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ABSTRACT 

Microalgae such as Nannochloropsis sp. are single-cell organism, well known 
as a photosynthetic microorganism and have been identified as one of the most 
potential renewable feedstock for the third generation biofuels. Light quality and 
quantity are essential for a good growth of microalgae cultivation. In this research, 
lighting parametric study using light-emitting diode (LED) was conducted to analyse 
the effect of different light spectrum onto the growth of Nannochloropsis sp. 
cultivation. In addition, the effect of light intensity with different optical path length 
on different working volume culture was also evaluated. In order to validate a good 
growth of cultivation, culture  growth curve was analysed and maximum cell 
density was recorded. The study was performed in three stages of experimental 
photobioreactor (PBR) setup which is lab-scale, mock-up and scale-up PBR. In the 
lab-scale experiment (0.5  working volume), LED with red spectrum (wavelength 
660 ) and blue spectrum (wavelength 457 ) were compared to the white 
fluorescent light with same incident light intensity (100  at short 
optical path length (20 to 55 ). It was found that LED with combination of red 
and blue spectrum generated higher maximum cell density by 19% compared to the 
white fluorescent light, which recorded at 11.2 106 . In the mock-up 
PBR experiment (20  working volume), light intensity of red and blue LED module 
with narrow beam angle (55 ) was evaluated within 15 to 120  of optical path 
length by using variation of current supply (200 to 500 ). As the result, the 
maximum cell density recorded is 7.1 106  at 355  of light 
intensity. Additionally, the relationship between light intensity and culture cell 
density was also established at this stage. Next, the cultivation was performed 
continuously in the scale-up PBR with bigger working volume (30, 65 and 100 ) at 
100  optical path length. It was found that light saturated condition happened at 
cell density around 7.5 106 to 8.0 106  when the light intensity is at 
350 . The maximum cell density can be increased further to 
9.3 106  by applying higher light intensity (450 ). As a 
conclusion, LED with red spectrum promoted the growth in the exponential growth 
phase, while blue spectrum had a significant role during the linear growth phase 
especially in the higher cell density culture. Application of high intensity LED light 
with narrow beam angle was feasible to be used in internally illuminated PBR with 
longer optical path length. On top of these findings, a vertically stackable LED 
luminaire design concept was proposed to provide flexibility and to increase 
efficiency for mass cultivation operation using internally illuminated PBR. 
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ABSTRAK 

