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ABSTRACT 

In high-performance direct torque control (DTC) drive systems, the torque 

and flux components are always decoupled to establish a fast instantaneous torque 

response. Furthermore, the rated flux is always applied to ensure maximum torque 

capability during the torque dynamic even at full load conditions. However, most of 

the time, the drive normally operates at a lower than the full-load condition, and 

operating the drive at rated flux reduces its efficiency. To overcome this problem, an 

optimal efficiency DTC drive is normally employed whereby the flux is set to an 

optimal value that produces maximum efficiency whenever the drive is operated 

below its rated load conditions. However, to ensure fast dynamic torque, the rated 

flux will be set during transient states, and a new optimal flux has to be recalculated 

for the new operating condition once the steady-state speed is reached. Two 

problems are faced with this method: (i) it will take some time to calculate the new 

optimal flux after the transient states, and (ii) the dynamics torque will be sluggish 

due to the poor flux response during the step from the optimal value to the rated 

value. To overcome the first problem, a new method is introduced in this thesis that 

instantaneously calculates the reference flux to a value that is almost equal to the 

optimal flux, called the High-Efficiency Flux Reference (HEFR). The calculation of 

the HEFR is based on the load torque and is obtained almost immediately with no 

convergence time. The second problem is tackled by introducing a modified voltage 

vector constructed based on the initial and final values of the flux reference. The 

effectiveness of the proposed method is studied through simulation using MATLAB 

and verified experimentally. In the experiment, a 186 W induction motor is used, 

with the proposed algorithm implemented using dSPACE DS1104 controller board 

and Xilinx FPGA controller board. It is found that at steady-state, the drive 

efficiency using HEFR is almost similar to the conventional optimal efficiency DTC, 

which is 63% and 72% at the speed of 70 rad/s and 90 rad/s, respectively. However, 

with the HEFR, the drive efficiency during the transients is improved by 4%. The 

rise time of the torque with the modified voltage vectors was measured as 1.64 ms,  

and has improved to 1.2 ms when it is implemented with the HEFR.  
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ABSTRAK 

 Dalam sistem pemacu kawalan tork terus (KTT) yang berprestasi tinggi, 

komponen tork dan fluks sentiasa dipisahkan bagi mewujudkan tindak balas tork 

yang pantas. Tambahan pula, fluks terkadar sentiasa digunakan untuk memastikan 

keupayaan tork maksima dalam keadaan beban penuh. Walau bagaimanapun, dalam 

kebanyakan masa, pemacu biasanya beroperasi dalam keadaan yang lebih rendah 

daripada keadaan beban penuh, dan pengendalian pada fluks terkadar akan 

mengurangkan kecekapannya. Untuk mengatasi masalah ini, kecekapan optimum 

pemacu KTT biasanya digunakan untuk menetapkan nilai fluks optimum yang 

menghasilkan kecekapan maksimum apabila pemacu dikendalikan pada beban yang 

rendah. Walau bagaimanapun, untuk memastikan tork dinamik pantas, fluks terkadar 

akan digunakan semasa fana, dan fluks optimum baharu perlu dikira semula untuk 

keadaan operasi baharu sebaik sahaja keadaan kelajuan mantap dicapai. Dua masalah 

akan dihadapi dengan kaedah ini: (i) mengambil masa untuk mengira fluks optimum 

baharu selepas fana, dan (ii) dinamik tork akan menjadi lembap kerana tindak balas 

fluks yang lemah semasa perubahan langkah dari fluks optimum ke fluks terkadar. 

