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ABSTRACT 

Renewable Energy Sources (RESs) integration with Electric Vehicles (EVs) 

and microgrids has become a popular system for providing an economic and green 

environment. In order to address power challenges, RESs such as solar and wind are 

exploited and integrated into a microgrid. EVs play a key role in reducing emissions 

and energy saving due to their free carbon nature, reducing fuel consumption, and can 

be used as storage or load. Tripoli-Libya (latitude 32.8872° N and longitude 

13.1913° E) located in Northern Africa is one of the oils and natural gas producers 

that has been selected as the study area. However, the country is bedeviled with electric 

power problems. Microgrids are faced with planning issues, challenges associated with 

designing a proper model system, as well as stability which results in low power 

quality. The issue can be addressed by using metaheuristic algorithms combined with 

Energy Management Strategy (EMS). However, the conventional metaheuristic 

algorithms face premature convergence and acquire local optima quickly which needs 

to be improved. Thus, choosing suitable sizing metaheuristic algorithms is 

recommended to find the global optimum. Therefore, Improved Antlion Optimization 

(IALO) coupled with the Rule-Based Energy Management Strategy (RB-EMS) is 

proposed. An RB-EMS is used to control and monitor the flow of energy in the system 

using simple mathematical equations. Furthermore, in the literature review, rule-based 

is recommended due to the decision-making and providing the appropriate result. This 

study examines a grid-connected system aimed at addressing the current power 

challenges by integrating RESs into Electric Vehicle Charging Facility (EVCF) using 

Vehicle-to-Grid (V2G) technology. An objective function for the proposed grid-

connected system mainly depends on measuring the per unit of generated electricity 

as Cost of Energy (COE), and reduction in Losses Power Supply Probability (LPSP) 

as means of stabilizing the system and maximizing the Renewable Energy Fraction 

(REF). Mathematical modeling for the Photovoltaic (PV), Wind Turbine (WT), EV, 

inverter, and Battery (BT) as the microgrid components for the case study (Tripoli-

Libya) is adopted. The acquired result has been validated with other algorithms 

Antlion Optimization (ALO), Particle Swarm Optimization (PSO), and Cuckoo Search 

Algorithm (CSA). The obtained simulation result indicates that the proposed method 

IALO contributed lower COE ($0.0936 /kWh), and high REF (99.40%) as compared 

to the counterpart algorithms. The IALO coupled with RB-EMS fills the gap in sizing 

and planning a cost-effective system to address the sizing limitations. The results 

affirm the low-cost nature of the proposed model of a grid-connected microgrid system 

using V2G technology. A further economic assessment is made using the Stochastic 

Monte Carlo Method (SMCM) used to estimate the load impact by integrating various 

numbers of EVs and the payback period. Sensitivity analysis was utilized to 

demonstrate the impact performance of the proposed components under various 

scenarios.   
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ABSTRAK 

Integrasi Sumber Tenaga Boleh Diperbaharu (RES) dengan Kenderaan 

Elektrik (EV) dan mikrogrid telah menjadi sistem yang popular dalam menyediakan 

ekonomi dan persekitaran hijau. Untuk menangani cabaran tenaga, RES seperti solar 

dan angin dieksploitasi dan diintegrasikan ke dalam mikrogrid. EV memainkan 

peranan utama dalam mengurangkan pelepasan dan penjimatan tenaga kerana sifat 

bebas karbon, mengurangkan penggunaan bahan api, dan boleh digunakan sebagai 

tempat simpanan tenaga atau beban. Tripoli-Libya (latitud 32.8872°N dan longitud 

13.1913° E) yang terletak di Afrika Utara merupakan salah satu pengeluar minyak dan 

gas asli yang telah dipilih sebagai kawasan kajian. Walau bagaimanapun, negara ini 

terganggu dengan krisis bekalan kuasa elektrik. Mikrogrid berhadapan dengan isu 

perancangan, cabaran yang berkaitan dengan mereka bentuk sistem model yang sesuai, 

serta kestabilan yang menyebabkan kualiti kuasa yang rendah. Isu ini boleh ditangani 

dengan menggunakan algoritma metaheuristik yang digabungkan dengan Strategi 

Pengurusan Tenaga (EMS). Walau bagaimanapun, algoritma metaheuristik 

konvensional mengalami masalah pramatang dan memperoleh optimum setempat 

dengan cepat yang perlu dipertingkatkan. Oleh sebab itu, memilih saiz algoritma 

metaheuristik yang sesuai adalah disyorkan untuk mencari tahap optimum global. Oleh 

itu, Pengoptimuman Antlion Dipertingkat (IALO) bersama dengan Strategi 

Pengurusan Tenaga Berasaskan Peraturan (RB-EMS) dicadangkan. RB-EMS 

digunakan untuk mengawal dan memantau aliran tenaga dalam sistem menggunakan 

persamaan matematik mudah. Tambahan pula, dalam kajian literatur, berasaskan 

peraturan disyorkan kerana membuat keputusan dan memberikan hasil yang sesuai. 

