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ABSTRACT 

Cyber-physical systems (CPSs) are integrated systems where the physical 

process incorporates cyber components which include computation and 

communication/networking. The integration is usually in the form of a feedback loop, 

in which the cyber component constantly monitors and controls the physical process. 

Conventionally, a controller is designed only to achieve a physical goal, bringing the 

physical output to the desired setpoint with specific performance criteria. On the 

contrary, CPS needs to take into account both cyber and physical performances by 

enhancing the integration between both elements. As a result, a co-design approach is 

required to support the CPS feedback controller design that has the capability to reduce 

the cyber energy while maintaining the physical performance as the integration 

enhancement criteria. Due to this benefit, the CPS has started to be implemented for 

control of process plants. This thesis presents two improved event-based Proportional-

Integral (PI) controllers, namely Fixed Period Algorithm (FPA) and Combined 

Triggering Mechanism Algorithm (CTMA), as CPS feedback controllers for industrial 

process control. The FPA and CTMA are procedurally designed according to the new 

co-design framework, where the FPA is designed to reduce the control computation 

algorithm while the CTMA mitigates the sticking and limit cycles issues. The 

framework consists of controller design, trade-off design, and design's evaluation 

processes. A conventional PI is initially designed, then the integration’s enhancement 

is introduced by using the event-based strategy in trade-off design, hence producing 

the FPA and CTMA. The development of FPA and CTMA are based on previous 

event-based PI controllers, namely Durand and Marchand Saturation Algorithm 

(DMSA) and Durand and Marchand Hybrid Algorithm (DMHA). The CTMA is an 

extension of FPA that combines absolute and relative errors as a triggering mechanism. 

By using an improved algorithm, FPA and CTMA reduce the control computation 

algorithm by 25% (2.4 pJ) and more than 64% (12.8 pJ) as compared to DMSA and 

DMHA, respectively. The performances of FPA and CTMA in reducing control 

updates are also compared to DMSA and DMHA for the case with and without 

network delays on the lag-dominant, balance, and delay-dominant processes. Network 

delays are represented by constant and time-varying delays, where the maximum delay 

values are determined using a simple stability criteria and Monte Carlo simulation in 

the design’s evaluation process. It is found that CTMA reduces control updates by 

50% for the lag-dominant process and 10% for the balanced process based on 

simulation results without the presence of delay. With the presence of delays, the 

superiority of the CTMA is confirmed especially for the lag-dominant process, where 

CTMA improves approximately 50% of the computational load reductions and 70% 

of the physical performance compared to DMHA. Another intriguing discovery is that 

the FPA can achieve comparable performance to the DMHA despite using a simpler 

computation algorithm. Taken together, the clear benefits of FPA and CTMA are the 

trade-off designs that reduce the computational energy by reducing the control updates 

while maintaining the physical performance. It is envisaged that FPA and CTMA can 

be utilised for efficient CPS feedback control in industrial process control. 
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ABSTRAK 

Sistem siber-fizikal (CPS) ialah sistem bersepadu di mana proses fizikal 

menggabungkan komponen siber yang merangkumi pengiraan dan 

komunikasi/rangkaian. Penyepaduan biasanya dalam bentuk gelung suap balik, di 

mana komponen siber sentiasa memantau dan mengawal proses fizikal. Secara 

konvensional, pengawal direka bentuk hanya untuk mencapai matlamat fizikal, 

membawa proses fizikal ke tetapan yang dikehendaki dengan kriteria prestasi tertentu. 

Sebaliknya, CPS perlu mengambil kira prestasi siber dan fizikal dengan 

mempertingkatkan integrasi antara kedua-dua elemen. Akibatnya, pendekatan reka 

bentuk bersama diperlukan untuk menyokong reka bentuk pengawal suap balik CPS 

yang mempunyai keupayaan untuk mengurangkan tenaga siber disamping 

mengekalkan prestasi fizikal sebagai kriteria peningkatan integrasi. Disebabkan oleh 

