
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 6, Jun. 2022 1973
Copyright ⓒ 2022 KSII

This work was supported through the Annual Funding track by the Deanship of Scientific Research, Vice
Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia [Project No.
AN000160].

http://doi.org/10.3837/tiis.2022.06.011 ISSN : 1976-7277

AJFCode: An Approach for Full Aspect-
Oriented Code Generation from Reusable

Aspect Models

Abid Mehmood1* and Dayang N.A. Jawawi2
1 Department of Management Information Systems, College of Business Administration,

King Faisal University, Al-Ahsa 31982, Saudi Arabia.
[e-mail: aafzal@kfu.edu.sa]

2 Department of Software Engineering, Facutly of Computing, Universiti Teknologi Malaysia,
Johor Bahru, Malaysia.

[e-mail: dayang@utm.my]
*Corresponding author: Abid Mehmood

Received March 16, 2022; revised May 22, 2022; accepted June 1, 2022;

published June 30, 2022

Abstract

Model-driven engineering (MDE) and aspect-oriented software development (AOSD)
contribute to the common goal of development of high-quality code in reduced time. To
complement each approach with the benefits of the other, various methods of integration of
the two approaches were proposed in the past. Aspect-oriented code generation, which targets
obtaining aspect-oriented code directly from aspect models, offers some unique advantages
over the other integration approaches. However, the existing aspect-oriented code generation
approaches do not comprehensively address all aspects of a model-driven code generation
system, such as a textual representation of graphical models, conceptual mapping, and
incorporation of behavioral diagrams. These problems limit the worth of generated code,
especially in practical use. Here, we propose AJFCode, an approach for aspect-oriented model-
driven code generation, which comprehensively addresses the various aspects including the
graphical models and their text-based representation, mapping between visual model elements
and code, and the behavioral code generation. Experiments are conducted to compare the
maintainability and reusability characteristics of the aspect-oriented code generated using the
AJFCode with the most comprehensive object-oriented code generation approach. AJFCode
performs well in terms of all metrics related to maintainability and reusability of code.
However, the most significant improvement is noticed in the separation of concerns, coupling,
and cohesion. For instance, AJFCode yields significant improvement in concern diffusion over
operations (19 vs 51), coupling between components (0 vs 6), and lack of cohesion in
operations (5 vs 9) for one of the experimented concerns.

Keywords: aspect-oriented software development (AOSD), AspectJ, automated code
generation, model-driven engineering (MDE), software design.

1974 Mehmood et al.: AJFCode: An Approach for Full Aspect-Oriented
Code Generation from Reusable Aspect Models

1. Introduction

Model-Driven Engineering (MDE) is a software development approach that makes use of
models as the primary development artifact. The main idea is to transform the models
automatically from one level of abstraction into another more detailed level and to continue
such automatic transformations until the final application code is obtained. The resultant
higher level of abstraction in systems development essentially leads to an improved
understanding of complex systems. In the MDE context, automatically generated code offers
some obvious benefits such as reduced time to develop, less unintentional syntax mistakes,
greater consistency between code and design [1, 2]. Some recent examples of the use of MDE
in various contexts include the approaches presented for fault injection in Java code [3], for
simplifying the design and development of IoT-based monitoring systems [4], for engineering
cyber-physical systems [5], for performance testing in mobile applications [6], and for
distributed ledger deployment [7]. Aspect-Oriented Software Development (AOSD) [8, 9]
provide a software engineering approach that allows an explicit way of identifying, separating,
and encapsulating the so-called crosscutting concerns. Some typical examples of such
concerns are the concerns related to non-functional requirements such as logging, security,
and persistence. As these concerns cannot be fully decomposed from the main functionality
using object-oriented techniques, they cannot be effectively modularized. With AOSD, on the
other hand, the crosscutting concerns are implemented as individual modules and then
composed into primary modules when their behavior is to be applied. The effective modeling
of concerns improves the reusability and maintainability of software, which in turn lead to
greater flexibility and extensibility [10-12]. Recently, studies have reported the benefits of
AOSD in the development of middleware for IoT [13], in user activity detection [14], in
supporting organizational patterns [15], and in smart contract development in the blockchains
context [16], to name a few.

MDE and Aspect-Oriented Software Development AOSD have some complementary
properties. MDE elevates the abstraction level, but it has limitations with regards to refining
and integrating the system perspectives. AOSD is particularly effective in modularizing and
composing concerns, but it lacks proper abstraction techniques. Therefore, an integration of
the two is deemed to provide a two-fold benefit: adding the excellent abstraction mechanisms
of MDE to AOSD and augmenting the MDE with strength of AOSD with regards to
modularizing and composing the concerns. The aforementioned integration has been explored
in the literature in two different ways: by employing model weavers and by directly generating
aspect-oriented code. Model weaver approaches (sometimes referred to as weave-then-
generate (WTG) approaches such as [17-19] take the base model and the aspect model and
weave them together to obtain an object-oriented model. The resultant model is then
transformed into the code of an object-oriented programming language using standard code
generation techniques (e.g., [20, 21]). An integration carried out in this way may work
effectively when analyzing or executing models. However, the resultant object-oriented code
lacks the aspect features of the model and hence loses the separation of concerns. This defies
the purpose for which aspect modeling was initially adopted and again exposes the system to
maintenance and other issues [10, 22].