Kajian ini mengkaji sistem tersambung grid yang bertujuan menangani cabaran kuasa 

semasa dengan mengintegrasikan RES ke dalam Fasiliti Pengecasan Kenderaan 

Elektrik (EVCF) menggunakan teknologi Kenderaan ke Grid (V2G). Fungsi objektif 

untuk sistem tersambung grid yang dicadangkan terutamanya bergantung pada 

pengukuran per unit elektrik yang dijana sebagai Kos Tenaga (COE), dan pengurangan 

Kebarangkalian Kehilangan Bekalan Kuasa (LPSP) sebagai cara menstabilkan sistem 

dan memaksimumkan Pecahan Tenaga Boleh Diperbaharu (REF). Pemodelan 

matematik untuk Fotovoltaik (PV), Turbin Angin (WT), EV, penyongsang dan Bateri 

(BT) sebagai komponen mikrogrid untuk kajian kes (Tripoli-Libya) digunakan. Hasil 

yang diperoleh telah disahkan dengan algoritma lain iaitu Pengoptimuman Antlion 

(ALO), Pengoptimuman Kelompok Zarah (PSO), dan Algoritma Carian Cuckoo 

(CSA). Hasil simulasi yang diperoleh menunjukkan bahawa kaedah IALO yang 

dicadangkan menyumbang COE yang lebih rendah ($0.0936/kWh), dan REF yang 

tinggi (0.9940%) berbanding dengan algoritma lawan. IALO yang diganding dengan 

RB-EES mengisi jurang dalam saiz dan merancang sistem yang kos efektif untuk 

menangani had saiz. Keputusan mengesahkan sifat kos rendah model cadangan bagi 

sistem mikrogrid tersambung grid menggunakan  teknologi V2G. Penilaian ekonomi 

selanjutnya dibuat menggunakan Kaedah Stokastik Monte Carlo (SMCM) yang 

digunakan untuk menganggarkan kesan muatan dengan menyepadukan pelbagai 

nombor EV dan tempoh bayaran balik. Analisis sensitiviti digunakan untuk 

menunjukkan prestasi impak komponen yang dicadangkan di bawah pelbagai senario. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background of Research 

The grid-connected or on-grid system is a system considering Renewable 

Energy Sources (RESs) integrated with the utility grid to form a microgrid or hybridize 

system [1]. The significant difference between the microgrid and grid-connected 

system is, that a microgrid can be used as a support to an on-grid system to overcome 

conventional power limitations [2]. Besides, all available sources in the literature are 

in agreement that a cluster of loads can be termed a microgrid system [3]. Additionally, 

microgrid sources operate as a controllable scheme that provides heat, power, or both 

[4]. In terms of classification, a hybrid system can be categorized into two categories: 

grid-isolated and grid-connected [5]. Hence, a microgrid system is preferable because 

of its merits such as flexibility and efficiency [6]. Due to the increasing environmental 

concerns coupled with the increase in electricity demand among consumers, 

alternative energy sources are being utilized globally among scholars. Moreover, the 

hybrid system can address source and load problems in comparison with the traditional 

network [7]. 

Under the concept of Vehicle-to-Grid (V2G) as an accepted technology, the 

utility grid as an unlimited energy source is used to charge Electric Vehicles (EVs) [8]. 

The EV as a high-tech technology can absorb or distribute energy which is known as 

a charge or discharge operation [9]. This is because of the provided benefits such as 

simplicity, use as a mobile Uninterruptible Power Supply (UPS), and easily of 

plugging and play capability [10]. The V2G technology was pioneered by Amory 

Lovins in 1995 and carried out by William, EV is recognized as a possible and 

alternative solution to power and environmental problems [11]. The concept behind 

V2G is to enable to push of the power from the EV to the grid to balance the variations 

in energy production and consumption through a bidirectional converter [12]. 
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Furthermore, when the load demand from the utility grid is high, the stored energy in 

the EV battery can be fed back to the utility grid (V2G) [13]. On the contrary, Grid-

to-Vehicle (G2V) is when the grid load demand is low with the price, the unutilized 

energy from the utility grid can be sent back to the EV to avoid waste of energy [14]. 

