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ABSTRACT

Capnography has received considerable attention owing to its important

applications in assessing asthma and other pulmonary diseases. Monitoring abnormal

changes in the recorded carbon dioxide waveform (i.e., capnogram signal) allows for

detecting respiratory malfunctioning and thereby averting potential asthma attacks.

Detecting asthma based on the non-stationary capnogram signal remains an open

research problem. In this thesis, an automatic computational framework is proposed

to detect asthma. The presented framework includes two main stages. The first

stage is responsible for discarding the distorted segments of the recorded capnogram

signals. This task was performed in previous studies either manually by visual

inspection, using threshold-based or template matching methods. In the current work,

a machine learning-based approach is presented to automatically classify artefact-free

and distorted capnogram segments. For this purpose, di�erent time- and frequency-

domain features are proposed. The time-domain features include energy, variance,

skewness, kurtosis, Hjorth parameters and mean absolute deviation (MAD). The

frequency-domain features include the area under the magnitude Fourier spectrum

in addition to the number of relatively high spectral peaks for a particular frequency

range. Di�erent classifiers are trained and tested using the most relevant features:

Hjorth activity and MAD. These classification models include Support Vector Machine

(SVM), Random Forest (RF), Decision Tree (DT) and Naive Bayes (NB) classifiers. The

results showed that the SVM classifier can provide classification accuracy, specificity,

sensitivity and precision of 89%, 91%, 87% and 92.1%, respectively. In addition,

a multiple classifiers voting approach is proposed for this classification task. Using

this cooperative classification, the specificity is increased from 91% to 94%. The

second stage accepts the clean capnogram segments from the first stage and carries

out the classification of healthy and asthmatic capnograms. The proposed features are

based on Empirical Mode Decomposition (EMD) which is suitable for analyzing the

non-stationary capnogram signal in addition to the variance of the raw signal. Unlike

the traditional features, the proposed features are extracted from the frequency-domain

representation of the signal’s first Intrinsic Mode Function (IMF). The results showed

that the NB classifier can provide classification accuracy, specificity, sensitivity and

precision of 96.5%, 97%, 96% and 97.18%, respectively.
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ABSTRAK

Capnography telah mendapat perhatian besar kerana peranannya yang penting

dalam menilai asma dan penyakit paru-paru yang lain. Di dalam thesis ini, rangka

kerja pengiraan automatik dicadangkan bagi mengesan asma berdasarkan analisis

isyarat capnogram. Rangka kerja yang dibentangkan merangkumi dua peringkat

utama. Peringkat pertama berperanan menyingkirkan segmen terherot bagi isyarat

capnogram yang dirakam. Langkah ini telah diamalkan dalam kajian terdahulu sama

ada secara manual melalui pemeriksaan visual, menggunakan kaedah berasaskan

ambang, atau pemadanan templat. Dalam kajian semasa, pendekatan berasaskan

pembelajaran mesin dipamerkan bagi mengklasifikasikan secara automatik segmen

bebas artifak dan capnogram terherot. Bagi tujuan ini, ciri domain masa dan domain

frekuensi dicadangkan. Ciri domain masa termasuk tenaga, varians, kecondongan,

kurtosis, parameter Hjorth dan sisihan mutlak min (MAD). Ciri domain frekuensi

pula termasuk kawasan di bawah magnitud spektrum Fourier sebagai pelengkap

kepada bilangan puncak spektrum yang tinggi untuk julat frekuensi tertentu. Pengelas

yang berbeza termasuk Mesin Sokongan Vektor (SVM), Hutan Rawak (RF), Pohon

Keputusan (DT) dan pengelas Naive Bayes (NB) dilatih dan diuji menggunakan

ciri yang paling relevan. Keputusan menunjukkan bahawa pengelas SVM boleh

memberikan ketepatan pengelasan, kekhususan, kepekaan dan ketepatan masing-

masing sebanyak 89%, 91%, 87% dan 92.1%. Di samping itu, pendekatan berdasarkan

pengundian berbilang pengelas dicadangkan untuk tugas pengelasan ini. Menggunakan

klasifikasi yang digabungkan ini, kekhususan ditingkatkan daripada 91% kepada 94%.