Untuk mengatasi masalah pertama, kaedah baru diperkenalkan dalam tesis ini bagi 

mengira fluks dengan serta-merta yang nilainya hampir sama dengan fluks optimum, 

dipanggil Fluks Rujukan Berkecekapan Tinggi (FRBT). Pengiraan FRBT adalah 

berdasarkan tork beban dan diperolehi hampir serta-merta. Masalah kedua ditangani 

dengan memperkenalkan vektor voltan yang diubah suai berdasarkan pada nilai awal 

dan akhir fluks. Keberkesanan kaedah yang dicadangkan dikaji melalui simulasi 

MATLAB dan disahkan melalui eksperimen. Dalam eksperimen, motor aruhan 186 

W digunakan, dengan algoritma yang dilaksanakan mengguna papan pengawal 

dSPACE DS1104 dan papan pengawal Xilinx FPGA. Adalah didapati bahawa dalam 

keadaan mantap, kecekapan pemacu yang menggunakan FRBT hampir sama dengan 

kecekapan optimum konvensional KTT, iaitu 63% dan 72% pada kelajuan 70 rad/s 

dan 90 rad/s. Walau bagaimanapun, dengan FRBT, kecekapan pemacu semasa fana 

meningkat sebanyak 4%. Masa menaik untuk tork dengan vektor voltan yang diubah 

suai diukur sebanyak 1.64 ms, dan telah bertambah baik kepada 1.2 ms apabila ia 

dilaksanakan bersama FRBT. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Development of Vector-Based Control Drive System 

 Initially, the direct-current (DC) motor has been used widely in the variable 

speed operation due to its mechanical construction that is able to produce the 

orthogonal flux and torque. In this simple control structure, the decoupled flux and 

torque control can be controlled directly using the respective field and armature 

current. In other words, the instantaneous torque response can be achieved by 

varying the armature current and keeping the field current constant. However, the 

presence of brushes and commutator introduces several disadvantages. The DC 

motor requires regular maintenance, has limited speed due to the commutator 

capability, is expensive, and cannot be operated under an explosive or corrosive 

environment. These problems can be solved by using the alternating-current (AC) 

motor, which has a simple and rugged construction, robust to heavy loads, is cheaper, 

does not require regular maintenance and can operate at a higher speed. 

 There are two broad categories of control techniques in AC motors: scalar 

and vector controls. The scalar control regulates the magnitude and frequency of the 

stator voltage or stator current, whereas in vector control, the instantaneous position, 

magnitude and frequency of the voltage vector, current vector and flux vector are 

controlled. For scalar control, the most commonly used method is the constant volts 

per hertz (V/Hz), which maintains the motor-rated magnetic flux by controlling the 

ratio of the voltage magnitude (V) and the frequency (Hz). Meanwhile, two widely 

adopted techniques used in vector control are Field-Oriented Control (FOC) and 

Direct Torque Control (DTC). In FOC, the flux and torque are controlled via the 

stator currents, whereas in DTC, the flux and torque are controlled directly by 

selecting the suitable voltage vectors of the voltage source inverter. 
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 The FOC was invented in the early 1970’s by F. Blaschke, who was an 

engineer at Siemens. In FOC, the DC motor theory was applied in controlling the 

induction machine. This method decouples the flux and torque by controlling the 

orthogonal flux-producing and torque-producing currents in order to produce a 

similar performance as the DC motor [5]. The FOC can be further classified as either 

direct or indirect, depending on how the flux position is obtained. The orientation of 

the rotating frame can either be fixed to the stator flux, rotor flux or magnetising flux 

[2, 3, 5, 6]. In direct FOC (invented by F. Blaschke), the position of the flux which is 

used for the frame transformation, is obtained from the estimated flux using the 

terminal variables (voltage and current), as shown in Figure 1.1 (a). This method 

requires the knowledge of the rotor current vector that relies on the sensing devices 

(i.e., Hall-Effect current sensors). The deviation in estimated angular position may 

occur due to the error in the current measurement and the parameter mismatch in the 

flux model, which will affect the system’s performance. To overcome this, the 

indirect FOC was introduced by K. Hasse. By using this method, the knowledge of 

flux vectors is not required. As shown in Figure 1.1 (b), the angular position is 

calculated by adding the measured motor speed and slip speed, which are obtained 

from the reference values (torque and flux references). Due to the relatively simpler 

implementation compared to direct FOC, this method is more popular in industrial 

applications [2]. Over the past few decades since it was introduced, there have been 

tremendous improvements introduced to FOC, which can be seen from the huge 

number of published papers related to FOC. 

