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ABSTRACT

High voltage insulators play a major rule in energy transmission 

systems. The main role of these insulators is to ensure and maintain 

high level of line-tower insulation. However, the voltage distribution 

of insulator string is uneven which may easily lead to corona, 

insulators’ surface deterioration and even flashover. Although there 

is various research for this topic, but there still have some limitations 

regarding on the performance of insulator in terms of voltage and 

electric field distributions. In this project, high voltage insulator 

strings with will be designed and simulated by using simulation 

software such as SOLIDWORKS and EMS software and their data 

(electric field and voltage distributions) will be collected and 

analysed. The modelling of the insulator will be designed by 

considering the effect of conductor and transmission tower as well as 

different material type of high voltage insulator such as porcelain, 

glass and silicon rubber. In addition, the improvement on the 

performance of the insulator also will be taken into consideration in 

this project. The research described in this dissertation is directly 

applicable to the Voltage and Electric Field distributions along the 

high voltage insulators design and development.
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ABSTRAK

Penebat voltan tinggi memainkan peraturan utama dalam sistem 

penghantaran tenaga. Peranan utama penebat ini adalah untuk 

memastikan dan mengekalkan tahap penebat menara talian yang 

tinggi. Walau bagaimanapun, taburan voltan rentetan penebat adalah 

tidak sekata yang boleh membawa kepada korona, kemerosotan 

permukaan penebat dan juga kilatan kilat. Walaupun terdapat 

pelbagai kajian untuk topik ini, namun, masih terdapat beberapa 

batasan mengenai prestasi penebat dari segi taburan voltan dan medan 

elektrik. Dalam projek ini, rentetan penebat voltan tinggi dengan akan 

direka bentuk dan disimulasikan dengan menggunakan perisian 

simulasi seperti perisian SOLIDWORKS dan EMS dan datanya 

(taburan medan elektrik dan voltan) akan dikumpul dan dianalisis. 

Pemodelan penebat akan direka bentuk dengan mengambil kira kesan 

konduktor dan menara penghantaran serta jenis bahan yang berbeza 

bagi penebat voltan tinggi seperti porselin, kaca dan getah silikon. Di 

samping itu, peningkatan prestasi penebat juga akan diambil kira 

dalam projek ini. Penyelidikan yang diterangkan dalam disertasi ini 

terpakai secara langsung kepada taburan Voltan dan Medan Elektrik 

di sepanjang reka bentuk dan pembangunan penebat voltan tinggi.
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CHAPTER 1

INTRODUCTION

1.1 Research Background

High voltage transmission line is a connection line of the high 

voltage transmission tower that along the generating stations and 

distributions systems. Normally, it can be separated in two types 

which are transmission line and distribution line. Each of the line 

consists of four major electrical characteristics which are resistance, 

inductance, capacitance and conductance. Nowadays, HVDC 

transmission line is used to replace HVAC transmission line for 

several long-distance transmission because of lower losses and high 

transmission capability.

The first power DC transmission line was built by Rene Thury 

at Miesbach-Munich Power Transmission in Germany on 1882 as 

shown as Figure 1.1 below. The distance for the transmission line was 

57 km and the capacity was only 2.5 kW for power transmission [1]. 

However, the DC voltage level could not reach high values enough to 

reduce the losses during transmission because of power electronic 

converters technologies were not fully developed at that time and the 

AC voltage can be easily increased by using transformer. Hence, 

HVDC transmission at that time was replaced by using HVAC 

transmission in 1886.
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Figure 1.1 Miesbach-Munich Power Transmission Line

As for now, fast development of power electronic devices 

making the HVDC technology has risen and gained popularity again. 

For example, a 120km, 300kV HVDC transmission line was 

implemented and connects the converter stations in Southern 

Thailand and Northern Malaysia and includes a full-length neutral 

conductor. HVDC technology is now being considered because of 

power transmission in long distance will be more sTable, high 

flexibility and controllability [2]. In addition, power supply in 

Malaysia is 50Hz while power supply in Thailand is 60Hz which this 

different frequency issues can be synchronized by using rectifier and 

inverter.

Along the high voltage transmission line, there is one of the 

important parts which is known as insulator which is shown as Figure 

1.2. The main purpose of the insulator is to provide isolation between 

the transmission line and the grounded tower. In addition, it is also 

separate or support the electrical conductor on high voltage electricity 

supply network. Insulator can be classified into 3 types materials:
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Ceramic, Glass and Composite. Ceramic and glass insulator are 

known for the durability and long life while composite insulator is 

light weighted and have a better hydrophobicity property [3].

Figure 1.2 Outdoor Insulators

In addition, the function of the insulator also acts as to insulate 

the electrical part from any charged from the equipment. For better 

understanding, it also performs as a barrier to prevent from electric 

shock. In terms of high voltage, insulator can be assumed as it is an 

earth wire to separate from the conductor and the ground. However, 

in transmission and distribution system, it is necessary that the 

insulator need to able to carry very large tensional and compressive 

load.