Mikroalga seperti Nannochloropsis sp. adalah organisma sel tunggal, terkenal 
sebagai mikroorganisma fotosintetik dan telah dikenal pasti sebagai salah satu bahan 
mentah boleh diperbaharui yang paling berpotensi untuk bahan api bio generasi 
ketiga. Kualiti dan kuantiti cahaya adalah penting untuk pertumbuhan yang baik bagi 
penternakan mikroalga. Dalam penyelidikan ini, kajian parametrik pencahayaan 
menggunakan diod pemancar cahaya (LED) telah dijalankan untuk menganalisa 
kesan spektrum cahaya yang berbeza terhadap pertumbuhan penternakan 
Nannochloropsis sp. Di samping itu, kesan keamatan cahaya dengan panjang laluan 
optik yang berbeza pada isipadu kerja kultur yang berbeza juga dinilai. Untuk 
mengesahkan pertumbuhan yang baik dalam penternakan, lengkung pertumbuhan 
kultur dianalisa dan ketumpatan sel maksimum direkodkan. Kajian telah dijalankan 
dalam tiga peringkat persediaan ujikaji fotobioreaktor (PBR) iaitu PBR skala 
makmal, skala kecil dan skala besar. Dalam ujikaji skala makmal (isipadu kerja 
0.5 ), LED dengan spektrum merah (panjang gelombang 660 ) dan spektrum 
biru (panjang gelombang 457 ) dibandingkan dengan lampu kalimantang putih 
dengan keamatan cahaya tuju yang sama (100  pada panjang laluan 
optik yang pendek (20 hingga 55 ). Didapati bahawa LED dengan gabungan 
spektrum merah dan biru telah menghasilkan ketumpatan sel maksimum yang lebih 
tinggi sebanyak 19% berbanding lampu kalimantang putih, yang telah dicatatkan 
pada 11.2 106 . Dalam ujikaji PBR skala kecil (isipadu kerja 20 ), 
keamatan cahaya modul LED merah dan biru dengan sudut pancaran sempit (55 ) 
telah dinilai di antara 15 hingga 120  panjang laluan optik dengan menggunakan 
variasi bekalan arus (200 ke 500 ). Hasilnya, ketumpatan sel maksimum yang 
direkodkan adalah 7.1 106  pada keamatan cahaya 355 . 
Di samping itu, hubungan antara keamatan cahaya dan ketumpatan sel kultur juga 
telah diperolehi pada peringkat ini. Seterusnya, penternakan dijalankan secara 
berterusan dalam PBR skala besar dengan isipadu kerja yang lebih besar (30, 65 dan 
100 ) pada panjang laluan optik 100 . Didapati bahawa keadaan tepu cahaya 
berlaku pada ketumpatan sel sekitar 7.5 106 ke 8.0 106  apabila 
keamatan cahaya adalah pada 350 . Ketumpatan sel maksimum boleh 
ditingkatkan lagi kepada 9.3 106  dengan menggunakan keamatan 
cahaya yang lebih tinggi (450 ). Sebagai kesimpulan, LED dengan 
spektrum merah menggalakkan pertumbuhan dalam fasa pertumbuhan eksponen, 
manakala spektrum biru mempunyai peranan penting semasa fasa pertumbuhan 
linear terutamanya dalam kultur berketumpatan sel lebih tinggi. Penggunaan lampu 
LED berkeamatan tinggi dengan sudut pancaran sempit sesuai digunakan dalam PBR 
bercahaya dalaman dengan panjang laluan optik yang lebih panjang. Di samping 
penemuan ini, konsep reka bentuk lampu LED boleh tindanan menegak telah 
dicadangkan untuk memberikan fleksibiliti dan meningkatkan kecekapan untuk 
operasi penternakan besar-besaran menggunakan PBR bercahaya dalaman. 
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CHAPTER 1 

 

 

INTRODUCTION 

1.1 Background 

With the increasing demand of energy and high rate of CO2 emission 

globally, renewable energy is expected to be not only as an alternative, but 

sustainable and clean energy source [1]. In transportation sector, renewable energy 

such as biofuels has emerged as solution to the increasing price and limited source of 

fossil fuel. They are theoretically and practically sustainable, renewable, 

environme

compared to the fossil fuel [2]. First generation biofuels are mainly limited to ethanol 

which is derived from starch, such as from feedstock of corn and potato (food 

source). Second generation biofuels are produced from non-food residues such as 

agricultural biomass which contains cellulose or lignin. While third generation 

biofuels are mainly produced from specially engineered crops, algae and microbial 

[3]. Commercially available biofuels today can be divided mainly into bioethanol 

and biodiesel. Currently United States, Brazil, Argentina and European Union are 

among the largest producers of biofuels. 

fossil diesel fuel in that it produces less SOx and particulate emissions when 

combusted. Compared to the conventional biodiesel which is mainly produced from 

vegetable or crops oil, algae-based biodiesel is categorised under advanced biofuel 

technology as the conversion technology is still undergoing extensive research and 

development process [4]. 

Microalgae offer advantages over crops such as simple growth requirement, 

biotechnological means. They are mainly divided into prokaryotic and eukaryotic. 
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Prokaryotic contains no chloroplas, no nucleus and have different gene structure 

compared to eukaryotic. They are largely known as cyanobacteria (blue-green 

bacteria) which are able to assimilate atmospheric nitrogen, but do not produce 

eukaryotic division consists of 

several groups which differ in pigment composition, biochemical constituents, 

ultrastructure and life cycle. Among the groups are Rhodophyta (red algae), 

Chlorophyta (green algae), Dinophyta (red-brown algae), Chrysophyta (golden 

algae) and Eustigmatophyta (eyespot algae). Microalgae can be found in both 

freshwater and seawater (saline) habitats [5]. 