Demand and supply must be balanced to support power transmission and keep the grid 

reliable [15]. Some of the acquired benefits of V2G technology can be better frequency 

control, stabilizing the grid operation in peak hours, lowering voltage fluctuation, and 

exchanging power among others [16]. 

In addition, ancillary services like peak shaving, load leveling, frequency and 

voltage regulation, and spinning reserve are counted as V2G benefits [17]. 

Nevertheless, RESs exploitation is classified under the ancillary services due to the 

green energy and supported power provided to the main grid [18]. Consequently, 

microgrid systems known as Smart Grids (SGs) are considered the future power 

solution. This is due to their intelligent used systems and components used capability 

such as integration with vehicles in Electric Vehicle Charging Station (EVCS) 

application and RESs [19]. There are four types of EVCS which are: grid-connected 

EVCS, EVCS with RESs, grid-connected EVCS with battery, and grid-connected with 

both RESs and battery [6]. This study considers residential grid-connected EVCS with 

RESs and Battery (BT) as the main concentration of microgrid systems under the 

domestic Electric Vehicle Charging Facility (EVCF) that refers to the home-based 

charger by utilizing home facilities to charge the EV. The last mentioned type has been 

chosen due to its merits such as reducing the electricity bill, better performance, and 

reducing the burden on the grid [20], [21]. Additionally, the use of RE requires less 

maintenance and prevents a spike in pricing [22]. 

The microgrid is comprised of the interconnection of numerous sources and 

systems that are connected such as Photovoltaic (PV), Wind Turbine (WT), and Fuel 

Cell (FC) [23]. The first two mentioned sources are considered to reduce the emission, 

reduce the impact on the grid, reduce the dependency on the grid, and satisfy the load 

demand [24]. Additionally, the integration of various energy sources can complement 

the drawbacks attributed to the use of an individual source. Energy Storage Systems 
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(ESSs) is a backup system or storage used in EVs to exchange the stored energy with 

the grid as V2G technology as demonstrated in Figure 1.1. 

The straight black arrows in Figure 1.1 represent the power flow while the blue 

dots arrows refer to the communication and control lines. Residential AC load is 

realized with the help of converters and rectifiers to change the power form [16]. The 

presented grid-connected diagram consists of PV-WT-Inverter-BT integrated with EV. 

The aforementioned components are mathematically modeled to estimate the output 

power for each part to satisfy the load demand as will be presented in chapter 3 [21]. 

Due to the energy consumption of fossil fuels, new research windows are being 

explored by scholars to develop and implement a RESs integrated grid system to 

overcome power loss-related issues [25]. However, RESs are affected by weather 

conditions, while the integration operation can bring impact on the grid either 

positively or negatively [10]. In any case, if the two sources are optimally linked, the 

effect on the RESs can be partially fixed, resulting in a capable and cost-effective 

comprehensive system [26]. 

PV Array 
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Converter EV Battery 

Utility Grid 

DC-AC 

Converter 

Wind 

Turbine 

AC-DC 

Converter 

Energy 

storage unit  

DC-DC 

Converter 

DC Bus AC Bus

AC residential 
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Power flow line Communication and control line

AC-AC 

Converter 
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Figure 1.1 The typical energy management strategy for microgrids. 

The effect of the implementation process can be regulated with supervisory 

control optimization methods known as Energy Management Strategy (EMS). The 

EMS is classified into three main categories: Rule-Based (RB), Optimization-Based 

(OB), and Learning-Based (LB) as reported in the literature [16], [27], [28]. In this 

regard, the feasibility of resources, cost, losses, and renewability is reliant on EMS. 
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One of the issues faced by the microgrid system is planning and designing a model 

system. Besides, there are several promising optimization algorithms were introduced 

to regulate power flow in the systems and used with the potential to ease the electricity 

generation operation [1]. 

