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ABSTRACT 

Switched-capacitor (SC) based multilevel inverters (MLIs) have gained great 

attention in renewable energy applications owing to their self-balancing of the 

capacitor’s voltage and ac voltage boosting. In most existing SCMLIs, the unequal 

charging and discharging duration of the SCs increase the capacitor’s voltage ripple 

problem. Recently, the switched-capacitor-based modular t-type inverter (SCMTI) 

topology resolved the problem by extending the charging period of all SCs to at least 

half of the fundamental switching period. However, the SCMTI topology suffers from 

two main drawbacks: a significantly high number of active switches and the number 

of switches in the charging loop Npath, C, which increases the power loss and distorts 

the quality of the voltage waveform. Hence, this work proposes a new SCMLI 

topology that retains the good traits of the SCMTI with device count reduction. The 

proposed inverter possesses a low Npath, C, significantly reducing the power loss for 

higher voltage levels. The proposed inverter is compared with other recent SC 

topologies to show its superiority. The number of active switches is the lowest 

compared to the SCMTI at each voltage level of the proposed inverter topology. For 

the proposed 7-level inverter, the requirement of active switches is only 12, which is 

25% less than the SCMTI topology. This will reduce the overall cost and size 

significantly. The merits and feasibility of the proposed SCMLI are verified through 

simulation. Then a laboratory prototype is developed and tested for the 7-level module 

under steady-state and dynamic conditions to validate the simulation model. Finally, 

PLECs power-loss modelling and conversion efficiency evaluations are provided for 

the proposed topology, and a comparison is made with the SCMTI topology. The 

proposed inverter’s maximum experimental efficiency is 97.5% at 1.2 kW rated power. 

The proposed topology’s thermal analysis and loss estimation show better efficiency 

over the SCMTI topology. Further, the results show that the proposed inverter has 1% 

higher efficiency at a switching frequency of 10 kHz and 3% higher at a switching 

frequency of 20 kHz. This comparison confirms that the proposed topology has a 

significant loss reduction than the SCMTI, proving its potential merits. 

 

  

 

 

 

  



vii 

ABSTRAK 

Penyongsang pelbagai aras (MLI) berasaskan kapasitor bersuis (SC) telah 

mendapat perhatian dalam aplikasi tenaga boleh diperbaharui kerana pengimbangan 

kendiri voltan kapasitor dan penggalakan voltan keluaran AC. Dalam kebanyakan 

SCMLI sedia ada, tempoh pengecasan dan nyahcas yang tidak sama bagi SC telah 

menyebabkan masalah riak voltan kapasitor yang tinggi. Mutakhir ini, topologi 

penyongsang jenis-t modular berasaskan kapasitor bersuis (SCMTI) telah 

menyelesaikan masalah tersebut dengan memanjangkan tempoh pengecasan semua 

SC kepada sekurang-kurangnya separuh daripada tempoh masa asas pensuisan. Walau 

bagaimanapun, topologi SCMTI mempunyai dua kelemahan utama: iaitu bilangan suis 

aktif yang tinggi dan bilangan suis dalam gelung pengecasan Npatch,c, yang akan 

meningkatkan kehilangan kuasa dan mengherotkan kualiti bentuk gelombang voltan. 

Oleh itu, penyelidikan ini mencadangkan topologi SCMLI baharu yang mengekalkan 

ciri-ciri baik SCMTI tetapi dengan pengurangan bilangan peranti. Penyongsang yang 

dicadangkan mempunyai Npatch,C yang rendah, yang akan mengurangkan kehilangan 

kuasa untuk penjanaan bilangan aras voltan yang lebih tinggi. Penyongsang yang 

dicadangkan dibandingkan dengan topologi SC lain yang terbaru untuk menunjukkan 

keunggulannya. Bilangan suis aktif adalah yang paling rendah berbanding SCMTI 

pada setiap aras voltan topologi penyongsang yang dicadangkan. Bagi penyongsang 7 

aras yang dicadangkan, keperluan suis aktif hanya 12, iaitu 25% kurang daripada 

topologi SCMTI. Ini akan dapat mengurangkan kos dan saiz keseluruhan dengan 

ketara. Kebaikan dan kebolehlaksanaan SCMLI yang dicadangkan disahkan melalui 

simulasi. Kemudian, prototaip makmal dibangunkan dan diuji untuk modul 7 aras di 

bawah keadaan mantap dan keadaan dinamik untuk mengesahkan model simulasi. 