 One aspect of the improvements in FOC which is related to the work in this 

thesis, is the torque dynamic. Instead of maintaining the flux-producing current at its 

rated value to improve the torque response, the current shifting between the flux-

producing and torque-producing currents has been proposed in [7, 8]. Initially, the 

current of converters in [7] is all shifted to the flux-producing current. When the 

rotor flux increases to a high value, all currents are then shifted to the torque-

producing current. Although the flux-producing current reference is removed, the 

rotor flux is still sustained due to the slow decaying of the rotor current. On the 

contrary, in [8], the flux-producing current is initially increased to twice of current 

limit in order to build up the rotor flux. At the same time, the torque-producing 

current is increased too before the flux-producing current is reduced after a few 
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milliseconds. The research work in [7] and [8] indicate that field flux control plays 

an important part in order to improve the torque dynamic. Even when the system is 

in the field-weakening region, the torque capability can be maximised by introducing 

a current regulation algorithm [9] to control the torque. In [9], the flux-producing 

current command is determined by controlling the zero time of space vector 

modulation (SVM) to the desired value, whereas the torque-producing current is 

determined from the torque command and flux-producing current. But when the 

maximum voltage angle is reached, the controller maximises both the applied voltage 

and slip frequency to provide the maximum torque capability to the motor. 

 The frame transformation, pulse-width modulator (PWM), and current-

control loop that are required to control the torque and flux in the FOC drive can be 

eliminated in the DTC drive, which was introduced by Depenbrock [10] and 

Takahashi-Noguchi [11]. Due to its instantaneous torque response, high-efficiency 

operation, and relatively more straightforward implementation than FOC [11], its 

popularity has tremendously increased in industrial motor drive applications since 

ABB Industry first commercialised it in 1996 [12]. This system is less dependent on 

the motor’s parameters and produces a simpler control structure and better transient 

performance compared to the FOC system [11, 13, 14]. In DTC, the motor torque 

and stator flux are controlled directly by applying the voltage vector to satisfy their 

demands. In contrast, the FOC drive regulates the torque and flux based on 

respective current components and thus requires a current-control loop. Since the 

torque and flux are directly controlled using selected voltage vectors, the delay 

associated with the current-control loop and PWM in FOC is removed, resulting in 

faster torque dynamics.  
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 In recent decades, the implementation of DTC using a permanent magnet 

synchronous machine (PMSM), which was introduced by Zhong et al. [15], is 

competing with the induction machine-based DTC. Since the field winding produced 

by the rotor circuit is substituted with the permanent magnet, the rotor copper loss is 

eliminated, leading to higher efficiency and more compact than the induction 

machine [2]. However, using a permanent magnet will increase the cost and might 

produce the demagnetisation effect that reduces the air-gap flux density in the 

machine. Even though it has higher efficiency compared to induction machines, 

recycling the devastated magnet material will cause another problem [16, 17] (e.g., 

global pollution and climate change), especially when it is used in large demand. In 

this work, the DTC for the induction machine is chosen; the focus is to improve the 

efficiency and dynamic torque of the basic DTC drive system by introducing some 

modifications to the existing control strategy.  

 

(a) 

 

(b) 

Figure 1.1 Control structures of (a) Direct FOC, and (b) Indirect FOC 
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1.2 Overview of Direct Torque Controlled Induction Machine 

 DTC was introduced by Takahashi and Noguchi [11] as an alternative to the 

popular FOC for high-performance induction motor drive applications. As shown by 

Figure 1.2 (a), the main components of DTC for induction motor drive are a pair of 

hysteresis comparators (one for each torque and flux), a look-up table, a three-phase 

voltage source inverter (VSI), and a stator flux and motor torque estimators. The 

stator flux and motor torque are controlled directly and independently using the 

respective two-level and three-level hysteresis comparators. The outputs of the 

hysteresis comparators and stator flux position are used to select the voltage vectors 

from the look-up table. With a constant flux reference, the stator flux’s locus is 

circular and bounded within its hysteresis band. DTC is typically used for low and 

medium-power applications with high switching frequencies. 