The algorithms were created with the hybrid designed systems based on 

mathematical modeling equations that are factored in EMSs [29]. The EMS is used to 

conduct the combined system through the use of nature-inspired metaheuristic 

algorithms such as Ant Colony Optimization (ACO) [30] and Genetic Algorithm (GA). 

Additionally, Particle Swarm Optimization (PSO) [31], Cuckoo Search Algorithm 

(CSA) [32], and Antlion Optimization (ALO) [33] are also used. Nevertheless, the 

aforementioned optimization methods are not all suitable for solving power sizing 

problems and other issues as the No Free Lunch (NFL) theorem stated [34]. In 

addition, some of the studies considered in the literature utilize nature-inspired 

metaheuristic algorithms coupled with the EMS to control the flow energy among the 

other parameters [35]. The system of this study consists of RESs integrated into the 

national grid to charge and discharge EVs to form V2G technology. However, the 

integration system causes some challenges. 

1.2 Problem Statement 

With the availability of conventional sources (oil and natural gas) and the 

current low prices of these sources, conventional energy sources are widely used for 

electricity generation compared to RESs. Conventional sources and RES have the 

ability to be hybridized to run electric appliances and charge EVs. The integration of 

EVs in the hybridized system can address the power limitation issues, however, this 

increases the load due to having an uncertain number of EVs. Moreover, the use of 

alternative energy sources reduces the over-dependency on fossil fuels, reduces the 

peak load demand on the residential side, and overloading-related issues. However, 

integrating different RES would increase the system's cost and complexity. 

Metaheuristic sizing algorithms are facing challenge in achieving local optima, 

premature convergence, and running time speed. Additionally, controlling the power 

flow needs a suitable control algorithm like the EMS algorithm. However, EMS is 
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requiring technical information and some is requiring complex mathematical 

equations. Therefore, a proper adoption of EMS and sizing techniques in the hybrid 

power system becomes significantly important in identifying the most suitable 

capacity of the system components. Although there have been several techniques used 

to manage the existing power system, yet, some difficulties on the energy supply side 

due to improper management such as  overloading remain a challenge. The 

aforementioned issue can be possibly addressed by scheduling a time for charging the 

EVs when the load of the utility grid is low (G2V) considering conventional or RESs. 

In general, Hybrid Renewable Energy Source (HRES) systems are reported to be 

efficient, economical, flexible, and cost-effective to overcome power management 

problems. The main advantages of HRES integration as a suitable system for 

stabilizing electric systems and improving power quality. Nevertheless, integrating 

HRESs into the utility grid faces challenges and issues related to the end-user side due 

to an increase in peak load demand which leads to the high cost of the system. The use 

of RESs in EV charging stations lowers the Cost of Energy (COE) and Losses of Power 

Supply Probability (LPSP) while maximizing the Renewable Energy Fraction (REF). 

Hence, reducing the cost and losses to gain an economic and reliable system while 

maximizing the renewability to reduce the dependency on the utility grid to obtain an 

economic system is needed. Additionally, economic and reliable performance are 

paired factors that restrict each other, which are also affected by the performance of 

the decision-maker. 

The unplanned V2G process results in instability, inefficiency, and increase 

COE and unreliability that causes power barriers (overloading). Nevertheless, 

controlling and planning a proper design for the V2G system with RESs (RESs-EV) 

is a matter of technical and economic perspective. However, some of the worrying 

barriers of RESs for power system when used in the EV integration system for their 

intermitted nature and fluctuation in the power supply which leads to high penetration 

of EVs when using a huge number of EVs which causes power challenges in terms of 

loading and power quality. Thus, low power quality caused overload due to the 

uncertain number of charging vehicles in the charging area and an increase in COE. 

Similarly, difficulties faced in planning and designing such a system includes unstable 

weather condition and unknown load demand. Therefore, if RESs and EVs are 

integrated carefully, a balanced power grid resulting in lower energy costs, and less 
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reliance on conventional sources (fossil fuel) can be ensured. In addition, Carbone 

Dioxide (CO2) emissions can be significantly reduced, which ultimately increases the 

system's reliability. Hence, adopting proper EMS and system sizing to guarantee the 

lowest investment cost for the system becomes necessary. Additionally by analysing 

the obtained economic result by the stochastic method in order to assess the impacts 

on the load from the EV. 

1.3 Research Objectives 

This research aims to propose a suitable EMS for the proposed microgrid 

consisting of PV-WT-BT connected to an electric vehicle charging facility. As a 

residential grid-connected system to achieve the following objectives: 

1. To design a deterministic Rule-Based EMS to satisfy the load demand of a 

residential grid-connected system consisting of PV-WT-BT integrated with 

V2G technology. 