faedah ini, CPS telah mula dilaksanakan untuk kawalan loji proses. Tesis ini 

membentangkan dua Pengawal Kamiran-Perkadaran (PI) berasaskan-peristiwa, iaitu 

Algoritma Tempoh Tetap (FPA) dan Algoritma Gabungan Mekanisme Pencetusan 

(CTMA), sebagai pengawal suap balik CPS untuk kawalan proses industri. FPA dan 

CTMA direka bentuk mengikut aturan rangka kerja reka bentuk bersama yang baharu, 

di mana FPA direka untuk mengurangkan algoritma pengiraan kawalan manakala 

CTMA mengurangkan isu keluaran melekat dan kitaran had. Kerangka ini terdiri 

daripada reka bentuk pengawal, reka bentuk tukar-ganti, dan proses penilaian reka 

bentuk. PI konvensional direka bentuk sebelum peningkatan integrasi diperkenalkan 

dengan menggunakan strategi berasaskan-peristiwa dalam reka bentuk tukar-ganti, 

justeru menghasilkan FPA dan CTMA. Pembangunan FPA dan CTMA adalah 

berdasarkan pengawal PI berasaskan-peristiwa sedia ada, iaitu Algoritma Tepu 

Durand dan Marchand (DMSA) dan Algoritma Hibrid Durand dan Marchand 

(DMHA). CTMA ialah pelanjutan FPA yang menggabungkan ralat mutlak dan relatif 

sebagai mekanisme pencetus. Dengan menggunakan algoritma yang ditambah baik, 

FPA dan CTMA mengurangkan algoritma pengiraan kawalan sebanyak 25% (2.4 pJ) 

dan lebih daripada 64% (12.8 pJ) berbanding dengan DMSA dan DMHA. Prestasi 

FPA dan CTMA dalam mengurangkan kemas kini kawalan juga dibandingkan dengan 

DMSA dan DMHA untuk kes dengan dan tanpa kelewatan rangkaian pada proses loji 

dominan susulan, dominan seimbang dan dominan lewat. Kelewatan rangkaian 

diwakili oleh kelewatan malar dan kelewatan masa yang berubah-ubah, di mana nilai 

kelewatan maksimum ditentukan dalam proses penilaian reka bentuk menggunakan 

kriteria kestabilan mudah dan simulasi Monte Carlo. Adalah didapati bahawa CTMA 

mengurangkan kemas kini kawalan sebanyak 50% untuk proses dominan susulan dan 

10% untuk proses seimbang berdasarkan hasil simulasi tanpa kehadiran kelewatan. 

Dengan adanya kelewatan, keunggulan CTMA disahkan terutamanya untuk proses 

yang dominan susulan, di mana CTMA menambah baik kira-kira 50% daripada 

pengurangan beban komputasional dan 70% daripada prestasi fizikal berbanding 

DMHA. Satu lagi penemuan yang menarik ialah FPA boleh mencapai prestasi yang 

setanding dengan DMHA walaupun menggunakan algoritma pengiraan yang lebih 

mudah. Secara keseluruhan, faedah jelas FPA dan CTMA ialah reka bentuk tukar-ganti 

yang mengurangkan tenaga komputasional dengan mengurangkan kemas kini kawalan 

sambil mengekalkan prestasi fizikal. Adalah dijangkakan bahawa FPA dan CTMA 

boleh digunakan untuk kawalan suap balik CPS yang cekap dalam kawalan proses 

industri.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research Background 

In the first two decades of the 21st century, the technologies of computer, 

communication, and control systems have grown rapidly. This technological 

development creates sophisticated systems that involves the integration of these fields. 

These integration systems are called as cyber-physical systems (CPSs). CPS was 

coined in 2006 by Helen Gill, the director of computer information and science 

engineering (CISE) at National Science Foundation (NSF) USA (Lee and Seisha, 

2017). The NSF (NSF, 2021) defines CPSs as “engineered systems that are built from, 

and depend upon, the seamless integration of computation and physical components 

to enable the capability, adaptability, scalability, resiliency, safety, security, and 

usability that will expand the horizons of the system”. Lee (2015) states “CPS is an 

orchestration of computers and physical systems. Embedded computers monitor and 

control physical processes usually with feedback loops, where physical processes 

affect computations and vice versa”. While, the National Institute of Standards and 

Technology (NIST) defines CPS as “a system that integrate the cyber world with the 

physical world, where computational and physical components of such systems are 

tightly interconnected and coordinated to work effectively together, sometimes with 

humans in the loop” (NIST, 2013). Other researchers have come to an agreement that 

CPS is the next generation of engineered systems that require tight integration of 

computing, communication, and control techniques (Raj et al., 2010; Kim and Kumar, 

2012; Sztipanovits et al., 2012). 