There are at least two ways of microalgae growth; heterotrophic and 

phototrophic. In heterotrophic cultivation, microalgae utilize organic carbon sources 

for chemosynthesis process, without the needs of light energy. While in phototrophic 

growth, microalgae will transform carbon dioxide and light energy through 

photosynthesis into various forms of chemical energies [6]. Phototrophic microalgae 

cultivation can be divided to two kinds; outdoor cultivation system and indoor 

cultivation system. In outdoor cultivation, the system utilize the sunlight as the 

primary light source such as the popular open pond system and recently emerging the 

photobioreactor (PBR) system. On the other hand, indoor cultivation systems are 

being managed in a relatively well controlled environment or enclosed PBR, and the 

light source depends on -pressure 

sodium, metal halide and light-emitting diode (LED) [7].  

In terms of light aspect, there are several issues which are related to the 

cultivation of microalgae. Among them are gradiation of light, inconsistent lighting 

period, depth of light penetration, cell mutual shading and photoinhibition. These 

issues are generally discovered at the outdoor cultivation system, which is directly 

related to the nature of sunlight as the primary light source. Whereas for indoor 

cultivation system which utilizes 

wavelength or light spectrum, light intensity, light uniformity, form factor of 

luminaire, economics and energy consumption are been highlighted [4]. 
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1.2 Problem Statement 

An practical with economical cost, easiness of usage and 

maintenance are among important criteria required for a photobioreactor (PBR) to 

cultivate microalgae in commercial scale. Conventional open ponds (outdoor system) 

method have apparently reached their upper limit to be improved further, mainly due 

by environmental variables [8]. Enclosed PBR running at outdoor (using sunlight 

energy) has emerged as solution to the contamination issue, however at certain level 

aspect [9]. Unfortunately, current solutions provided to improve these issues imposed 

another complexity in design and engineering, and in few cases failed to perform in 

commercial scale [10]. 

In this respect, enclosed PBR running at controlled environment (indoor) 

would provide a potential solution. Due to restriction of sunlight availability in 

indoor environment, the usage of artificial light has become crucial and need for the 

details of study at the basic principle and application level. 

1) It is quite difficult to achieve similar characteristics of sunlight by 

using the artificial light, in term of energy (intensity), uniformity, 

spectrum range and so on. One of the steps in order to replace the 

sunlight is to find an artificial light which can accommodate the basic 

requirements of microalgae to grow. Photosynthetic response of 

chlorophyll pigments in plants and microalgae have been studied by 

researchers, and based on this various studies have attempted to 

proposed a suitable light. For an example, some studies proposed the 

usage of fluorescent light, but there is lack of analysis to determine 

the suitable correlated color temperature (CCT). Recently, with the 

availability of LEDs in various color (spectrum), numerous studies 

have been done on microalgae cultivation. However, from the overall 

view it was found that the results are varied for each kind of 

microalgae species. As such an analysis and recommendation is 
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needed in order to select a suitable type of artificial light to replace the 

function of sunlight for an indoor microalgae cultivation. 

2) In actual situation of microalgae cultivation, in term of lighting aspect 

the microalgae growth condition does not rely on the subject of 

spectrum solely. Rather, it is a combination of other lighting factors as 

well such as intensity, penetration depth, coverage area and so on. 

These factors become more crucial if the volume of microalgae 

cultivation is increased (longer optical path length) or at higher 

density of microalgae. Due to this, there is necessity to understand the 

inter-relation between the light characteristic, volume of the culture 

and density of microalgae, especially for an indoor system which 

concern on the energy consumption. 

3) Each type of PBR has their advantages or disadvantages in terms of 

microalgae cultivation efficiency and has been widely studied before, 

especially for outdoor environment. However there is lack of study in 

relation to the suitability of lighting luminaire for PBR at indoor 

environment. In general, the usage of readily available lighting 

luminaire onto PBR may not be applied easily due to the difference of 

application which it has been designed originally. There should be a 

design consideration in order to maximize the transfer of light energy 

to the microalgae, easiness of usage for daily operation and routine 

maintenance. Based on the understanding of the light characteristic, 

microalgae growth condition and cultivation process in actual PBR, 

there is a requirement to propose and develop a suitable lighting 

luminaire for such application. 

4) In general, there is still lack of commercialization in the microalgae 

cultivation industry in Malaysia, especially for the biofuel application 

which required expertise in the upstream and downstream process. In 

terms of mass cultivation at outdoor environment, fluctuation of 

weather (high temperature and raining) is one of the main 
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consideration and risk factor. While in the indoor environment, there 

is still lack of study on the feasibility for the medium to high volume 

scale of cultivation which required by commercial level. 