 An almost similar control strategy to DTC is known as Direct Self Control 

(DSC), which was invented by Depenbrock [10], is illustrated in Figure 1.2 (b). In 

DSC, the main components required are four hysteresis controllers (three for the flux 

and one for the torque), electronic signal selectors, a three-phase VSI, and the stator 

flux and motor torque estimators. The switching states are regulated based on the 

errors between the reference and the estimated stator flux for each phase. In order to 

produce the active voltage vectors, the switching states in each phase are monitored 

and triggered individually by a hysteresis comparator. The torque is controlled by 

another hysteresis comparator which is used to switch between an active voltage 

vector and a zero-voltage using the electronic signal selector. In the DSC scheme, the 

locus of the stator flux is hexagonal since the flux reference is compared with the 

instantaneous flux for each phase. DSC is more suitable for high-power applications 

where the switching frequency needs to be reduced. It is interesting to note that the 

switching pattern of DSC can be generated from DTC by increasing the width of the 

stator flux hysteresis (for DTC) so that the stator locus becomes hexagonal. 
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1.2.1 Direct Torque Control Drive System with Optimum Flux 

 Typically, for speed operation below base speed in high-performance 

induction motor drives, the flux reference is always set to the rated flux to produce a 

fast dynamics torque response. However, in most applications (such as traction 

applications, elevators, and machine tools) and at most of the time, the motor is 

operated at light load and operating at rated flux is unnecessary. In fact, operating the 

motor at rated flux under light load or unloaded conditions will reduce the efficiency 

of the drive system, and in the long term, the lifespan of the induction machine will 

shorten [18]. To maximise the DTC drive system’s efficiency at light load or 

unloaded conditions, the motor is operated with optimal flux (lower than the rated 

flux) to reduce the power losses. However, when the flux is set to the optimal value, 

a fast instantaneous torque response cannot be achieved when a rated torque is 

 

(a) 

 

(b) 

Figure 1.2 Control structures of (a) basic DTC, and (b) DSC 
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suddenly needed; the degraded torque dynamic in some applications is unacceptable. 

Therefore, operating at optimum flux is not a good choice. 

   Based on the previous publications, the optimised stator flux can be attained 

by introducing the torque regulation controller [19-22], loss model controller (LMC) 

[11, 23-35], search controller (SC) [16, 18, 36-53] or a combination of them [4, 17, 

54, 55]. In the torque regulation controller, the optimal flux is calculated according to 

the torque value, while in LMC, it is derived by considering the losses of the motor. 

At the light-loaded conditions, the rated flux in LMC must be reduced to balance the 

copper and iron losses. But decreasing the flux will decrease the iron loss and 

increase the copper loss. Therefore, the drive system’s efficiency is maximised when 

the iron loss is approximately equal to the copper loss. By applying the SC method, 

the objective function is decreased by regulating the flux value in consecutive steps. 

The selected objective function can either be the input power or stator current. When 

the selected objective function is at its minimum, the optimised flux in SC is 

achieved. This method reduces the flux value from its rated to an optimal value by 

using a step flux. These controllers will be discussed in detail in Chapter 2 (section 

2.4). 

 Meanwhile, the torque performance can be improved either by improving the 

dynamic torque response during the transient state [13, 42, 56-69] or reducing the 

torque ripple during the steady-state [13, 19, 39, 58, 59, 61-64, 67, 69-101]. To 

achieve this, the selection of voltage vectors (i.e., switching strategy) is modified 

since in DTC, the voltage vectors determine how fast the torque changes. In most of 

the methods proposed in the literature, the voltage vector is selected either by 

implementing the SVM, duty ratio modulation (DRM), fuzzy logic controller (FLC), 

neuro-fuzzy controller (NFC), or operating using two VSIs. The switching strategy 

of these methods in improving the torque response is further reviewed in Chapter 2 

(section 2.5). 
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1.3 Problem Statement 