Peringkat kedua menerima segmen capnogram bersih dari peringkat pertama dan

melaksanakan klasifikasi capnogram antara sihat dan asma. Ciri-ciri yang dicadangkan

adalah berdasarkan Penguraian Mod Empirikal (EMD) di mana ianya sesuai untuk

menganalisis isyarat capnogram yang tidak pegun. Berlainan dengan ciri tradisional

yang diekstrak daripada perwakilan domain frekuensi bagi isyarat capnogram mentah,

ciri yang dicadangkan diekstrak daripada perwakilan domain frekuensi bagi isyarat

pertama Fungsi Mod Intrinsik (IMF). Keputusan menunjukkan bahawa pengelas NB

mampu memberikan ketepatan pengelasan, kekhususan, kepekaan dan kejituan masing-

masing sebanyak 96.5%, 97%, 96% dan 97.18%.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Hundreds of millions of people worldwide su�er from chronic respiratory

diseases, which are considered among the leading causes of morbidity and mortality

[1, 2], especially with the broad spread of novel coronavirus disease (COVID) as healthy

lungs are capable of fighting it better [3]. According to the statistical data reported by

the world health organization (WHO) in 2019, respiratory illnesses represented 30%

of the most prominent causes of death around the world [4]. Di�erent environmental

circumstances, such as dust, air pollution and tobacco smoke exposure, and other

pathological and genetic risk factors are responsible for accelerating the prevalence of

these ill-health conditions [5]. Consequently, the health and economic costs of these

life-threatening respiratory conditions are dramatically high due to their pervasiveness

and severity. The latest report released by the Forum of International Respiratory

Societies (FIRS) identified asthma in addition to other four distress conditions:

chronic obstructive pulmonary disease (COPD), acute lower respiratory tract infection,

tuberculosis and lung cancer, as the most contributing to the global burden of pulmonary

(respiratory) disorders [6].

Asthma is a remarkably common and serious obstructive respiratory disease that

represents a global burden due to the alarming morbidity and mortality rates caused

by this disease as reported by GINA [7]. The symptoms of this chronic disease, which

a�ects millions of people around the world, include shortness of breath, wheeze, cough

and chest tightness. The respiratory airways of an asthmatic patient are swollen and

inflamed, as shown in Figure 1.1. During an asthma attack (also called an asthma

exacerbation), the muscles around the airways contract causing the bronchial tubes to

become even narrower. In addition, the narrowing of the airways is increased due to
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Figure 1.1 Respiratory airway shape in case of normal and asthmatic subjects.

the extra produced mucus and thereby the patient experiences tough trouble breathing

and acute chest tightness.

With the recent spread of the COVID-19 pandemic, it is recommended for

people with asthma to take the vaccination especially if they are not allergic to the

vaccine ingredients [8]. However, regular assessment is still needed in order to

manage asthma attacks and avoid their harmful consequences through determining

the suitable dose of treatment. The diagnosis and assessment of asthma is performed

by pulmonologists based on the history of the symptoms pattern besides the measures

obtained from the PFTs [9]. Other traditional clinical examination methods, such as

chest and tracheal auscultation, are also used to detect the presence of inspiratory and/or

expiratory wheezing and other potential changes in lung sounds [10].
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1.1.1 Capnograph-based respiratory assessment

Capnograph is a medical device recommended by di�erent healthcare societies

for performing evaluations of respiratory conditions [11–13]. Being non-invasive

and e�ort-independent, capnograph has the preference in medical diagnostics over

traditional respiratory assessment methods described in the previous subsection.

Capnograph also showed significance in other situations, besides the follow-up of

patients with pulmonary diseases, where a patient’s level of consciousness, ventilation,

oxygenation or perfusion is deranged. For instance, using capnography in intensive

care environments to monitor the respiratory status during sedation is needed to avoid

sudden depression in the patient’s ventilation [14]. Capnography is also used during

neurosurgery to detect any abrupt decrease in the maximum exhaled CO2 pressure which

indicates the incidence of venous air embolism (VAE) [15]. Other clinical studies

showed that capnography is helpful in cardiopulmonary resuscitation (CPR) during

cardiac arrest [16]. In CPR, capnography is utilized in monitoring chest compressions

and checking the accurate placement of the endotracheal tube in addition to observing

the ventilation rate for the purpose of preventing inadvertent hyperventilation [17–19].

A capnography device measures the partial pressure of CO2 gas in the real-time

pulmonary airflow in human airways during inspiration and expiration and displays

on its monitor a waveform, namely the capnogram signal [20, 21]. Typically, the

CO2 gas represents around 0.04% and 6% of the inhaled and exhaled air, respectively

[22]. With reference to these standard levels, monitoring abnormal changes in the

recorded capnographic wave (i.e., capnogram signal) allows for detecting respiratory

malfunctioning and thereby averting potential harmful consequences. Other associated

assessment parameters, including respiratory rate (RR), inspired CO2 (ICO2) and end-

tidal CO2 (EtCO2), are also computed and displayed on the capnograph monitor.