1.3 Research Questions & Objectives 

Enclosed PBR has been actively developed since few decades as alternative 

to conventional open ponds system. Flat plate, tubular and column type PBR are 

 [11]. All these 

PBRs are developed to improve open ponds system, with the light source is sunlight 

rays  outdoor cultivation in mind. The main factor in determining suitable PBR for 

this case is to select the high surface to volume ratio, in order to increase the capacity 

of capturing solar rays (external illumination) [12]. On the other hand, enclosed PBR 

which is  which need a different 

approach since the light and energy source are limited. Thus, below are the 

objectives of this research: 

1) To study the effect of different light spectrum (wavelength) provided 

by LED light on the growth and lipid content of Nannochloropsis sp. 

cultivation; compared with the standard white fluorescent light. The 

study was conducted in a lab scale condition (working volume 0.5 ). 

2) To investigate the LED light characteristic in deeper volume (longer 

optical path length) and the relationship between light intensity to the 

volume of culture and microalgae density. The study was conducted 

in a mock-up PBR (working volume 20 ) using internally 

illumination method with selected light spectrum and beam angle. 

3) To verify the good growth of Nannochloropsis sp. cultivation by 

using LED light in an internally illuminated column PBR from 

medium to high volume (working volume 30 to 100 ). 
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1.4 Research Scope 

The research was conducted within the following scopes: 

1) Nannochloropsis sp. is the microalgae strain being used for this 

research due to the high photosynthetic efficiency and lipid 

productivity characteristic. The Nannochloropsis sp. is cultured in 

process is conducted in an indoor environment (controlled room) with 

room temperature within 23 to 25 , while pH was monitored and 

controlled within 7 to 8. In each experiment, the sub-culture was 

being prepared up to 10% from the total working volume. 

2) LED is being used for this research due to the high energy efficiency 

characteristic and multi options in terms of light wavelength and beam 

angle compared to other type of artificial light source. The light 

spectrum which being selected are blue (457 ) and red (660 ), 

while the beam angle is in the range of 55 to 130 . 

3) Column type PBR is being chosen as a basic form factor of PBR due 

to its suitability for the application of internal illumination method 

(indoor cultivation type). The working volume used for the cultivation 

in PBR is in the range of 20 to 100 , while the optical path length is 

within 100 to 120 . 
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1.5 Research Significance 

This research is expected to contribute in solving some of the industrial issues 

in attempting for commercialization and mass cultivation of microalgae indoor, 

particularly on the aspect of lighting parameters selection (spectrum, intensity, etc) 

and luminaire development (optical beam, optical path length, etc), as well as 

configuration of PBR (form factor, size, volume, illumination method, etc). In future, 

it is expected to lead a way to commercialize the microalgae cultivation industry in 

Malaysia, not only for the application of biodiesel but also for other potential 

segments such as pharmaceuticals, nutrition, pigments, aquaculture or CO2 

sequestration [13]. 

1.6 Thesis Outline 

This thesis contains six chapters including this chapter (Chapter 1). In 

Chapter 2, there are mainly three parts of the literature review. The first part presents 

the general overview of microalgae and cultivation process in general. The second 

part presents the overview of open pond and various PBR which have been 

developed to cultivate microalgae in outdoor and indoor. Meanwhile, in the third part 

it reviews the light aspect which is related to the cultivation of microalgae and 

summary of artificial light usage in the past studies.  

Chapter 3 explains the methodology used to conduct the research. In this 

chapter, the research flowchart is explained at the beginning of the chapter followed 

by the description of each experiment . In general, the experiments are 

being divided to three different stages, which is lab scale experiment, followed by 

mock-up PBR experiment and finally scale-up PBR experiment. The parameter in 

each experiment is presented in this chapter, while the considerations which were 

taken for each stage are discussed in the next chapter. 
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Chapter 4 presents the result and analysis of each experiment, while at the 

ameters are being 

discussed. Comparison of the result between our study and others are being presented 

accordingly. 

Chapter 5 concludes the research findings. Recommendations and 

suggestions to advance the research work are stated in this chapter. 
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