To address this issue, the aspect-oriented (AO) code generation approaches (also referred
to as generate-then-weave (GTW) approaches) such as [23, 24] focus on the transformation of
source AO model directly into the code of an AO language. The weaving of concerns is done
by the weaver provided by the target programming language. Thus GTW approaches
inherently benefit from strengths of AO-based methods as investigated empirically by studies

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 6, June 2022 1975

(e.g., [25, 26]).
Aspect technologies at the implementation level are already well-known in industrial

circles. Some leading implementation framework designers (e.g., JBoss, Spring) have
adopted them. However the present AO code generation methodologies are not
without some significant flaws. First, they fail to fully elaborate and exploit the model-code
relationship to address issues specific to code generation. Second, the existing AO code
generation approaches do not provide a formal way to transform visual models into text-based
models, which are program-savvy, and thus can be used for systematic generation of code.
Third, the existing approaches lack support for the “base” part of the model, which
characterizes the non-crosscutting (base) feature set of a system. Fourth, none of the present
approaches generates code related to object’s behavior. Because of these weaknesses, the
existing research does not provide a practical and adequate integration of AOSD and MDE.

This paper proposes a solution that addresses all the weaknesses of existing GTW
approaches stated above. Specifically, the research proposes AJFCode—an approach to
integrate MDE and AOSD by means of AO code generation. It takes models developed using
Reusable Aspect Models [27] notation and generates AspectJ code for structure and behavior
represented by the model. The key contributions of this work are given in the following.

• We elaborate a comprehensive approach considering all facets of a model-driven code
generation approach including the graphical models and their text-based representation,
mapping to code, and behavioral code generation.

• We extend a method of mapping complete AO models comprising structural details
and object’s behavior to AO code.

• AJFCode exploits a well-defined text-based model to represent the graphical model in
text form to enable the subsequent transformation into code.

• We provide a method of obtaining aspect-oriented code from aspect-oriented state chart
diagrams.

• We provide a method for AO code generation that generates structure and behavior
code for the base as well as crosscutting (aspectual) segments of the model. To the best
of our knowledge, AJFCode is the first approach to generate AO behavioral code.

 Following this introduction, other works related to the current study are discussed in
Section 2. The details of code generation approach are presented in Section 3. Section 4
presents the results of the evaluation of AJFCode. Section 5 concludes the paper.

2. Related work
The existing research related to AO code generation can be viewed in two broad categories.
First, some approaches explicitly address the code generation from models. The second type
of works do not address the code generation directly, but they contribute significantly to the
AO code generation goal in another way, e.g., by formalizing mechanisms for transformation
between AO models and AO code. In the following, we describe the existing AO code
generation approaches.

The transformation-based approaches define a model to code transformations based on
existing transformation techniques. Hecht, et al. [28] develop an XML representation of
Theme/UML [29] models and apply the Theme’s transformation approach to map models to
code. The XSLT-based code generator uses XMI to implement transformation from UML to
XML. In a similar work [30], visual models of multi-modal scenario-based system
specifications have been transformed using a pattern-based technique to transform Live
Sequence Charts into AspectJ. The template-based approach of Evermann et al. [31, 32]

1976 Mehmood et al.: AJFCode: An Approach for Full Aspect-Oriented
Code Generation from Reusable Aspect Models

obtains the code from the UML-based specification of AspectJ meta-model. The actual code
generation is implemented using UML XMI model interchange abilities. Bennett et al. [24, 33]
exploit some of the obvious advantages of graph-based transformations to generate AO code.
This approach makes use of automated transformations first to transform the models developed
in FDAF [34] into XML-based models and then transform these text models into AspectJ code.
The aforementioned approaches provide basic support for AO code generation, but they do
not address the advanced issues such as the model-to-code relationship for behavioral elements
at model and code level.

Another category of approaches defines a direct mapping of the source model onto the
constructs of a programming language. Therefore, they do not address the details of the
transformation process. An approach to generate AspectJ code stubs from extended UML
models has been proposed by Groher and Schulze [35]. They have integrated the Borland’s
Together CASE tool. The approach first obtains the object-oriented code for the base elements
and then uses the extension mechanisms of the tool to implement AO code generation. Haitao
et al. [36] interpret the AO domain-specific models to obtain AO code in AspectC++. This
approach models the crosscutting concerns as separate aspects and then defines a model
interpreter to generate code by traversing the aspects. Kramer and Kienzle [23] have provided
a mapping of Reusable Aspect Models (RAM) into Java and AspectJ. Similarly, mapping of
Theme/UML models to AspectJ has been provided in [29] and [37] essentially analogously.
Some work has specifically focused on identifying and solving the common problems in
mapping the design concepts to the constructs of code. Modeling Aspects using a
Transformation Approach (MATA) [19, 38] is a graph transformation-based approach to
composing UML aspect models, which also elaborates the mapping of MATA models to AO
code in AspectWerkz. Loukil, et al. [39] have presented support for AO code generation from
models of their AO extension (AO4AADL) of the Architectural Description Language (ADL).
Even though their aim in this work is not to propose an AO code generation approach, they
have defined a set of transformation rules for mapping of AO4AADL aspects into AspectJ.

As evident from discussion above, the key focus of GTW techniques has been structural
models (more specifically class diagrams) only. Though obtaining such code is straightforward,
it is extremely limited in extent (skeletons only). On the other hand, the diagrams that enable
a more effective modeling of system’s behavior such as state diagrams or sequence diagrams
are quite complex and difficult to transform into code. While sequence diagrams suffice to
model the behavior of a controller object, state chart diagrams are considered the most
appropriate notation for representing the detailed behavior of objects. A more detailed
discussion of the situations where state machines are preferable to other behavioral diagrams
can be found in [40]. Recent studies have achieved significantly better results in various
contexts with the use of state diagrams, see for example [41],[42]. A wide number of
approaches such as [21, 43-45] provide implementation of state diagrams in object-oriented
way, i.e., in a WTG setting. The existing approaches to generate code from state charts have
achieved a lot, yet the same needs to be extended for AOSD and done in the GTW setting.
Therefore, AJFCode makes use of state charts to generate behavioral aspect-oriented code.