Capnography devices are either time-based, in which a capnogram waveform shows

the respiratory CO2 partial pressure variations in millimeters of mercury (mmHg)

as a function of time, or volumetric, in which a capnogram signal is recorded and

plotted versus expired volume [23–25]. The main idea of capnography technology is

founded on the fact that infrared (IR) radiation of a specific wavelength is absorbed by

CO2 molecules. Hence, the calculation of the CO2 concentration in the inspired and
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Figure 1.2 CapnostreamTM 20p capnography monitor.

expired gases is carried out via detecting the changes in IR radiation levels by means of

sensitive photo-detectors [21, 26]. Accordingly, a CO2 sensor is a principal component

of a capnography system in addition to a gas sampling tube, through which the CO2

signal is acquired from the subject, and a unit for signal acquisition and processing

[21].

Two main techniques are available for the CO2 measurement in capnography

devices: main- and side-stream techniques [27, 28]. In the main-stream technique,

the CO2 sensor is located close to the subject, particularly between the processing unit

and the face mask that is used to attach the subject to the device. Thereby, neither a

sampling tube nor a pump is needed in a main-stream capnography device. On the

other hand, the CO2 sensor in the side-stream technique is placed inside the main

processing unit away from the subject who is attached to the device through a nasal

cannula. During breathing, a mini pump aspirates the detected CO2 samples from the

sampling tube at a rate ranging from 50 to 200 millilitre per minute (ml/min). The

main-stream capnograph has a simple mechanism and rapid signal acquisition, however
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the temperature of its CO2 sensor increases above 40°C which may harm the subject’s

skin. The side-stream capnograph is easier to sterilize and can be used flexibly for both

adults and children who are sometimes in unusual positions during measurement. In

this thesis, the CapnostreamTM 20p capnographic monitoring device, shown in Figure

1.2, that is based on the side-stream technique is employed. This device records time-

based capnogram waveforms and has the option of saving these CO2 signals for further

processing and analysis.

1.1.2 Capnogram signal analysis

In respiratory care, recognizing capnogram changes can provide better care

for pulmonary patients by alerting the healthcare providers to critical situations where

the airflow is restricted. Pulmonary physicians rely on their visual inspection of

the recorded capnogram signal during a subjective clinical assessment of respiratory

disorders, such as asthma and COPD [25, 29]. However, the automatic objective

assessment and monitoring of such respiratory diseases are highly beneficial in clinical

and home environments [20, 30, 31]. Hence, researchers have been incentivized to

introduce di�erent signal processing-based algorithms for capnogram signal analysis.

The ultimate goal of these algorithms is airway management through the interpretation

of capnogram features which reflect the functional performance of human respiratory

system. For example, the authors in [32] performed a quantitative analysis of

the capnogram signals acquired from patients su�ering from COPD and congestive

heart failure (CHF). In this study, di�erent time-domain features extracted from the

capnogram waveform morphology, such as the slope of the alveolar plateau phase,

were employed together with quadratic discriminant analysis (QDA) to distinguish

between normal subjects and patients with COPD or CHF.

Other studies [33, 34] investigated the significance of time-domain and statistical

features of capnogram signals in detecting asthmatic conditions. The suggested features

in these studies included signal shape descriptive indices, such as the gradients of

di�erent capnogram phases and the angles between these phases, in addition to the

Hjorth parameters [35]. Besides, di�erent frequency-domain features of capnograms
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were also proposed in [36] to di�erentiate normal pulmonary function from asthma.

The fast Fourier transform (FFT) and autoregressive (AR) modelling were utilized

to compute the power spectral density (PSD) of a CO2 signal. Subsequently, the

magnitudes and positions of the spectral peaks were employed as discriminating features

between normal and asthmatic capnograms, and the artificial neural network (ANN)

was used to carry out the classification task. A broad overview of capnogram signal

analysis and feature extraction methods can be found in [37].