Akhir sekali, pemodelan kehilangan kuasa menggunakan PLECs dan penilaian 

kecekapan penukaran dijalankan untuk topologi yang dicadangkan, dan perbandingan 

dibuat dengan topologi SCMTI. Kecekapan maksimum penyongsang yang 

dicadangkan ialah 97.5% pada kadaran kuasa 1.2 kW. Analisis terma dan anggaran 

kehilangan kuasa topologi yang dicadangkan menunjukkan kecekapan yang lebih baik 

daripada topologi SCMTI. Selanjutnya, keputusan menunjukkan bahawa penyongsang 

yang dicadangkan mempunyai kecekapan 1% lebih tinggi pada frekuensi pensuisan 10 

kHz dan 3% lebih tinggi pada frekuensi pensuisan 20 kHz. Ini mengesahkan bahawa 

topologi yang dicadangkan telah dapat mengurangkan kehilangan kuasa yang ketara 

berbanding SCMTI, dan ini membuktikan potensi meritnya. 
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CHAPTER 1  

 

 

INTRODUCTION 

 Introduction 

This chapter provides an introduction to the thesis, including the research 

background and problem statement of the research work, highlighting the major 

challenges associated with SCMTI topology and the related solutions. In the end, the 

research objectives, the scope of the research work, and the thesis outline are included. 

 Research Background 

In recent times, the demand for multilevel inverters (MLIs) increased 

significantly in high-power and medium-voltage industrial applications, particularly 

for applications in renewable energy sources with grid integration. MLIs are more 

efficient as compared to classical two-level inverters due to their several advantages: 

low-voltage-rated power switches, low dv/dt, minimum electromagnetic interference, 

and high-power handling ability [1, 2]. In general, three types of MLLs are widely 

used in the industry, i.e., cascaded h-bridge (CHB) MLI [3], neutral-point-clamped 

(NPC) MLI [4], and flying-capacitor clamped (FCC) MLI [5]. However, these 

topologies require a large number of power switches and capacitors. The CHB also 

requires multiple isolated DC sources. Complex control strategies and/or additional 

circuitry are required for capacitor balancing in the NPC and FCC, especially at higher-

level generation. Several hybrid inverter topologies have been derived from classical 

topologies to reduce the number of components.  

Furthermore, these inverter topologies are buck-type. They are not capable of 

voltage boosting, and their gain is limited to unity, requiring a front-end DC-DC boost 

converter for a two-stage power conversion structure [6]. Alternatively, step-up AC 



 

2 

transformers can also be used with some limitations, such as low efficiency and bulky. 

It may be noted that these solutions lead to increased size, cost, control complexity, 

and reduced conversion system efficiency. The voltage boosting capability will be 

essential when the inverter is designed for a grid-connected photovoltaic (PV) system 

since the low-input-side DC voltage should be boosted to an acceptable range. Those 

topologies with 50% or 70% DC bus utilization may need an additional DC-DC boost 

converter or multiple PV modules to elevate the input voltage (e.g., up to 800 V for 

connection to a 311 V grid) [7].  

Therefore, the switched-capacitor MLI (SCMLI) based on the series/parallel 

conversion technique is a promising alternative to the classic MLI topologies [2]. 

SCMLIs have many distinguishing features, including voltage boosting ability, single 

DC source utilization, self-balancing of the capacitor’s voltage without auxiliary 

circuits, and simple control techniques. The utilized capacitors are periodically 

charged from the DC source prior to supplying the load. The SCMLIs achieve voltage 

boosting in single-stage DC-AC power conversion, eliminating the need for external 

circuitry. This significantly reduces the number of DC sources and makes the inverter 

less complicated. However, higher voltage levels can be achieved at the cost of more 

circuit components. This leads to an increased cost and complex inverter 

configurations. Therefore, research in SCMLIs is growing by developing more 

compact topologies with reduced components. It can be observed from the literature 

that the significant limitations associated with SCMLIs [8] are:  

a) Require a significantly high number of switches and capacitors when higher-

level output voltage waveforms are intended.   

b) Require a large number of conducting switches in the load current path (Npath) 

and charging path (Npath, C), which distort the quality of the voltage waveform. 

c) Require large capacitors to alleviate high voltage ripples and high current 

spikes due to uneven charging and discharging duration of capacitors in each 

cycle of operation. 
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Based on these constraints, a new switched-capacitor-based modular t-type 

(SCMTI) [9] has been recently proposed to resolve the voltage ripple and current spike 

issues associated with SCMLIs. The topology successfully addressed these limitations 

by extending the charging durations of SCs. All the employed SCs can be fully charged 

for at least half of the fundamental cycle to effectively reduce the capacitors’ voltage 

ripples and current spikes. Additionally, this topology successfully retained all the 

characteristics of existing SC-based topologies with added benefits of higher gain and 

self-balancing of the capacitors. 

