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ABSTRACT 

Load-bearing structures made of carbon fiber-reinforced polymer (CFRP) 

composite laminates, such as the skin of aircraft wings, helicopter rotors, and wind 

turbine blades, are likely to experience time-varying loads. The fluctuating stresses 

could result in fatigue damage and failure of the laminates in the form of matrix 

cracking, fiber breakage and buckling, fiber/matrix debonding, and interface 

delamination. The latter is a significant damage mechanism in view of the relatively 

weak interlaminar bonding. In this respect, the current research has developed the 

interlaminar damage-based fatigue life model of fibre-reinforced polymer (FRP) 

composite laminates. The model incorporates the observed continuous cyclic 

degradation of interlaminar properties. The bi-linear traction-relative displacement 

softening rule for the cohesive zone model (CZM) is extended to accommodate the 

normalized interlaminar strength and stiffness degradation under the fatigue load 

cycles. The normalized fatigue life model accounts for the effect of mean stress on the 

observed interlaminar fatigue lives. Fatigue crack nucleation (separation) is governed 

by the interface's critical strain energy release rates. Hybrid finite element-

experimental approach is employed to establish material parameters for the quasi static 

CZM. The experimental fatigue data for Mode I and Mode II of CFRP composite 

laminates from  literature is employed to extract the residual properties. The 

normalized properties versus normalized fatigue life curves are then quantified based 

on the “wear-out” failure model. The curves are characterized by the curve fitting 

parameters  , λ, γ, μ, and ϕ for the interlaminar tensile strength, stiffness, and 

fracture energy. In view of the relatively large number of load cycles to capture the 

initiation and propagation of the interlaminar crack, the load cycle block approach is 

devised to improve computational efficiency. The model is coded in the UMAT 

Subroutine of Abaqus FE software. It is examined for interlaminar fatigue of CFRP 

composite laminate under Mode I , Mode II and mixed-mode loading conditions with 

a stress ratio, 𝜅 = 0.11, 0.15, and 0.1, respectively. The damage begins at 

approximately 8200 cycles and interface crack extends after accumulating 14100 

applied fatigue cycles for Mode I load case. The damage begins at approximately 

220000 cycles and interface crack extends after accumulating 350700 applied fatigue 

cycles for Mode II load case. The stress is highly concentrated at the crack front region. 

The FE-predicted fatigue lives are comparable with measured data and within the 

experimental scatter, hence validating the model. The crack tip opening and sliding 

displacements evolve with an initially slow rate of 2.6 10-9 and 1.85 10-10 mm/cycle 

respectively up to the onset of fatigue crack nucleation event at approximately 188800 

cycles and then peaks at 1.5 10-7 and 7.1 10-8 mm/cycle respectively as the interface 

crack begins to accelerate after accumulating 284700 applied fatigue cycles for mixed 

mode flexure fatigue loading. The developed model will benefit various industries, 

including aerospace, automotive, and maritime, involved in the structural design for 

performance, reliability prediction, life extension and failure investigation of CFRP 

composite laminate structures. 
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ABSTRAK 

Struktur galas beban diperbuat daripada komposit polimer bertetulang gentian 

karbon (CFRP) lamina, seperti kulit sayap pesawat, rotor helikopter, dan bilah turbin 

angin, berkemungkinan mengalami beban yang berubah dengan masa. Tegasan turun-

naik boleh mengakibatkan kerosakan lesu dan kegagalan lamina dalam bentuk 

keretakan matriks, pemecahan gentian dan lengkokan, penyahikatan gentian/matriks, 

dan pelekangan antara muka. Memandangkan ikatan antara lamina yang agak lemah, 

kegagalan lamina adalah mekanisme kerosakan yang penting. Oleh itu, penyelidikan 

semasa telah membangunkan model hayat lesu berasaskan kerosakan antara lamina 

bagi lamina komposit polimer bertetulang gentian (CFRP). Model ini memasukkan 

degradasi sifat antara lamina dalam kitaran berterusan. Peraturan pelembutan sesaran 