From all the definitions, there are some common characteristics that can be 

extracted. In inference, CPS has the following characteristics (Guan, et al., 2016): 
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a. Integration of cyber elements (computation, software, and networking) and 

physical elements (engineered systems and human factor). 

b. A feedback loops system which involves the physical processes, 

computations (simulation and decision making), sensing and actuation 

elements, and monitoring and control elements.  

c. Networked, tightly coupled, interconnected processes and mediating 

between computing and physical entities.  

Figure 1.1 shows the relationship between cyber and physical spaces for CPS 

which makes CPS a heterogeneous system that combines hardware, software, sensors, 

actuators, and other components (Parnianifard et al., 2020). Basically, CPS is a system 

that integrate several systems, such as embedded systems, networked control systems 

(NCS) and Internet of Things (IoT). Therefore, the analysis and design of the CPS are 

based on unified dynamics, which emerge from interactions between physical, 

computer, software, and networks (Seshia et al., 2017) and the main difference 

between CPS from embedded system and NCS is the requirement for integration’s 

enhancement of the cyber and physical elements. Table 1.1 summarises the differences 

between CPS and NCS in a control system perspective.  

 

Figure 1.1 CPS relationships (Parnianifard et al., 2020) 
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Table 1.1 Differences between CPS and NCS 

CPS is frequently referred to a large-scale system, which complicates its 

integration. As suggested in Kopetz (2019), the complexity of the integration can be 

reduced using a partition technique, where the integration’s enhancement can be 

applied within every CPS sub-domain. As an example, the integration can be 

implemented in the embedded system or in NCS itself. As illustrated in Figure 1.1, the 

control system is one of the CPS sub-domains, in which the cyber part plays a role in 

computing a control signal for the actuator using an information from the sensor in 

feedback closed-loop control. The feedback loops that constantly transfer and compute 

the control signal every predefine sampling time will keep utilizing the cyber energy. 

So as to enhance the integration of cyber and physical parts, this computation cost can 

be included as an objective in controller design by allowing the trade-off between 

cyber and physical performances (Bradley and Atkin, 2012). This strategy is coherent 

with the autonomous control operation of CPS, as highlighted in Table 1.1. In this 

thesis, an embedded system feedback controller’s framework is presented, where CPS 

integration is improved by enabling the trade-off between cyber and physical 

performances. 

CPS NCS 

System of system – consist of several 

subsystems (Seshia et al., 2017). 
Subsystem of CPS. 

Focus on the integration between cyber 

and physical worlds, with more 

considerations given to the cyber part of 

control design (Lee, 2017). 

Focus on the stability of the 

designed controller to mitigate the 

network issues. 

 

Autonomous control operation where the 

cyber part is able to react accordingly to 

physical state and vice versa (Kopetz, 

2019). 

The cyber part only for computing 

control signal, and transferring 

data between sensor, controller 

and actuator.   
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1.2 Motivation of the Research 

The integration’s enhancement is a main characteristic of CPS that makes it 

different from other systems. Despite that CPS is mostly a high-level system where the 

physical process is controlled through the network environment with the access of 

cloud or web, the integration’s enhancement can be implemented at the early stage at 

embedded system level (Lee and Seisha, 2017, Marwedel, 2018; Taha et al., 2021). 

One way to improve this integration is to incorporate a co-design technique in 

designing the controller so that both cyber and physical performances can be taken 

into account in the designing process (Zhu and Sangiovanni-Vincentelli, 2018). Most 

co-design techniques are applied when the controller is involved in multitask control, 

where they are implemented on the cyber side, which is in a real time system (RTS) 

scheduling (Aubrun et al. 2013; Zanma et al. 2022). Meanwhile, an event-based 

strategy can be considered as the co-design technique from the physical perspective 

(Yang et al., 2022). 

Event-based PID is one of the co-design techniques that allow a trade-off 

between the number of control computation iterations and physical performance. 