 DTC enables excellent stator flux and motor torque control without requiring 

a complex control algorithm. In optimum flux DTC, under light-load or unloaded 

conditions, the flux is set to an optimum value (lower than the rated) that minimises 

losses. When a step change in torque is suddenly needed (for instance, during 

acceleration), the flux reference will be increased to the rated value to ensure 

maximum torque capability. However, by doing so, the torque dynamic will be 

degraded due to the slow flux response, which is unacceptable in some applications, 

such as electric vehicles, traction drives, elevators, and high-performance machine 

tools. Furthermore, when the new steady-sate condition is reached after the transient, 

a new optimum flux has to be searched; typically, it will take some time before the 

new optimal flux is found. Therefore, the drive system's efficiency during the 

searching state is compromised. In DTC, unlike FOC, the torque and flux are not 

controlled via stator current components. Instead, torque and flux are controlled 

based on the selection of the voltage vectors. For this reason, the look-up table of the 

voltage vectors needs to be modified to improve the torque dynamic. Also, to 

eliminate the slow convergence problem, a new method that instantaneously 

generates the flux reference needs to be developed.  

1.4 Objectives and Contributions of Thesis 

 The conventional method of determining the optimal flux value is non-

instantaneous and is highly dependent on motor parameters. Thus, the efficiency of 

the drive during the searching state is compromised. Therefore, the first objective of 

this thesis is to develop a system that can generate flux reference instantaneously 

based on torque reference. This flux reference has to ensure the maximum efficiency 

operation of the DTC drive and is suitable for the proposed modified voltage vectors 

during the transient. Due to the step change in the flux reference, for example, when 

acceleration is needed, the dynamic torque response is degraded. Hence, the second 

objective of this thesis is to improve the torque dynamic of a maximum efficiency 

DTC of induction motor drive systems. To achieve this, the algorithm in selecting the 
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voltage vectors needs to be modified and improved. To summarise, the objectives of 

the thesis are as follows: 

i. To develop a system that produces instantaneous flux reference and can be 

used in the maximum efficiency DTC drive system. 

ii. To improve the transient torque response of a maximum efficiency DTC of 

induction motor drive system. 

Several aspects of these general objectives were explored and reported in this thesis. 

These include: 

• Performing simulation and analysis on the efficiency of the DTC drive 

system under various operating conditions and subsequently proposing a 

technique to generate a High-Efficiency Flux Reference (HEFR). The flux 

reference can be instantaneously calculated and is almost similar to the 

optimal flux that minimises losses when the drive system is operated below 

its rated value. 

 

 

• Performing simulation and analysis for the effect of different voltage vectors 

on the torque response. Based on the analysis, additional voltage vectors are 

proposed to satisfy the demands of stator flux and motor torque. 

 

 

• Improving the torque response of maximum efficiency DTC drive system 

during transient states by modifying the selection of the voltage vectors. The 

proposed method generates the desired voltage vector based on the initial and 

final value of flux reference which is obtained from the HEFR generator. 

 

 

• Developing a model of the maximum efficiency DTC drive system using 

MATLAB’s Simulink, which is used to study the root cause of the problems. 

The simulation model is also used to verify the effectiveness of the proposed 
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methods in improving the torque dynamic and efficiency of the DTC drive 

system.  

 

 

• Constructing the hardware for DTC drive implementation. The main tasks of 

the DTC algorithm are implemented using the dSPACE DS1104 and Xilinx 

field-programmable gate array (FPGA) controller boards. The FPGA board is 

used primarily to implement conventional and the proposed look-up tables so 

that the execution time of the dSPACE controller can be reduced.  

Based on the objectives and work performed in this thesis, the original contributions 

of the thesis are summarised as follows: 

• A method to generate an instantaneous flux reference – called HEFR 

generator, was developed and specifically used during a step change in the 

torque reference of a maximum efficiency DTC drive system. The HEFR 

produces the flux reference based on the torque reference. 

 

 

• A novel modification to the applied voltage vectors during the torque 

transient was developed. It consists of adjacent voltage vectors with a specific 

duty cycle. 