2. To optimize the sizing of the proposed microgrid system using the Improved 

Antlion Optimization (IALO) to meet load demand at minimum COE, 

minimum LPSP, and maximum REF. 

3. To compare and analyse the proposed components with ALO, PSO, and CSA 

in terms of COE, LPSP, and REF. 

1.4 Scope of the Study 

The main aims of the study are to size the system components by developing a 

metaheuristic algorithm for residential areas integrated into EVs to charge and 

discharge using PV-WT-BT. The subsequent scopes are considered: 

(a) This study is focusing on designing and proposing a sizing optimization 

metaheuristic method namely Improved Antlion Optimization (IALO) as a 

variant of ALO to optimize the microgrid with the utilized components. The 

attained result will be validated with ALO, PSO, and CSA. 
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(b) Solar and wind energy sources are considered the main RESs in this study, due 

to their availability in the study location (Tripoli-Libya). While storage battery 

used as a backup integrated with an EV is used to supply an AC residential 

load (220 V and 50  Hz) when needed. The solar PV module used in the study 

is installed on the rooftop of the houses. While the WT is owned by the 

government and installed away from the residential area. 

(c) The objective functions of the study are to minimize the Cost of Energy (COE) 

and Losses of Power Supply Probability (LPSP) while maximizing the 

renewability which is called Renewable Energy Fraction (REF) to gain a cost-

effective system.  

(d) The simulation concentrates on the domestic load using the implemented RESs 

(PV with 5  kW and 5  kW for WT) integrated with Lithium-iron Phosphate 

(LiFePO4) 40  Ah EVs battery capacity and Li-ion deep cycle battery. Linked 

to the grid as a power source for charging and discharging that is based on the 

Libyan energy policy and Tripoli climatology data. The size of the charging 

station ranges between 10 to 60 EVs and can be extended to a flexible system 

or minimized and has been controlled by RB-EMS and the impact on the load 

for the arrival and departure EVs is estimated by Stochastic Monte Carlo 

Method. 

(e) The lifetime of the project is set as the PV age (25 years). Where components’ 

(WT, BT, and inverter) age is 25, 10, and 15 years, respectively. The annual 

(1st January to 31st December 2019) hourly residential electricity demand data 

of 7.5 kW for Tripoli-Libya (latitude 32.8872° N and longitude 13.1913° E) 

was obtained from the General Electricity Company of Libya (GECOL). While 

climate data (wind speed, ambient temperature, and solar radiation) were 

collected from the Centre for Solar Energy Research and Studies (CSERS), 

accordingly. 

(f) The proposed system is simulated with MATLAB 2016b packaging code 

simulation and does not require any hardware implementation. 
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1.5 Significance of the Study 

The contribution of this research is highlighted for the proposed microgrid 

hybrid system as stated below:  

a) Addressing the microgrid components sizing by the proposed metaheuristic 

algorithm called IALO for a residential grid-connected system consisting of 

PV-WT-BT integrated with EVCF to form V2G technology.  

b) Utilizing a supervisory control algorithm namely a Rule-Based Energy 

Management Strategy (RB-EMS) for controlling the flow of power in the 

system under four strategies. The strategies are supply system from RESs, 

supply system by BT, charging EVs using G2V, and discharging from EVs 

using V2G. 

c) Utilizing the Stochastic Monte Carlo Method (SMCM) to estimate the arrival 

and departure behavior of several EVs in the EVCF along with measuring the 

EV impact on the grid considering different sources. The sensitivity analysis is 

conducted to assess the COE of the main key affected sources. 

d) Assessing the COE in order to obtain the DPP based on the combination of 

DCF, and the statistic calculation of the payback period is performed for 

economic analysis. 

1.6 Research Methodology 

This section is a brief overview of the proposed methodology of the research 

and the techniques applied to obtain the research objectives. It is divided into several 

main tasks as shown in Figure 1.2 and further details on the methodology are presented 

in chapter 3. 



 

9 

Start Literature review 
Identify the 

problem 

Proposed system 

design 

Energy Management 

Strategy
End 

Collect data

Result and 

Discussion 

Testing with 

data 

Developing 

the algorithm 
 

Figure 1.2 The proposed research methodology. 