tarikan relatif dwi-linear untuk model zon kohesif (CZM) dilanjutkan untuk 

menampung kekuatan antara lamina ternormal dan degradasi kekakuan di bawah 

kitaran beban lesu. Model hayat kelesuan ternormal mengambil kira kesan tekanan 

min ke atas hayat lesu antara lamina yang diperhatikan. Penukleasan (pemisahan) retak 

lesu dikawal oleh kadar pelepasan tenaga terikan kritikal antara muka. Pendekatan 

hibrid eksperimen dan kaedah unsur terhingga (FE) digunakan untuk mendapatkan 

parameter bahan untuk CZM kuasi-statik. Data lesu dari eksperimen untuk Mod I dan 

Mod II komposit lamina CFRP diambil daripada literatur untuk memperolehi sifat-

sifat sisa lesu. Sifat-sifat ternormal bahan berbanding lengkung-lengkung hayat lesu 

ternormal kemudian dikira berdasarkan model kegagalan "haus". Lengkung-lengkung 

itu dicirikan oleh penyuaian lengkung  , λ, γ, μ, dan ϕ untuk kekuatan tegangan 

antara lamina, kekakuan, dan tenaga patah. Memandangkan bilangan kitaran beban 

yang agak besar diperlukan untuk permulaan dan perambatan retakan antara lamina, 

pendekatan blok kitaran beban dihasilkan untuk meningkatkan kecekapan pengiraan. 

Model ini dikodkan dalam perisian subrutin UMAT untuk Abaqus FE. Antara lamina 

lesu diperiksa bagi lamina komposit CFRP di bawah Mod I, Mod II dan keadaan 

bebanan mod campuran dengan nisbah tegasan masing-masing, κ = 0.11, 0.15, dan 

0.1. Kerosakan bermula pada kira-kira 8200 kitaran dan retak antara muka memanjang 

selepas 14100 kitaran lesu bagi kes beban Mod I. Bagi kes beban Mod II kerosakan 

bermula pada kira-kira 220000 kitaran dan retak antara muka memanjang selepas 

350700 kitaran lesu bagi. Tegasan sangat tertumpu di kawasan hadapan retak. Jangka 

hayat lesu yang diramalkan oleh FE adalah sebanding dengan data terukur eksperimen 

dan didalam julat serakan data, mengesahkan model tersebut. Pembukaan hujung retak 

dan sesaran gelangsar berkembang dengan kadar yang pada mulanya perlahan iaitu  

masing-masing 2.6×10-9 dan 1.85×10-10 mm/kitaran, sehingga permulaan nukleasi 

retakan lesu pada kira-kira 188800 kitaran dan kemudian mencapai nilai tertinggi 

masing-masing pada 1.5×10-7 dan 7.1×10-8 mm/kitaran apabila retak antara muka mula 

menjadi semakin cepat selepas 284700 kitaran lesu bagi beban lesu lentur mod 

campuran. Model yang dibangunkan akan memberi manfaat kepada pelbagai industri, 

termasuk aeroangkasa, automotif, dan maritim, yang melibatkan reka bentuk prestasi 

struktur, ramalan kebolehpercayaan, lanjutan hayat dan penyiasatan kegagalan 

struktur lamina komposit CFRP. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research Background 

Fiber-reinforced polymers (FRP) composite laminates are widely used in 

advanced structural load-bearing applications where a high strength-to-weight ratio, 

and high stiffness are desirable. In addition, the laminates offer design flexibility in 

achieving optimum directional properties. Example of the applications include 

aerostructures such as fuselage and spoilers, skin of wind turbine blades, automobile 

body and floor structures, and pressure vessels. Typical operating load of these 

structures consists of both quasi static and fatigue loading conditions. The applied load 

of these structures is carried by the laminas and transferred across the interfaces of the 

laminates. The relatively low interlaminar strength and toughness have been observed 

to cause interface delamination, particularly under the fluctuating stresses [1]. The 

presence of harsh operating environment, such as high humidity and temperature 

further accelerates the damage and failure process of the material.  