3. The proposed approach
Fig. 1 shows the key components of this research. It depicts how the proposed solutions
contribute to solving the problem addressed by the current research. It also shows the models
and techniques and other relevant approaches utilized to conduct the research. Determining an
effective modeling approach was the foremost task since no AOM notation has been adopted

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 6, June 2022 1977

as a standard. As shown in partition 1, we investigated all existing approaches based on the
criteria specifically tailored to the needs of this research. In the first step, we compared a wider
set of 14 AOM approaches based on a well-defined evaluation framework inspired by some
existing surveys. We assigned an assessment weight and selected the studies to be evaluated
in the next step. In the second step, we used a case study to further evaluate the set of four
studies that scored the highest assessment weight in the previous step. Following this step, the
Reusable Aspect Models (RAM) [27, 46] notation was selected for its advantages over other
notations. After the selection of RAM as modeling approach, the method of mapping its
models to AspectJ code was developed (see partition 2). Having developed the conceptual
mapping, the next step was to develop a text-based implementation model for RAM as an
XML schema, as shown in partition 3. The code generation algorithm was developed in a way
that it systematically iterates over the textual representation of the models and generates code.
The code generation technique elaborates the details of code snippets to support the generation
of a workable code (see partition 4). Finally, as shown in partition 5, the code obtained for two
case studies, i.e., OBSS and RSC, was compared to the same obtained by applying the other
(WTG) approach based on reusability and maintainability metrics.

Fig. 1. Development process of AJFCode

3.1 Mapping RAM models to code
The development of a mapping method is a prerequisite for developing the code generation
approach because mapping serves to close the gap between models and their representation at
the code level in a programming language. An example of this gap can be seen in no direct
support for representation of state diagram in languages like Java or AspectJ. The motivation
for the selection of state diagrams for behavior representation was provided in the related work
section. The translation of models involving state diagrams into code is not straightforward,
and it requires an explicit definition of how the constructs of a model will be translated

1978 Mehmood et al.: AJFCode: An Approach for Full Aspect-Oriented
Code Generation from Reusable Aspect Models

(mapped) into constructs of a programming language. We adopted the mapping approach
presented in [47] as it effectively models the structure and behavior found in RAM models.
The approach has two main parts. The first part maps the core and structural units, whereas
the second part deals with the mapping of behavior.

Fig. 2 shows the overall mapping of the core and structural parts of a RAM model. The
aspect structure comprises complete and incomplete classes that in turn define class members
and associations. In this way, the structural view of the model essentially contains UML class
diagrams supporting some additional features, such as mandatory instantiation parameters,
declaration, and binding of structural elements across different models. AJFCode adopts a Java
interface to implement complete classes. The fields are methods are introduced in the interface
using inter-type declaration. Attributes defined by classes in the structural view are mapped to
plain Java fields. Similarly, operations declared in the structural view are defined in the
interface that corresponds to the class with the same signature. Further, simple operations with
no details in the state view (e.g., getters and setters) are fully generated, whereas other
operations that are not presented in the state view are implemented by only a stub. On the other
hand, operations consisted in the state view are fully implemented with complete behavior
using the techniques described in the following.

Fig. 2 depicts a high-level view of the state diagram's mapping (see behavioral part). In
general, the state diagram is conceptually implemented using two objects: the context and
(state) controller. The context serves as the entry point into the state diagram. The controller
enumerates the various objects corresponding to different states represented in the state model.
To enable instantiation of RAM aspect and merging of state classes, these conceptual objects
are implemented as interfaces with inter-type declarations to insert methods. The methods
defined within the state controller objects correspond to the state diagram's events. So, the
context receives events and passes them on to the controller for processing. The controller
being aware of the current state of the system, handles the event accordingly.

As far as composite states (states containing other substates) are concerned, they may
contain two different substates: sequential (non-orthogonal) substates and concurrent
(orthogonal) substates. The technique for mapping sequential substates is closely related to the
one described above for the handling of states in general. The only difference is that unlike the
basic approach in which the super state class maintains a reference only to the context object,
the composite state contains references to the object representing the initial context as well as
to the composite state class. The concurrent composite state is implemented as context for all
concurrent regions, and it contains references to all active substates within each region.
Behavior in each concurrent region is encapsulated by a separate (super) state object. This
state object declares methods to handle all events of states in this concurrent region.

3.2 Aspect-oriented code generation technique
The development of AJFCode involves two transformations as shown in Fig. 3. To develop
the textual model (the first transformation), we used the text-based implementation model for
RAM previously presented by the authors in [48]. The text-based implementation model can
be employed here as the XML notation. The related standards used in this work have
traditionally been used for code generation, see for example [24]. The model is validated using
meta-models of both the RAM and XML notations. Moreover, we have designed an XML
schema which standardizes the aspect models and can be used by the transformation model.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 6, June 2022 1979

Fig. 2. RAM to AspectJ mapping definition

Fig. 3. Transformation from RAM models to AspectJ code

The second transformation shown in Fig. 3 involves taking the text-based representation
of RAM models as input and employs the meta-model of AspectJ to generate code that is
syntactically correct. For this purpose, a code generation algorithm has been defined to take
care of all facets of the RAM model. We can divide the actual code generation process into
three key activities: (1) implementation of the core of aspect, (2) implementation of the
structural part, and (3) incorporation of the behavior into structural units by implementing the
state chart part. The code generation algorithm, which controls all these activities, has been
designed in a way that it is more aligned with the target implementation, and fetches the
required information from XML representation by traversing it in a non-sequential manner.

1980 Mehmood et al.: AJFCode: An Approach for Full Aspect-Oriented
Code Generation from Reusable Aspect Models

3.2.1 The code generation algorithm
The key parts of the algorithm for code generation from an aspect model are presented in Fig.
4 to Fig. 9. The activities carried out by the algorithm are repeated for each of the aspects of
the design model. First, a source code file is created for each interface and class in the aspect
(as shown in Fig. 4). The algorithm distinguishes between the classes having an associated
state chart and the others. We implement the classes with no state chart specification
straightforwardly (see Fig. 5). Here, we generate a marker interface with a corresponding
aspect. Within the aspect, we declare relationship(s) of this class with other classes and
interfaces (if any) and implement constructors, fields, and methods containing no functionality.