Recently, research regarding the use of event-based PID to reduce the computation 

cost has attracted the interest of researchers (Aranda-Escolástico et al., 2020). It can 

thus be suggested that the event-based PID can handle the energy consumption of 

computation for a more effective and efficient system, as stated in Miguel-Escrig and 

Romero-Pérez (2019). However, the event-based PID suffers from the main drawback 

of the event-based strategy, which are sticking and limit cycles issues (Cervin and 

Åström, 2007; Ruiz et al., 2014). Sticking response is a phenomenon when the 

controller stops to update even though the output response is far from the reference 

point, while limit cycles is an oscillatory response generated at the reference point due 

to the output error keeps moving toward the limit of the event threshold. Beschi et al. 

(2012a) proposed symmetric send-on-delta (SSOD) event-based PI to address the 

sticking and limit cycle issues. However, SSOD event-based PI cannot be tuned using 

existing established tuning methods such as Ziegler-Nichols (Ziegler and Nichols, 

1942), Simple Internal Model Control (SIMC) (Skogestad, 2003), and Approximate 

M-constrained Integral Gain Optimization (AMIGO). This leds to the introduction of 
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various new tuning methods spesifically for SSOD, such as, settling time (ST) tuning 

(Beschi et al., 2012b; 2014), optimization tuning (Romero and Sanchís, 2018; Miguel 

et al., 2019), and robust optimization (Ruiz et al., 2017). Nevertheless, it would be 

very valuable if the well-established tuning rules can be applied directly to the event-

based PID controller as various performance purpose and robustness goals can be 

achieved (Sánchez et al., 2020). Moreover, SSOD event-based requires an extra 

algorithm to symmetrize the error, which contributed to an additional computation. 

Even though the main objective of an event-based controller is to reduce computation 

of control signal, some of the efforts to improve the performance of event-based 

controller with respect to the original time-triggered controller introduce new 

computation in the basic algorithm, consequently, increasing the computational cost. 

For instance, event-based improvement by Durand and Marchand (2009) and Durand 

et al. (2018) introduced an exponential function in the algorithm which is an expensive 

arithmetic computation function. This study is motivated to further investigate the 

event-based PID algorithm, in order to have a simpler algorithm that can explicitly 

apply established tuning rules designed for the continuous controller. 

It is well known that the PID controller is able to simplify the control operation 

and give a good performance in controlling the system, and due to this fact, this 

controller has been widely used in the industry, especially in industrial process control 

(Åström and Hägglund, 2006; Bequette, 2019). The advance of technology in control, 

computing, and communication has had a big impact on industrial process control, 

where the processes are moving toward autonomous process control. In doing so, the 

CPS approach should be adopted for controlling the processing plant (Wang et al., 

2008). However, due to the huge challenge in CPS, not much work has been done 

regarding the CPS approach to process control. As a result, it is beneficial if there is a 

framework that consists of design guidelines on how to implement a CPS in a process 

control plant. It is also desirable to use co-design event-based PID as a feedback 

controller for CPS to enhance its integration by allowing a trade-off  between cyber 

and physical performances. 
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1.3 Problem Statement 

The impact of advanced control, computing, and communication technology 

has greatly benefited the industry.  As a result, an industrial process control does not 

want to miss out on the opportunity to improve its production operational efficiency 

by implementing these advanced technologies through a CPS approach (Wang et al., 

2008). Unfortunately, only a few studies have been conducted to address the 

challenges of implementing CPS in industrial process control (Isaksson et al. 2018). 

CPS emphasis the integration of cyber and physical elements, where it is possible to 

be conducted using a co-design technique such as event-based controller (Liu et al., 

2022). However, there are still no framework or guideline procedure to utilize the 

event-based controller as a CPS feedback controller for process control plant. 

Event-based PID can be a possible co-design technique for process plant in 

order to incorporate CPS in controlling the process plant. However, due to the sticking 

and limit cycles issues, a well-established tuning rule for PID controller in process 

plant is not suitable for event-based PID (Sánchez et al., 2020). Moreover, most of the 

efforts in improving the event-based PID will introduce new computation which 

increase the computational cost. On the other hand, CPS mostly runs on the network 

environment where the timing imperfections in computing and communication 

components affect the system performance and reliability. In RTS, control 

computation is one of the scheduling tasks, thus it will inherit several issues such as 

delay jitter, task execution time scheduling and task preemption. The variation of 

input-output delay over the period can deteriorate the control performance and 

possibly destabilize the system. Hence, to enable event-based PID as a CPS feedback 

controller, it should be evaluated with the presence of these timing constraints. 