 

 

• A simulation model specifically used to study the effectiveness of the 

proposed system was fully developed in MATLAB’s Simulink environment. 

The simulation model can also be used to study the conventional maximum 

efficiency DTC drive system. 

 

 

• An experimental setup for the DTC of induction motor drive was developed. 

The conventional and proposed control algorithms were implemented using a 

dSPACE DS1104 board and Basys 2 FPGA development board containing a 

Xilinx FPGA device. Verifications of the proposed techniques were 

performed using this experimental setup. 
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1.5 Scopes of Thesis 

 To ensure the smoothness and achievement of the objectives, this research 

work is executed in three stages. The limitations and scope of conducting the work 

are as follows:  

First stage 

An extensive simulation of the various flux searching algorithms and their 

performances is conducted and studied. Subsequently, based on this study, a 

HEFR system is proposed that can instantly compute a flux reference to 

maximise the efficiency of the DTC drive at light load. The HEFR is calculated 

based on the load torque of the induction machine. Due to the limited memory of 

dSPACE, the calculation of the drive's efficiency is unable to be conducted 

online (i.e., task overrun); instead, it is calculated based on the simulation results. 

Second stage 

In the second stage, a thorough study of the problem of sluggish torque response 

is conducted using the MATLAB. A detailed Simulink-based model is developed 

to identify the root cause of the problem. Subsequently, a modification to the 

voltage vectors is proposed to overcome the problem of the sluggish torque 

response during the transient-state. The application of the modified voltage 

vector is only performed for the transient-state and does not include the steady-

state. Next, the HEFR and the proposed modified voltage vector are combined. 

Comprehensive simulations are conducted using MATLAB/Simulink to study 

the effectiveness of the proposed system. 

Third stage 

The verification of the proposed methods is implemented by using a laboratory-

scale DTC drive setup. The experimental setup is constructed using a standard 

squirrel cage induction machine, a three-phase voltage source inverter (IGBT), 

gate drivers, current sensors and an incremental speed encoder. The control 

algorithm is implemented using a dSPACE DS1104 controller and Basys 2 

Xilinx FPGA board. For safety purposes, the power supply is limited to a 
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nominal value that is lower than the rated voltage. Fine-tuning on the DTC 

control algorithm and experimental setup are conducted to achieve the expected 

performance of the DTC drive system. 

1.6 Organisation of Thesis 

 This thesis is arranged into six chapters. In the first chapter, the DTC drive 

system’s background and development, as well as the problem statement, are 

presented. The previous works by other researchers to improve the two problems 

stated are briefly discussed and studied. The purposes for implementing this research 

work are also discussed in this chapter. For the rest of this thesis, it is classified as 

follows: 

Chapter 2 presents the mathematical modelling of induction machines in space 

vector theory. It is implemented to overcome the complex analysis of a dynamic 

three-phase model, which is caused by the continuous rotation of the rotor windings. 

In this chapter, the principles of basic DTC are also discussed in detail. The two 

problems encountered during the optimisation of efficiency are highlighted and 

reviewed thoroughly in this chapter. 

Chapter 3 proposes the HEFR and modified voltage vector methods in order to 

improve the two problems stated. The HEFR is computed based on the load applied 

to the induction motor. Instead of using motor torque, the torque reference is used in 

the HEFR calculation to reduce the flux ripples in HEFR. Meanwhile, the modified 

voltage vector is obtained by adding two adjacent conventional voltage vectors. To 

produce the modified voltage vector, the activation time of each conventional voltage 

vector is estimated according to the initial and final value of the flux reference. 

Chapter 4 describes the implementation of the proposed DTC in MATLAB’s 

simulation package. In the real-time experimental setup, the main tasks of DTC are 

compiled and executed in the dSPACE DS1104 and Xilinx FPGA controller boards. 
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Chapter 5 provides the simulation and real-time results for both basic and proposed 

DTC. The improvements in the proposed DTC are evaluated by comparing them to 

the basic DTC. 

Chapter 6 concludes the proposed methods and provides the potential guidance for 

further research regarding this work. 
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