01 # Generate source file for interfaces and classes
02 repeat
03 for each xStructUnit in xGlobal do
04 set sFile.name=xStructUnit
05 generate sFile
06 endfor
07 until xGlobal is empty

Fig. 4. Steps for generation of source code files

01 # Process class types
02 # Generate package details
03 repeat
04 for each xClassType in structView do
05 set sFile.name=xClassType.structName
06 convert xPackageDetails to sPackageDetails
07 # Generate marker interface and associated aspect
08 set sContext.name=xClassType.structName
09 set sContextAspect.name=xClassType.structName
10 generate sContext
11 generate sContextAspect
12 # Generate code for relationships
13 if xParent is not null
14 insert declareExtParents in sContext, xParent
15 if xRealizes is not null
16 insert declareIntParents in sContext, xParent
17 # Generate fields, constructors, and methods
18 for each xField in xData do
19 convert xField to sField
20 for each xConstructor in xOperations do
21 convert xConstructor to sConstructor
22 for each xMethod in xOperations do
23 convert xMethod to sMethod
24 until structView is empty

Fig. 5. Steps for processing the class types

As far as classes associated with a state chart are concerned, we divide the task of state

handling to a set of classes, including a class each for the context, the controller, and the state
(see Fig. 6). The implementation of state view involves the generation of local classes for
context and controller objects pertaining to each state. Next, the state controller class is
generated that contains signatures of the methods to be introduced in the state classes (see Fig.
7). Finally, as shown in Fig. 8, states in the state diagram are implemented by creating a
dedicated class for each of them. Here, the composite states are implemented as a context

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 6, June 2022 1981

object along with a dedicated state controller. Also, the hierarchical relationship of all state
classes with the state controller is implemented. The interfaces in the aspect model are
implemented as the standard Java interfaces (see Fig. 9). We obtain the details of methods
from the structural definitions and directly generate the signatures. As the parts of algorithm
corresponding to core and structural parts of RAM model can be implemented by utilizing the
language constructs directly, our discussion in this section will be mainly focused on code
generation for the behavioral part.

01 # Process the state view
02 # Generate local classes for context and controller
03 set contextClassName=xClassType.structName+’Class’
04 generate locInstClass of contextClassName
05 set contClassName=xClassType.structName+’State’
06 set name=contClassName+’Class’
07 generate locControllerClass of name
08 insert var:locControllerClass
09 repeat
10 for each xStateName in xStateView do
11 set xStateName=xStateName+’Class’
12 generate locStateClass of xStateName
13 insert var:locStateClass
14 # Declare parents for state classes
15 insert declareIntParents in locInstClass,sContext
16 insert declareIntParents in locStateClass,contClassName
17 insert declareIntParents in locStateClass,xStateName
18 insert declareIntParents in locStateClass,locControllerClass
19 # Generate methods for initialization and setting states
20 generate sInitializeMethod
21 generate sSetStateMethod
22 until xStateView is empty

Fig. 6. Steps for processing the state view

01 # Create the controller source code file and generate code in it
02 set contClassName=xClassType.structName+’State’
03 generate contSFile of contClassName
04 # Generate state controller
05 do in contSFile
06 generate sController
07 generate sContAspect
08 insert var:locControllerClass
09 # Declare methods in controller class
10 for each xMethod in xOperations
11 convert xMethod to sMethod

Fig. 7. Steps for generating the controller’s code

3.2.1.1 State chart implementation
The implementation involves more than one implementation-level entities to represent a single
conceptual entity, mainly to handle states and coordination between them during transitions.
In the following, we explain the construction process of each placeholder related to
implementing state view in our algorithm.
xStated: Refers to the case when the value of isStated attribute in xClassType
definition is true. It will be the case when the model will have a state chart for a class.
contextClassName: Refers to the name of the local context class to be generated within

1982 Mehmood et al.: AJFCode: An Approach for Full Aspect-Oriented
Code Generation from Reusable Aspect Models

the aspect corresponding to the context object. This name is generated by appending Class
to the string value of structName.
locInstClass: The local class defined for the context object to support instantiation of
context by other classes including the state controller and state classes. The code excerpt in
Fig. 10 defines a local instantiation class for a context object named MyContext.
locControllerClass: The local class definition for controller class to allow
instantiation of the controller by other classes. Class is appended to contClassName to
generate the name of this class.
xStateName: Individual states found as the string value of <stateName> element
within <state> element in xStateView.
locStateClass: It refers to code that is generated to provide a local implementation of a
class which is used for instantiation. This code is repeatedly generated for each state in the
state chart. The code in Fig. 11 shows the implementation of the local class for a state named
MyState in the scope of the context object MyContext.

01 # Create a source file for each state and generate code in it
02 generate stateSFile of xStateName
03 for each stateSFile do
04 # Generate a controller class for composite substates
05 if xCompState=true
06 set xStateName=xStateName+’State’
07 generate stateContSFile of xStateName
08 insert sCompStateHandling
09 # Generate state controller
10 do in contSFile
11 generate sController
12 generate sContAspect
13 insert var:locControllerClass
14 do in stateSFile
15 generate sState
16 generate sStateAspect
17 # Extend the state class from state controller
18 insert declareExtParents in sState, sController
19 if xSMappedFrom is not null
20 insert declareExtParents in sState, xMappedFrom
21 do in sStateAspect
22 for each xIntEvent in xState do
23 # Process transitions and generate method
24 generate sStateMethod
25 for each xEvent in xState do
26 generate sStateMethod
27 # Generate the .aj file
28 generate stateInstSFile
29 in stateInstSFile do
30 generate stateInstAspect
31 in stateInstAspect
32 generate checkStateUsedPointcut
33 generate excludeInternalCallsPointcut
34 pointcut=checkStateUsedPointcut+excludeInternalCallsPointcut
35 insert pointcut
36 generate sInstState

 Fig. 8. Steps for generating the states’ code

sInitializeMethod: It is declared within the context class and is used to initialize the
state controller class as well as all the classes representing states in the state chart. It invokes

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 6, June 2022 1983

the getInstance of states and assigns the result an instance of the respective class. If the
state chart specifies a default state, the initialize method also makes a call to the
entry method of state controller.
sSetStateMethod: Refers to the source code responsible for changing states
encapsulated in a method named setState within the context class. A typical setState
method generated for MyContext is shown in Fig. 12.
contSFile: Refers to the file containing the source code of controller class. The file is
named as the value of contClassName.
sController: Refers to the source code representing the state controller class (defined as
a marker interface).