In terms of insulator designing, there are many shapes and 

types of insulators that used in power transmission. Each shape or 

type of insulator will have different densities, tensile strengths and 

performance to withstand the worst outdoor environments such as 

lightning surge and switching surge. Therefore, insulator design
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should be compatible with electrical and mechanical strengths as well 

as outdoor environmental stress such as humidity, temperature and 

pollution.

1.2 Problem Statement

Voltage and electric field distribution along the insulator 

sometimes will be uneven greatly because of coupling capacitance 

between the insulator and conductors. In addition, these insulators are 

subjected to outdoor environmental stress which also will affect the 

voltage and electric field distribution of the insulator around 3 -  5 

times higher than normal rating, which will have a possible chance 

the insulator will have a long-term problem where it can result in 

insulator failure. Mostly reasons from the insulator failure are 

flashover, surface deterioration, corona discharge, mechanical 

stresses, porosity of material and etc.

For flashover of the insulator, it is the insulator failure which 

happened the most and it will cause the insulator overheated and will 

have an effect on the insulator which can shattering the insulator with 

big cracks. In addition, the presence of luminosity, audible noise and 

radio interference on the insulator is known as corona discharge. It is 

a non-linear phenomenon of electrical discharge and will cause the 

electrical energy flow the conductor to the ionized medium. The 

presence of contamination such as fog and raining also will cause 

flashover along the insulators. Uneven voltage also will cause the 

surface of the insulator deterioration which also known as cracking of
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insulator. This is because there is an unequal expansion of material of 

the insulators during the varying condition of cold and heat [4].

As nowadays the load penetration on the transmission and 

distribution lines are increasing rapidly, many research has been done 

and studied in terms of voltage and electric field distribution on the 

insulator, however, insulator failure still always happens in all over 

the world. Furthermore, studies on voltage and electric field 

distribution along the high voltage insulator still immature and the 

performance of the insulators have not been well investigated as well. 

Old technology and methods were being used during the research, and 

the results and analysis are only approximation and not accurate. 

Therefore, exquisite researches needed to be done in this area in order 

to improve the performance and reliability of the high voltage 

insulators.

1.3 Research Objectives

The main objective of this project is to simulate and analyze 

the voltage and electric field distribution along the high voltage 

insulator and further to improve the voltage and electric field 

performance. There are some objectives that need to be achieved 

which shown as below:

• Modelling and testing (meshing) the 3-Dimensional High 

Voltage Insulator.
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Simulate and analyze the voltage and electric field 

distributions along the high voltage insulator by considering 

the effects of transmission tower and line conductor.

Simulate and analyze the voltage and electric field 

distributions along the high voltage insulator with different 

types of surface materials such as porcelain, glass and silicon 

rubber.

Proposed a optimize design to improve the insulator 

performance in terms of different number of disc units in the 

insulator string.

1.4 Research Scope

The scope and focuses of this project are shown as follows:

• High voltage insulator model chosen to develop is used 

for 230kV (400kV Line to Line Voltage).

• Modelling and simulation work is done by using 

SOLIDWORKS and EMS according to Finite Element 

Method (FEM).

• 3-Dimensions modeling and simulation for more realistic 

and accurate voltage and electric field distributions.

• Suspension Insulator is developed and it is ideal and clean 

conditions
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1.5 Research Contributions and Significances

The main research contributions and significant after this 

project is done are shown as follows:

• To reduce the possibility of insulator failure as well as 

cost optimization by propose a optimize design of the high 

voltage insulator such as reduce the number of disc units 

in the insulator string.

• To help the high voltage engineers to take care of the 

regions where the voltage and electric field is expected to 

be very high under polluted and contaminated conditions.

• In terms of electrical utilities and economical, designers 

and engineers can choose the suitable devices dimensions 

and suitable materials that be used for insulators.

1.6 Thesis Organizations/Outline

This thesis for this project consists of 6 chapters which will 

organized as following:

• Chapter 1 is the introduction for this project which is 

mainly discussed on the background and the 

problem/issues for this project. All the objectives, scope 

and the research contributions had been discussed in this 

chapter.

• Chapter 2 is the literature review for this project. Some 

concepts and theory regarding the insulator will be

7



reviewed and discussed in this chapter. In addition, some 

of the past works regarding this project also has been 

literature and discussed in this chapter.

• In Chapter 3 which is the research methodology in this 

project, the research method to analyze the voltage and 

electric field distribution along the insulator via 

simulation software is discussed. Moreover, the used 

governing equations as well as Finite Element Method 

(FEM) also will be presented in this chapter. All the 

procedures will be shown in block diagram for easy to 

understand. Moreover, the insulator model will be shown 

as well as the insulator’s parameter setting and its 

configurations. In addition, case study to testing the 

insulator also shown. Furthermore, research planning for 

this overall project will be shown in Gantt Chart in this 

chapter.

• For Chapter 4, all the simulations results will be shown 

based on the mentioned objectives as well as its analysis, 

calculations and its justifications. In additions, 

benchmarking also will be conducted by comparing and 

verifying the simulation results with other journals and 

articles.

• Lastly, Chapter 5 presented the overall conclusions for 

this project. Moreover, some recommendations and 

suggested for future works also will be discussed and 

reviewed in this chapter.
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