Such damaging scenarios of the operating conditions affect the reliability of 

the FRP composite laminate structures. Consequently, a robust, yet accurate 

interlaminar fatigue damage model is indispensable as tool for thorough understanding 

of the mechanics of deformation and failure of the material, and for the reliability 

assessment exercises and fatigue life prediction of the laminated composite structures. 

FRP composite laminate structures, such as aircraft fuselage and spoilers, and wind 

turbine blades, are constantly subjected to fluctuating load, in addition to sustaining 

their own mass. The fluctuating load cycles induce fatigue damage that evolves over 

the operating lifetime of the structure. The different types of fatigue damage, including 

interlaminar fatigue, and laminar tensile fatigue contributes to the damage leading to 

premature failure of the material. Static damage only occurs when the stress exceeded 

the threshold level for damage initiation. In addition, the static part of the fluctuating 
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stress influences the resulting material damage evolution process through the mean 

stress effect. Consequently, the fatigue damage and its predictive model is more 

significant than the static counterpart. 

The relatively high amplitude and mean stress components of the fatigue load 

cycles have contributed to different modes of failure of FRP composite laminates. 

These include matrix yielding and cracking, fiber/matrix interface debonding, fiber 

pulled-out, fiber buckling and fracture, and interface delamination [2]. Interface 

delamination is the prominent failure mechanism owing to the relatively low 

interlaminar strength and toughness [3,4]. Matrix cracking in the adjacent lamina has 

also been observed to cause interface delamination [5,6]. The occurrence of interface 

delamination has been shown to cause significant degradation in stiffness of the 

material [7,8]. A 27% drop in the stiffness of carbon fiber-reinforced polymer (CFRP) 

composite laminates with interface crack has been reported [8].  

In addition, a 9% reduction of the flexural modulus is reported for the CFRP 

composite laminate specimen with a pre-existing interface crack with a length-to-span 

ratio of 0.25 after enduring 50,000 flexural load cycles [9]. In Mode I crack loading, 

the growth behavior of the near-threshold interface fatigue cracks in CFRP composite 

laminates is dominated by matrix cracking and interface delamination [10]. These 

observations suggest significant susceptibility to failure of the composite structural 

member resulting from interface delamination. Again, this calls for accurate 

interlaminar fatigue damage and failure models for structural reliability assessment of 

FRP composite laminates. To anticipate damage development in the laminated 

composite structure during service lifetime, fatigue damage models must be 

adequately developed by adapting the damage mechanics approach.  

The degradation of material properties represents the progression of 

interlaminar damage in FRP composite laminates. However, because of the wide range 

of FRP laminate design configurations, determining degrading properties alone 

through testing is impractical. Therefore, modelling behavior in response to the applied 

load is preferable to predicting material performance during fatigue loading 

conditions. An accurate interlaminar fatigue damage model can aid in the improvement 
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of FRP composite structure design. Consequently, a robust yet accurate interlaminar 

fatigue damage model is indispensable for a thorough understanding of the mechanics 

of deformation and failure of the material and the reliability assessment exercises and 

fatigue life prediction of the laminated composite structures. 

The focus of this study is on representing the interlaminar fatigue damage in 

the damage-based failure model. This research contributes to developing a damage-

based model for interlaminar fatigue of FRP composite laminate structures. The 

damage-based failure model is integrated into a commercial finite element analysis 

(FEA) software and employed to examine the interlaminar fatigue damage and failure 

processes for the reliability assessment in CFRP composite laminates under individual 

and mixed-mode interface loading conditions. 

1.2 Statement of the Research Problem 

The damage development in an FRP composite interface during fatigue loading 

conditions is anticipated in this study using a damage model based on the degradation 

of material properties. The laminate's weaker interface influences the primary failure 

mechanism in an FRP composite laminate, the weakest link in FRP composite 

laminates. Therefore, it is essential to deal with this issue. This research addresses the 

central question of “How to develop a validated damage-based interlaminar fatigue 

model of FRP composite laminates for reliability assessment of the composite 

structures under the general load conditions”. 