01 # Implement interfaces
02 repeat
03 for each xInterfaceType in structView do
04 set sFile= xInterfaceType.structName
05 in sFile do
06 convert xPackageDetails to sPackageDetails
07 generate sInterface of structName
08 if xParent is not null
09 for each xParent do
10 insert interfaceParent in sInterface, xParent
11 in sInterface do
12 for each xFunction in xOperations do
13 convert xFunction to sFunction
14 until structView is empty

 Fig. 9. Steps for implementation of interfaces

 static class MyContextClass {
 public static MyContextClass getInstance() {
 return new MyContextClass();
 }
}

Fig. 10. Code generated for a local context class

static class MyStateClass {
 MyStateClass(MyContext mc) {
 myContext = (MyContextClass) mc;
 }

public static MyStateClass getInstance() {
 return new MyStateClass(mc);
 }
}

Fig. 11. Code generated for a local state class

public void MyContext.setState(MyContextState st) {
 state = (MyContextStateClass) st;

 state.entry();
}

Fig. 12. Code generated for a setState method

1984 Mehmood et al.: AJFCode: An Approach for Full Aspect-Oriented
Code Generation from Reusable Aspect Models

sContAspect: It is the source code representing the aspect that accompanies
sController and is used to add code to it. The state controller contains a reference to the
context class and declares methods corresponding to the entry, exit and all other events
in the statechart.
stateSFile: Refers to the source code file containing the interface and object used to
represent the state.
xCompState: Refers to the condition when type attribute for a state (in <state>
element within <stateView>) bears the value “composite”. Semantically, when set
like this, it asserts that the current state is a composite state.
stateContSFile: The source code file for the state controller.
sCompStateHandling: Refers to the code segments that deal with the existence of a
composite state. Generation of code for standard states is described below for placeholders
named sState and sStateAspect.
sState: It is the source code produced declaring the marker interface that corresponds to
the state. The interface is named as its corresponding state name.
sStateAspect: Refers to the source code generated to define an aspect within
stateSFile to introduce behavior into sState. Within code of sStateAspect, we
use the set of elements under <state> element to generate code for internal events,
transitions, as well as guard conditions.
xSMappedFrom: It specifies which state a state has been mapped from.
xIntEvent: This element uses a combination of event and action(s) to specify an internal
event.
xState: This element hosts all details regarding the specification of a state including its
type, name, internal event(s), and transition(s).
sStateMethod: It refers to the source code generated to define a method corresponding
to an event or an action within sStateAspect.
xEvent: Refers to <event> element enclosed by xState.
stateInstSFile: Source code file for the aspect that handles the instantiation of states
by other states by merging the events and operations. Unlike all other source code files
generated previously, this file is generated as an AspectJ source code file (.aj extension).
The AspectName is combined with the name of StateView to obtain the name.
stateInstAspect: The aspect in StateInstSFile that contains the code for
pointcut and manages the state instantiations. The aspect in Fig. 13 is intended to instantiate
objects of target states and delegate all method calls to the same in case the state named
StateOne has been used.
checkStateUsedPointcut: Pointcut that checks whether a state has been instantiated
and thus needs to be merged for transitions with the instantiating state. MyAspect in Fig.
13 contains the code for checkStateUsedPointcut in a pointcut named
stateOneUsed, which detects any call to a method that has target as an object of
StateOne.
excludeInternalCallsPointcut: Pointcut that ensures that calls internal to a state
are ignored by the checkStateUsedPointcut code, see for example
excludeInternalCalls in Fig. 13.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 6, June 2022 1985

public aspect MyAspect {
 pointcut stateOneUsed(StateOne s):

execution (* *(..)) && target (s);
 pointcut excludeInternalCalls():
 !within (MyContextAspect) ||
 !within (MyContextStateAspect) ||
 !within (StateOneAspect);

pointcut finalPointcut(StateOne s) = stateOneUsed(s)&&
excludeInternalCalls();

before(StateOne s): finalPointcut(s) {
 // instantiations

 }
}

Fig. 13. Code generated for a stateInstAspect

3.3 Code generation tool
The AJFCode tool has been implemented as an Eclipse plugin using Java. It is invoked using
a dedicated menu, as shown in Fig. 14. The Editor (zone) allows designers to create RAM
models in XML notation as specified by the schema definitions. It provides the features of
syntax coloring and syntax error reporting. The zone shows the menu bar, which can create
a RAM model from scratch or load an existing model. Once a syntactically correct and valid
model has been created, the menu bar can be used to generate the code for an aspect. The
generated code is shown in zone. The generated code is presented in an editable mode to
allow the developer to modify it if needed.

Fig. 14. AJFCode tool

4. Evaluation of approach

4.1 Evaluation methodology
We have validated the AJFCode approach in two different ways.

Evaluation of AJFCode relative to GTW approaches: A previous study [49] has evaluated

1986 Mehmood et al.: AJFCode: An Approach for Full Aspect-Oriented
Code Generation from Reusable Aspect Models

AO code generation approaches according to five criteria, i.e., transformation, models,
validation, the extent of code, and tool-support. To highlight the advantages or disadvantages
of the AJFCode approach, we have evaluated it based on the same criteria set.