 Problem Statement 

Despite the superior characteristics, SCMTI suffers from two main limitations. 

First, this topology requires a high number of active switches to generate an extended 

number of voltage levels and voltage gain. Increasing the number of actives 

necessitates additional gate-driver, dead-band circuits and their related heat sinks, and 

protection requirements. Moreover, the high number of active switches further 

increases the computational burden on the controller. This, in turn, contributes to an 

increase in the cost, size, and control complexity of the SCMTI at higher voltage levels. 

Thus, impart limitations on system design and practical implementation greatly impact 

its market penetration. Consequently, careful consideration must be made to ensure 

that the inverter can still generate good quality output with high efficiency without 

degrading the implementation cost and complexity issues. 

Second, it requires to conduct a large number of power switches in the load 

current path and to charge the SCs when voltage levels increase. This, in turn, degrades 

the output voltage quality and decreases the peak amplitude of output waveforms due 

to voltage drops in conducting switches during their on-state. As the higher magnitude 

of charging current occurs for a small duration, the current rating of the power switches 

in the charging paths must be of high value, increasing the total cost and power losses. 
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 Research Objectives 

This thesis proposes a modified switched-capacitor-based inverter with the 

following objectives: 

(a) To reduce the required number of active switches to generate an extended 

number of output voltage levels.  

(b) To reduce the number of switches in current flow paths for producing the 

highest output voltage and to charge the capacitors when output voltage levels 

increase. 

(c) To analyze the performance and feasibility of the developed topology under 

various simulation and experimental settings. 

 Resfearch Scope 

The research in this field focuses on the efforts and initiatives to improve 

performance and reduce the cost and complexity of inverter circuits. The classical and 

NPC will be briefly reviewed first. Then switched-capacitor-based MLI structures will 

be explained in detail with critical analysis. The aim of this thesis is to introduce an 

improved SC topology that addresses the limitations of SCMTI topology. The prime 

objectives will be to reduce the number of switches in conduction paths and capacitors 

charging paths to lower power loss, improve conversion efficiency, and reduce the 

cost. First, the circuit derivation procedure will be provided on how the proposed 

topology can be derived from the SCMTI circuit. After a step-by-step process, a 

generalized topology can be obtained with a lower active switch count while 

preserving the merits of the SCMTI topology.    

The working principle will be provided in detail. This is followed by power 

loss analysis, design guidelines, and comparative analysis with other SC topologies. 

The simulation models will be developed in Simulink/PLECs to verify the inverter 

operation and feasibility through simulation results. The proposed topology will be 
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further tested and validated experimentally. A down-scale prototype will be developed 

for experimental purposes due to laboratory constraints and safety concerns. Finally, 

a detailed power loss analysis using PLECs software will be conducted to prove the 

claim of low power loss and improved efficiency. For power loss and efficiency 

analysis, the proposed inverter will be tested at high power to confirm its performance. 

 Thesis Organization 

This thesis includes five chapters that are described as follows: 

Chapter 1 introduces the research problem and objectives, emphasizing on the 

major challenges associated with the SCMTI topology. The chapter also provides the 

scope of the research and the thesis structure. 

Chapter 2 briefly reviews the classical and neutral-point-clamped (NPC) 

MLIs with a reduced component count. The advantages and limitations of these 

topologies based on the literature for each topology are also presented. The 

terminology and assessment parameters of MLIs are briefly discussed. This chapter 

classifies different SC topologies based on the topological layout of circuits. Various 

SC topologies are briefly discussed and critically reviewed in this chapter, and a 

comprehensive quantitative and qualitative analysis is summarized based on different 

circuit parameters and characteristics.   

Chapter 3 presents the step-by-step procedure of the circuit derivation of the 

proposed topology. The proposed inverter circuit configuration with a detailed 

explanation of its working principle and modes of operations is introduced. 

Derivations of equations are provided for power loss and to find the suitable 

components for the presented topology. The comparative analysis and cost comparison 

against its benchmarked topology (SCMTI) and recently introduced SCMLIs are 

included in this chapter.  
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Chapter 4 provides details about the laboratory setup of the proposed 

topology. The information about the dSPACE platform setup and the program codes 

to execute the control algorithms is also provided in this chapter. Some simulation 

results using high switching frequency are presented. Further detailed experimental 

results with inverter operated at high and fundamental switching frequencies are 

provided to show the performance of the proposed topology. The results are compared 

and analyzed accordingly. Comparison is made with other counterpart topologies in 

terms of different parameters. Finally, power loss and efficiency analysis for the 7-

level proposed and SCMTI topologies are included. 

Chapter 5 Conclusion based on the objectives of this research work is 

presented. Finally, the future scope of this work is also discussed. 
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