN based features with handcrafted 

features such as hop frequency and hop duration, which will be used as input 

to the three-layer fully connected network (TLFCN) for FHSS signals 

classification in the presence of AWGN and background signal. 

5. To evaluate the classification performance by using Monte Carlo simulation, 

box plots, mean average precision, and 𝐹1-score. 
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1.4 Scope of Work 

1. The signal of interest is the FHSS signal that is the type of spread spectrum 

signal. 

2. In this research, the signal at radio frequency (RF) is down-converted to the IF 

signal with the frequency range of 0 to 100 MHz. 

3. The spectrogram of the FHSS signals is produced by the squared magnitude of 

the short-time Fourier transform (STFT) to obtain the time-frequency 

representation (TFR). 

4. The parameters of the FHSS signal such as hop frequency and hop duration are 

estimated from the TFR of the FHSS signals. 

5. The estimated parameters of the FHSS signal such as hop frequency and hop 

duration are provided as input to the TLFCN. 

6. For deep learning, the size of the TFR of the FHSS signals is down-sampled to 

224×224×3 and used a two-dimensional (2D) input image to the CNN. 

7. For hybrid system, the residual network (ResNet) with 101 convolutional 

layers is used as deep feature extractor, whereas handcrafted features involve 

the estimation of hop frequency and hop duration from the TFR. These features 

are fused and used as input to the TLFCN.  

8. The fixed-frequency signal such as OFDM (Wi-Fi) is used as the background 

signal while interference is modelled as AWGN. 

9. The research is focused on the classification of FHSS signals in the presence 

of AWGN and the background signal (Wi-Fi signal). The signal direction of 

arrival is beyond the scope of this work. 

10. The implementation of this research is based on MATLAB simulation. This 

work can be used in real-applications that is beyond the scope of this work. 
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1.5 Research Flow 

Following are the steps for the flow of this research: 

i. Literature review: It includes vast accessible literature that is arranged in two 

portions. Basic concepts are studied which comprises spectrum monitoring, TF 

analysis, and machine learning techniques. In second portion, related 

techniques are reviewed according to the problem statements and research 

objectives. It contains analysis and parameter estimation of FHSS signals, 

sample size calculation, machine learning signal classification, and resampling 

and data augmentation techniques to balance the dataset. 

ii. Methodology: The developed approach is based on the studied literature to 

resolve the research problems. Methodology for this research is the following: 

a. Time-frequency analysis. 

b. Parameter estimation and deep features extraction. 

c. Development of dataset composition. 

d. Development of resampling techniques to balance the dataset. 

e. Development of machine learning techniques to classify FHSS signals. 

iii.  Experimental work: Experimental work is conducted as follows: 

a. The spectrogram of the FHSS signals is produced by the squared 

magnitude of the short time Fourier transform (STFT) to obtain the 

TFR. 

b. Parameters of the FHSS signals such as hop frequency and hop duration 

are estimated from the TFR, whereas the CNN is used for deep features 

extraction. 

c. Determining the number of observations to compose the dataset for the 

training and testing of TLFCN, CNN, and HCNN.  



 

7 

 

d. Handling the imbalanced dataset by making synthetic, duplicate, or 

augmented observations from the minority class observations. 

e. Classification of the FHSS signals is computed by the linear 

discriminant (LD), TLFCN, CNN, and hybrid CNN (HCNN). 

iv.  Analysis and discussion: Results achieved in the experimental work are 

discussed and the findings concluded are based on their analysis. 

1.6 Thesis Organization 

This thesis is organized into five chapters and the contents of each chapter are 

as follows: Chapter 1 begins with the research background by explaining a multi-signal 

environment, spectrum monitoring, and characteristics and applications of FHSS 

signals. It is followed by the problem statement that includes FHSS signals 

classification, dataset derivation, imbalanced dataset, pre-processing and 

representation of the signal, and deficiency of existing algorithms. Thereafter, the 

objectives of the work are set according to the problem statement to solve them. 

Finally, the scope of the work followed by the research flow is described.  

The literature review related to this study is presented in Chapter 2 which 

comprises spectrum monitoring, TF analysis, parameter estimation, machine learning 

and deep learning, and resampling and data augmentation techniques. All these 

research areas are comprehensively reviewed and summarized in Tabular form.  

Chapter 3 describes the methodology of the research flow with graphical 

representations and mathematical equations. It includes the signal model and its 

parameters, time-frequency distribution, parameter estimation, the composition of the 

dataset, imbalanced dataset handling, and machine learning signal classification. 

Experiment flows including explanations are incorporated at the end of Chapter 3.  

Results are shown and discussed in Chapter 4 which includes the time-

frequency representation of the FHSS with background signal, the plots of 
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classification performance, and cross-entropy error. Moreover, the classification 

performance is further explained by using the confusion matrix, box plots, mean 

average precision, 𝐹1-score, and significance analysis.  

In Chapter 5, the conclusions are made according to the research objectives. It 

is followed by the contributions of work, where the contributions are described in 

paragraph form and then summarized in points. Finally, future work recommendations 

are suggested at the end of the chapter. 
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