Evaluation of AJFCode relative to WTG approaches: In the context of the current work,
the effectiveness of a WTG approach means the projected efficiency of the approach when
existing object-oriented code generation approaches are applied to generate code. The
comparison with a WTG approach was imperative for two reasons: (i) none of the existing
GTW approaches supports the implementation of behavioral diagrams, and (ii) as AJFCode is
an approach for integrating AOSD and MDE using AO code generation, it is meaningful to
compare it with an approach that serves the same purpose but uses OO code generation. To
this end, a thorough analysis of the existing OO code generation was conducted approaches to
identify an approach that is most comprehensive and suitable for the comparison. Therefore,
seven existing OO code generation approaches were compared based on six criteria sets, i.e.,
models, design, implementation, validation, extent of code, and tool support. Consequently,
JCode [43, 50-52] approach was selected to compare its performance with JFCode. None of
the existing weavers support code generation, therefore, the woven model was manually
developed, and then subjected to the JCode’s code generation. AJFCode was applied to
generate executable code for two different systems adopted from MDE literature: an online
book store system (OBSS) [53], and a remote caller system (RSC)[19]. Finally, the quality
metrics related to the quality of the application code [54], i.e., metrics for reusability and
maintainability, were applied to measure the quality of code generated using JCode and
AJFCode. The results are presented in the following.

4.2 AJFCode vs GTW approaches
In this section, mimicking the presentation of the assessment results for WTG approaches in
[49], we present the performance of AJFCode based on the same criteria. We also show the
evaluation results for other two significant works, i.e., RAM [23] and FDAF [24]. The results
of comparison are shown in Table 1. AJFCode provides a detailed mapping definition for both
structure and behavior (T-MD) and augments the conceptual mapping with a comprehensive
implementation model (T-IM). AJFCode supports both static and dynamic views of models
(T-SV), for both aspectual and non-aspectual (base) parts (T-SC). Unlike RAM and FDAF,
the advanced interactions between aspects and encapsulated components are supported using
the instantiation and binding directives (T-AN). Implementation of ADTs and collections is
also provided at all levels of the approach (T-AN). Even though the implementation model
and the code generation algorithm can generate executable code as verified by test executions,
the correctness and performance of algorithm have not been focused formally (T-AM).
Like RAM and FDAF, AJFCode supports class diagrams and aspects modeled as enhanced
package diagrams (M-SM). Nevertheless, in contrast with RAM and FDAF, where the former
supports behavioral models (sequence diagrams) for conceptual mappings only, and the latter
does not support them at all, AJFCode provides a full implementation of state chart diagrams
(M-BM). AJFCode employs standard quality metrics to verify its effectiveness against the
other approaches (V-AT). Unlike RAM and FDAF, which are limited to the generation of
skeletons of code only, AJFCode generates both full as well as skeleton code (for all other
classes and methods) in a model (E-SC). Code for behavior diagrams is generated (E-BC), for
both aspect and the base parts (E-FC). The tool support provided is sufficient for validation
and was developed using industry-standard plugin mechanism enabling integration with other
tools.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 6, June 2022 1987

4.3 AJFCode vs WTG approaches
In this section, we compare the code generated by AJFCode and the code produced by applying
JCode to the woven (object-oriented) models. For this purpose, we selected a set of metrics
(see Table 2) to measure the reusability and maintainability of the generated code. These
metrics were adopted because of their suitability for assessing the aforementioned properties,
and their extensive use in the literature for the same purpose. Note that these properties can be
linked with other important quality factors such as understandability, flexibility, and
extensibility [11, 55]. The results of applying the metrics are given in Table 3.

Table 1. Results of comparison with generate-then-weave (GTW) approaches
Main criteria Sub-criteria RAM FDAF AJFCode

Transformation

Mapping definition (T-MD)   

Implementation model
(T-IM)

General-purpose   
Extendable   

Behavior support   

Supported views (T-SV) Static view   
Dynamic view   

Supported concerns (T-
SC)

Aspect   
Base   

Approach advanced-ness
(T-AN)

Other interactions  ~ 
ADTs, Collections  ~ 

Algorithmic maturity (T-
AM)

Correctness  ~ 
Performance   

Models

Structure models (M-
SM)

Class diagrams   
Other diagrams   

Behavior models (M-
BM)

Statechart   
Sequence   

Other   

Validation Approach transparency
(V-AT)

Standard inputs   
Standard outputs   
Open comparison

mechanism   

Extent of code

Structure code (E-SC)
Full code for class

diagram   

Skeleton code   

Behavior code (E-BC) Code for behavior
diagram   

Full code (E-FC) Aspect+base code   
Trade-off analysis   

Tool support
Tools sufficiency Validation   

Real-word apps  ~ ~

Tools integration Standard dev
frameworks   

AJFCode positively affects the quality of the final code by improving its reusability and
maintainability. Table 3 shows that more components are required for implementation of a
single concern with WTG approach. AJFCode requires a smaller number of components to
implement crosscutting concerns (5 classes vs 7 classes) because it models these concerns as
independent aspects, and the components maintain this independence down to the code level.
Therefore, a component is instantiated and used only if it is required to be woven. Similarly,
the difference between the number of operations contributing to implementing a concern using

1988 Mehmood et al.: AJFCode: An Approach for Full Aspect-Oriented
Code Generation from Reusable Aspect Models

different implementation approaches shown in CDO column is noteworthy. For instance, CDO
values for concern 1 of OBSS were recorded to be 92 and 38 for WTG and JFCode,
respectively. This difference is mainly because of the special attention given by AJFCode to
the weaving mechanism that instantiates only the required components and excludes internal
calls to the same. This prevents intermingling of concerns at all levels of the generated code.