1.3 Research Objectives 

This study aims to develop a new damage-based interlaminar fatigue life model 

for FRP composite laminates. The specific objectives are:  
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1. To establish interlaminar quasi static and residual properties and damage model 

parameters for CFRP composite laminates through combined experimental-FE 

approach. 

2. To develop a validated damage-based interlaminar fatigue life model for fiber-

reinforced polymer (FRP) composite laminates. 

3. To quantify the mechanics of brittle interfaces and establish the reliability of 

CFRP composite laminates in mixed mode fatigue loading conditions. 

 

1.4 Scope of Study 

The present study focused on quantifying the mechanics of interlaminar 

damage process and reliability assessment of CFRP composite laminates and adhered 

to following scope: 

i. The interlaminar fatigue damage model is developed based on UD laminates 

at the mesoscale. For the extraction of residual properties, data from literature 

is employed for cyclic loading conditions.  

ii. The quasi static tests are conducted in accordance with the ASTM D5528 and 

ASTM D7905 for Mode I and Mode II respectively, at room temperature and 

in laboratory air conditions. Only load-displacement data and fracture energy 

can be obtained from these static tests. 

iii. Constant amplitude fatigue loading is assumed for the development of the 

model. The load cycle-block technique is used to calculate cumulative fatigue 

damage. 

iv. The damage-based model is implemented in the FE software ABAQUS 2017 

through a user-written subroutine UMAT to validate the model. 

v. 3D elements are used in the FE Model preparation. 
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1.5 Significance of Study 

The degradation of residual fatigue properties dictates the accumulation of 

interlaminar fatigue damage in the FRP composite laminates. The residual properties 

are normalized to the quasi static properties to obtain normalized degradations of 

properties. As a result, without large campaigns of experimental testing, the developed 

methodology may be generalized to any set of properties for carbon-based FRP 

composites under varied stress ratios. Furthermore, the methodology can be used for 

any FRP composite laminate configuration. Developing such a methodology and 

prediction model will meet industry needs, particularly in lowering the number of 

experimental tests. Therefore, the developed model will benefit various industries, 

including aerospace, automotive, and maritime, involved in the structural design for 

performance, reliability prediction, life extension and failure investigation of FRP 

composite laminate structures. 

1.6 Thesis Layout 

Chapter 1 provides an overview of composite laminates and the issues of 

simulating and analysing them for the industrial sector. The problem statement, scope, 

and objectives are then defined. The limitations of this study's scope are being 

highlighted.  

The existing knowledge on general loading of interfaces, cohesive zone model, 

failure modes of composite laminates and failure process of interfaces under 

monotonic and fatigue loading, are all covered in Chapter 2. 

Chapter 3 elaborates on the research methodology for the current work. A 

novel interlaminar damage-based fatigue life model based on fatigue properties 

degradation has been introduced. The basis for obtaining fatigue degradation 

properties via interrupted fatigue tests is elaborated. A methodology based on a hybrid 

experimental-computational approach is adopted to determine the interface properties 

and damage model parameters under quasi static and cyclic loading. The methodology 
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for implementing the damage model into FE software and its validation through case 

studies is introduced. 

The explanation for the development of the interlaminar fatigue damage model 

and results for monotonic loading of interface are presented in Chapter 4. The load 

cycle block approach and its associated features are explained in this chapter.  

The validation outcomes of the model, which were demonstrated in the FE 

simulation for selected cases, are detailed in Chapter 5. The model is validated for 

individual Mode I and Mode II loading conditions. 

Chapter 6 elaborates on the capabilities of the newly developed interlaminar 

fatigue damage model to quantify the mechanics of interlaminar damage process of 

CFRP composite laminates in mixed mode loading conditions. 

The key conclusions related to the methodology and damage model are detailed 

in Chapter 7. In this chapter, additional work was suggested to expand the knowledge 

base in this research area. 
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