To establish a well understanding of the hybrid systems, a literature review 

becomes necessary. Literature on different metaheuristic algorithms, EMS algorithms, 

and RESs from various articles was carried out. The main aim of reviewing the articles 

is to have a good understanding of the hybrid systems with their components in 

addition to knowing their strengths and limitations. In this context, priority is given to 

quartile journals, high-impact factor journals, and indexed journals in Scopus.  

As the study area (Tripoli-Libya) has four seasons, the climatology data and 

load demand for the area of study are required to be collected. To apply the 

mathematical equations to obtain the total generated power in each season with the 

help of solar irradiance (𝐺), ambient temperature (𝑇𝑎𝑚𝑏), and wind speed (𝑣) sourced 

from CSERS for one year (1st January to 31st December 2019) [7], [36]. Additionally, 

the load demand (𝑃𝑙) for the area of study was obtained from GECOL [37]. 

Components such as PV-WT-BT integrated with EV are used to form the V2G 

technology as a grid-connected. The IALO is a sizing method used for the utilized 

components to provide a system with less cost and losses. In this research, a rule-based 

EMS algorithm is used to present the entire system operation mode and control the 

flow of power. Moreover, SMCM is exploiting to assess the impact behavior of 

arrivals and departure EVs to home. The utilized mathematical equations are widely 

used among scholars due to their simplicity and cover all the system components.  

The results obtained from the IALO are benchmarked with ALO, PSO, and 

CSA algorithms as the most operating algorithms for a vast range of real-world 

problems. Additionally, in terms of EMS results, the obtained result from the RB-

EMS-IALO is validated with RB-EMS-ALO, RB-EMS-PSO, and RB-EMS-CSA. The 
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RB-EMS-IALO performance has been investigated based on proposed objective 

functions (COE, LPSP, and REF) and provides a better result. In terms of economic 

analysis of the cost, the Discounted Cash Flow (DCF) is utilized with Net Present Cost 

(NPC) to obtain the Discounted Payback Period (DPP) of the system. Followed by 

sensitivity analysis results. Eventually, the results will be discussed, and the research 

is concluded. 

1.7 Organization of Thesis 

This thesis is organized into five chapters. Chapter 1 contains a general 

overview of the study, the problem statement, research objectives, the scope and 

significance of the study, and a brief explanation of the methodology. 

Chapter 2  presents the literature review on different EMS considering different 

energy sources and a hybrid system. Classification of the EMS using metaheuristic 

sizing algorithms is also discussed. Furthermore, optimal sizing methods, their 

classifications, and applications-based nature-inspired metaheuristic algorithms are 

presented. Additionally, the classification of EVs is based on V2G technology with the 

impacts. A comprehensive review of research studies presenting the use of RES 

integration with the EVs forms the V2G technology with different objectives is 

discussed. 

Chapter 3 presents the research methodology with the proposed hybrid 

microgrid system for the case study considering the mathematical simulation modal 

for each sector in the considered hybrid system. The analysis of climatology and load 

collected data for the considered location has been analyzed using MATLAB software. 

The utilized supervisory control scheme (RB) is figured out with the operational 

strategies. 

Chapter 4 presents the simulation and analysis of the climate data and load 

demand profile. The Chapter also presents and compares the sizing result of the 

proposed method (IALO) with other results from ALO, PSO, and CSA. Similarly, the 

result obtained from the EMS algorithm of the proposed algorithm (RB-EMS-IALO) 
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is benchmarked with other algorithms (RB-EMS-ALO, RB-EMS-PSO, RB-EMS-

CSA) and presented in this chapter. The compared results of the utilized test functions 

are also discussed. The comparison convergence curves for the proposed and 

benchmark methods are figured out and discussed in terms of cost. Consequently, the 

Dynamic Payback Period (DPP) analyzed using Discounted Cash Flow (DCF) analysis 

method is presented. Similarly, the Stochastic Monte Carlo Method implementation is 

used for estimating the behavior of EVs under various scenarios. The considered 

scenarios present the impact on the grid when having a minimum (10) units, medium 

(30) units, and maximum (60) units a number of EVs integrated into the grid. The 

obtained result of the aforementioned scenarios is also demonstrated and discussed 

along with the sensitivity analysis.  

Chapter 5 concludes the thesis and lists the contribution of the proposed work 

is highlighted. Moreover, suggestions for future work areas are listed for scholars. 
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