The components resulted by the AJFCode possess more reusability and maintainability
qualities, as they are less coupled (see the columns named CBC and DIT). The difference is
due to context handlers in WTG approach keeping references to all components that they
correspond to. AJFCode does not require any explicit references to such objects. Instead, it
makes use of local classes, which exist only within the aspect thus providing a mechanism to
instantiate the interfaces. Objects of these classes are generated using inter-type declarations.
So far as the cohesion of the components generated by AJFCode is concerned, Table 3 shows
that the approach generates components that are more cohesive than their object-oriented
counterparts (see the column named LCOO). In this regard, the approach is particularly
effective for implementing composite states since, in that case, the extent of lack of cohesion
in operations is zero, meaning that the components are fully cohesive.

Table 2. Summary of metrics applied to AJFCode and WTG approaches

Metric
Type

Metric Description of Metric

Separation
of Concerns
(SOC) [56]

Concern Diffusion
over Components
(CDC)

The total number of primary components used to implement
the concern added to the number of other aspects or classes
accessing them.

Concern Diffusion
over Operations
(CDO)

Number of methods and advices which exist mainly to
contribute to implementing a concern, and the number of other
methods/advices which access them.

Coupling
[57]

Coupling Between
Components (CBC)

The number of other classes and aspects that a class or aspect
is associated with.

Depth of Inheritance
Tree (DIT)

Measure of how far down in the inheritance hierarchy a class
or an aspect is declared.

Cohesion
[58]

Lack of Cohesion in
Operations (LCOO)

Determined by the number of method or advice pairs that do
not access the same instance variable.

Size [58]

Vocabulary Size
(VS)

The number of classes and aspects of the system.

Lines Of Code
(LOC)

The number of lines of code.

Number of
Attributes (NOA)

The total number of attributes of each class or aspect
excluding the inherited attributes.

Weighted
Operations per
Component (WOC)

The total complexity of a component determined by the
number of methods, their parameters and advices of each class
or aspect.

Similarly, with regards to size metrics, as the smaller vocabulary size indicates less

complexity, and in turn, high reusability and maintainability, the results (see the column named
VS) highlight the positive impact of AJFCode. That AJFCode requires more lines of
implementation code (see LOC) than WTG approach is essentially a side effect of the use of
local classes, which have contributed positively regarding all other metrics. However, since
the stated mechanism is well-defined and is to be applied exactly in the same way to all
different applicable scenarios, it will be justified to expect that its effect on complexity and
consequently on reusability and maintainability will be minimum.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 6, June 2022 1989

5. Conclusion
This paper presents AJFCode, an approach to apply aspect orientation in combination with
MDE through AO model-driven code generation. To provide a comprehensive mapping of
aspect models, both the structure and the object behavior have been supported. The code
generation technique has been developed in a way that the process followed by the employed
algorithm is aligned with the target implementation and allows fetching of the required
information by a non-sequential traversal of the textual representation. Structural as well as
the behavioral code has been generated for both aspectual and non-aspectual parts. AJFCode
has been validated using two systems from the literature. First, the comprehensiveness of the
approach is determined regarding: (i) its ability to address all features of the design model, and
(ii) its strength to address areas which are not addressed by other AO code generation
approaches. Next, the object-oriented code for the same systems is obtained and compared
with the code generated by AJFCode using several metrics. The results show AJFCode gives
better results against about 78% of the applied metrics.

Table 3. Results of metrics applied to AJFCode and WTG approaches

Sy
st

em

C
on

ce
rn

A
pp

ro
ac

h

C
D

C

C
D

O

C
B

C

D
IT

L
C

O
O

V
S

L
O

C

N
O

A

W
O

C

RSC
1 WTG 7 51 6 0 9 7 45 7 0

AJFCode 7 19 0 0 5 2 63 5 0

2 WTG 7 51 1 1 7 13 33 1 0
AJFCode 5 21 0 1 0 5 19 1 0

OBSS

1 WTG 17 92 13 0 14 17 45 13 2
AJFCode 15 38 3 0 7 11 63 3 1

2 WTG 11 82 1 1 9 12 33 1 1
AJFCode 7 21 0 1 0 7 19 1 0

3 WTG 12 90 9 0 8 9 55 25 1
AJFCode 6 14 2 0 1 2 28 4 1

4 WTG 11 87 5 1 10 7 71 11 0
AJFCode 6 19 1 1 2 1 45 2 0

There are some limitations of the current work that may be addressed by the future research.

First, AJFCode adopts the state diagrams only to implement the behavior of generated classes.
Even though the state diagrams are considered a more efficient way of representing behavior,
incorporation of other diagrams such as sequence diagrams may increase the amount of the
generated code, by generating code for controller objects. Second, the transformation of the
visual design models into XML-based form can be automated by extending the modeling
support of the existing environments.

1990 Mehmood et al.: AJFCode: An Approach for Full Aspect-Oriented
Code Generation from Reusable Aspect Models

References
[1] B. Karakostas and Y. Zorgios, Engineering Service Oriented Systems: A Model Driven Approach,

IGI Global, 2008. Article (CrossRef Link)
[2] M. Afonso, R. Vogel, and J. Teixeira, "From code centric to model centric software engineering:

practical case study of MDD infusion in a systems integration company," in Proc. of Model-Based
Development of Computer-Based Systems and Model-Based Methodologies for Pervasive and
Embedded Software, Fourth and Third International Workshop on, p.10(pp.-134), 2006.
Article (CrossRef Link)

[3] E. Rodrigues, L. Montecchi, and A. Ceccarelli, "Model-Driven Fault Injection in Java Source
Code," in Proc. of 2020 IEEE 31st International Symposium on Software Reliability Engineering
(ISSRE), pp. 414-425, 2020. Article (CrossRef Link)