Although capnogram signal analysis showed significance in detecting di�erent

respiratory distress conditions, our focus in this thesis is mainly on asthma disease

due to its rising prevalence in Malaysia and other Asia-Pacific countries. Being a

tropical country, Malaysia’s environmental risk factors such as high humidity, mould

and dampness contribute to the wide spread of asthma [38–40]. Furthermore, CO2

emissions from the burning of fossil fuels in Malaysia reached 262.2 million tons in

2020 [41] and so this growing level of air pollution increases the susceptibility to

asthma infection. According to the global initiative for asthma (GINA) guidelines,

asthmatic patients are divided into three categories based on the level of control of

symptoms: well-controlled, partly-controlled and uncontrolled [42]. In Malaysia, only

6% of patients su�ering from asthma are well-controlled, while more than 90% are

partly- and uncontrolled, which reflects the alarming burden imposed by this chronic

non-communicable disease [43].

1.2 Problem statement

Asthma is considered one of the top causes of death worldwide and thereby

detecting this serious disease through the analysis of capnogram signal is an issue of

great significance in medical technology. Hence, researchers proposed a number of

methods to analyze the CO2 waveform using digital signal processing (DSP) techniques.

However, accurate and automatic detection of asthma using a computerized program

remains an open research problem, especially for long-term monitoring with the aim of

an early detection of an asthma attack. This is also encouraged by the ongoing research

on developing portable capnography devices for home monitoring purpose.
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Previous studies on capnogram signal analysis have employed di�erent

features extracted from time- and frequency-domain for automatic asthma detection.

However, the non-stationary nature of capnogram signals implies that their statistical

characteristics and frequency contents are time-varying. Thus, traditional time-domain

and frequency-domain methods are not reliable analysis tools to detect asthmatic

conditions for their limited accuracy. In addition, the quantitative features of a

capnogram signal should be quantified from selected clean (i.e., artefact-free) segments

of the capnogram waveform. However, the automatization of this selection step using

machine learning techniques has not yet received the attention it deserves in the

literature. In previous work, selection of clean capnogram segments were performed

manually by visual inspection, by template matching or using threshold-based methods.

That being the case, this thesis is concerned with conducting research on these issues.

1.3 Research aim

The main aim of the current research is to introduce a fully automated

computerized framework for automatic capnogram-based asthma detection. This

framework is intended to process the input capnogram signal, which may include

deformed parts, and give a final classification decision regarding the pulmonary status of

the subject. This framework can be integrated with capnography devices for monitoring

purposes to automatically give an alarm before an expected asthma attack.

1.4 Research Objectives

Limitations of previous work motivated the current study to achieve the research

aim through setting the following objectives:

1. To propose a Machine Learning algorithm for classifying clean and deformed

capnogram segments, with Hjorth activity and mean absolute deviation features.

2. To propose an Empirical Mode Decomposition based algorithm for classifying

control and asthmatic capnogram segments.
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3. To evaluate the classification performance of the above research objectives in

terms of accuracy, specificity, sensitivity and precision, on real capnogram

segments.

1.5 Scope of research

The scope of research of this thesis includes the following:

• Real capnogram signals are recorded from adult healthy subjects and asthmatic

patients admitted to Universiti Teknologi Malaysisa (UTM) healthcare center

after getting the ethical approval.

• Two capnogram datasets are prepared: the first one includes 100 artefact-free

(regular) and 100 distorted (irregular) capnogram segments, while the second

one includes 200 regular capnogram segments (100 healthy and 100 asthmatic).

• MATLAB is used for simulation purpose to process and analyze the capnogram

datasets using empirical mode decomposition and machine learning algorithms

with the aim of achieving the research objectives. The MATLAB version is

(R2015a) run on a computer with Intel®CoreTM i7 processor, 2.5 GHz speed

and 16 GB RAM.

• The classification performance is evaluated in terms of accuracy, specificity,

sensitivity and precision.

1.6 Thesis outline

Chapter 1 provides an overview of the thesis in addition to traditional and recent

respiratory assessment methods. In this chapter, the problem statement along with the

research objectives and scope are presented.

8



Chapter 2 gives the biological background needed to present the existing

capnogram-based asthma detection methods in the literature. Asthma detection using

other physiological signals, rather than capnogram, is also presented.

Chapter 3 details out the currently proposed method for capnogram-based

asthma detection using empirical mode decomposition (EMD), in addition to the

proposed machine learning approach for classifying clean and deformed capnogram

segments.

Chapter 4 presents the results of the proposed methods accompanied by a

comparison with the lately proposed methods using the available capnogram dataset.

Finally, Chapter 5 concludes the thesis and suggests future research directions.

9
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