In summary, CPS requires a new design methodology to co-design the 

controller in order to fulfil both cyber and physical objectives. This co-design 

framework should have a design structure in designing a controller that is able to 

reduce the computation usage while maintaining physical performance, and the 

evaluation technique that can facilitate the method to consider timing constrains in 

CPS. From the above discussion it has clearly shown the potential of event-based PID 
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to be a CPS feedback controller for a process control plant. Therefore, there is a 

definite need for further research to develop the event-based PID with a simple 

algorithm and able to address the sticking and limit cycles problems under the presence 

of network issue. 

1.4 Research Objectives 

The main aim of this research project is to design a CPS feedback controller 

that is able to enhance the integration between cyber and physical elements by 

allowing the trade-off between cyber and physical performances. The objectives of 

this research are listed as follows: 

a. To develop a co-design framework of control and computation load reduction 

for a CPS. This co-design framework should be able to:  

 

i. facilitate feedback control design with the specific physical requirement 

that considers the energy usage of the cyber element. 

ii. address the issue of varying nondeterministic delay (jitter) in network 

environment. 

 

b. To verify the proposed co-design framework through simulation in the 

networked environment.  

1.5 Scope of the Study 

The scope of the overall research is listed as follows: 

 

a. The feedback embedded control system with a delay effect is used as CPS. As 

the system requires an enhancement on the interaction between cyber and 

physical parts, the improvement of the interaction is designed at the feedback 

controller design stage. 
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b. A CPS based on industrial process plant with a non-critical time constant is 

considered in this work. Lag, balance and dominant processes are examined, 

and the controller is designed based on a feedback linear time-invariant (LTI) 

system. 

c. The proposed controller is developed based on a Proportional Integral (PI) 

feedback controller. 

d. The tuning method for the PI controller is based on the first order plus dead 

time (FOPDT) approximation technique. 

e. A MATLAB/Simulink/Truetime environment is considered as the main 

software used for simulation and experimental tests.  

f. An energy saving reduction is estimated to be proportional with the control 

computational reduction and iteration. 

1.6 Contribution of the Research Work 

The main contributions from this study are: 

a. A new framework for designing an embedded CPS is introduced by using a co-

design feedback controller approach to enable a trade-off between control 

computation reduction and physical performance. The reduction of the control 

computation will lead to cyber energy saving. The framework consists of the 

design process, design tool, and verification technique. This new framework 

can be used to distinguish the design of CPS over other digital control designs. 

b. Improvement on algorithm and triggering mechanism for event-based 

Proportional-Integral (PI) controller namely fixed period algorithm (FPA) and 

combined triggering mechanisms algorithm (CTMA) are presented. The 

improved algorithms result in a less computational effort and is able to avoid 

sticking and limit cycles response. 
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1.7 Thesis Outline 

This thesis is composed of six main chapters, including this introductory 

chapter. Chapter 1 gives a brief overview of the research background, research 

motivations, problem statements, research objectives, scopes, and contributions.  

Chapter 2 begins with the brief history of CPSs, follows by the review on 

existing co-design control strategies and event-based control strategies. Then, the 

literature review is summarised and the research gap is identified. 

Chapter 3 presents the methodology of the overall research in achieving all the 

research objectives. In this chapter, the framework of the co-design feedback 

controller, plant model, tuning method and evaluation benchmark are explained in 

detail. 

Chapter 4 is divided into two parts. The first part elaborates the proposed and 

benchmarking of event-based control approaches. The second part presents the results 

and analysis regarding the trade-off of cyber and physical performances. 

Chapter 5 explains and presents the evaluation techniques for the proposed 

method under the effect of the network environment. Several tests including constant 

and time-varying delays are carefully conducted. Then the results are presented along 

with the analysis. 

In Chapter 6, the conclusion and contributions of the research are presented. 

The recommendations of the possible future work and direction are also covered in 

this chapter.
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