[4] M. Ziaei, B. Zamani, and A. Bohlooli, "A Model-Driven Approach for IoT-Based Monitoring
Systems in Industry 4.0," in Proc. of 2020 4th International Conference on Smart City, Internet of
Things and Applications (SCIOT), pp. 99-105, 2020. Article (CrossRef Link)

[5] T. B. l. Fosse, Z. Cheng, J. Rocheteau, and J. M. Mottu, "Model-Driven Engineering of Monitoring
Application for Sensors and Actuators Networks," in Proc. of 2020 46th Euromicro Conference
on Software Engineering and Advanced Applications (SEAA), pp. 553-560, 2020.
Article (CrossRef Link)

[6] L. Silva and D. Lopes, "Model Driven Engineering for Performance Testing in Mobile
Applications," in Proc. of 2020 5th South-East Europe Design Automation, Computer Engineering,
Computer Networks and Social Media Conference (SEEDA-CECNSM), pp. 1-7, 2020.
Article (CrossRef Link)

[7] T. Górski and J. Bednarski, "Applying Model-Driven Engineering to Distributed Ledger
Deployment," IEEE Access, vol. 8, pp. 118245-118261, 2020. Article (CrossRef Link)

[8] T. Elrad, O. Aldawud, and A. Bader, "Aspect-Oriented Modeling: Bridging the Gap between
Implementation and Design " in Proc. of Generative Programming and Component Engineering,
pp. 189-201, ACM SIGPLAN/SIGSOFT Conference, GPCE 2002, Pittsburgh, PA, USA, October
6-8, 2002. Article (CrossRef Link)

[9] K. Hoffman and P. Eugster, "Trading obliviousness for modularity with cooperative aspect-
oriented programming," ACM Trans. Softw. Eng. Methodol., vol. 22, no. 3, pp. 1-46, 2013.
Article (CrossRef Link)

[10] A. Hovsepyan, R. Scandariato, S. V. Baelen, Y. Berbers, and W. Joosen, "From aspect-oriented
models to aspect-oriented code?: the maintenance perspective," in Proc. of the 9th International
Conference on Aspect-Oriented Software Development, Rennes and Saint-Malo, France, pp. 85-
96, 2010. Article (CrossRef Link)

[11] E. K. Piveta, A. Moreira, M. S. Pimenta, J. Araújo, P. Guerreiro, and R. T. Price, "An empirical
study of aspect-oriented metrics," Science of Computer Programming, vol. 78, no. 1, pp. 117-144,
11/1/ 2012. Article (CrossRef Link)

[12] S. A. Vidal and C. A. Marcos, "Toward automated refactoring of crosscutting concerns into
aspects," Journal of Systems and Software, vol. 86, no. 6, pp. 1482-1497, 2013.
Article (CrossRef Link)

[13] S. V. S, "Introducing Aspect-Oriented Programming in Improving the Modularity of Middleware
for Internet of Things," in Proc. of 2020 Advances in Science and Engineering Technology
International Conferences (ASET), pp. 1-5, 2020. Article (CrossRef Link)

[14] F. Moreno, S. Uribe, F. Álvarez, and J. M. Menéndez, "Extending Aspect-Oriented Programming
for Dynamic User's Activity Detection in Mobile App Analytics," IEEE Consumer Electronics
Magazine, vol. 9, no. 2, pp. 57-63, 2020. Article (CrossRef Link)

[15] P. Berta and V. Vranić, "Synergy of Organizational Patterns and Aspect-Oriented Programming,"
in Proc. of 2019 IEEE 15th International Scientific Conference on Informatics, pp. 000439-000444,
2019. Article (CrossRef Link)

http://doi.org/doi:%2010.4018/978-1-59904-968-7
https://doi.org/10.1109/MBD-MOMPES.2006.13
https://doi.org/10.1109/ISSRE5003.2020.00046
https://doi.org/10.1109/SCIOT50840.2020.9250202
https://doi.org/10.1109/SEAA51224.2020.00091
https://doi.org/10.1109/SEEDA-CECNSM49515.2020.9221828
https://doi.org/10.1109/ACCESS.2020.3005519
https://doi.org/10.1007/3-540-45821-2_12
https://doi.org/10.1145/2491509.2491516
https://doi.org/10.1145/1739230.1739241
https://doi.org/10.1016/j.scico.2012.02.003
https://doi.org/10.1016/j.jss.2012.12.045
https://doi.org/10.1109/ASET48392.2020.9118238
https://doi.org/10.1109/MCE.2019.2953738
https://doi.org/10.1109/Informatics47936.2019.9119335

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 6, June 2022 1991

[16] C. Hung, K. Chen, and C. Liao, "Modularizing Cross-Cutting Concerns with Aspect-Oriented
Extensions for Solidity," in Proc. of 2019 IEEE International Conference on Decentralized
Applications and Infrastructures (DAPPCON), pp. 176-181, 2019. Article (CrossRef Link)

[17] L. Fuentes and P. Sánchez, "Dynamic Weaving of Aspect-Oriented Executable UML Models," in
Transactions on Aspect-Oriented Software Development VI, pp. 1-38, 2009.
Article (CrossRef Link)

[18] T. Cottenier, A. v. d. Berg, and T. Elrad, "Motorola WEAVR: Aspect Orientation and Model-
Driven Engineering," Journal of Object Technology, vol. 6, no. 7, pp. 51–88, 2007.
Article (Web Link)

[19] J. Whittle, P. Jayaraman, A. Elkhodary, A. Moreira, and J. Araújo, "MATA: A Unified Approach
for Composing UML Aspect Models Based on Graph Transformation," in Transactions on Aspect-
Oriented Software Development VI, pp. 191-237, 2009. Article (CrossRef Link)

[20] A. Stavrou and G. A. Papadopoulos, "Automatic Generation of Executable Code from Software
Architecture Models," in Information Systems Development, pp. 447-458, 2009.
Article (CrossRef Link)

[21] R. Pilitowski and A. Dereziñska, "Code Generation and Execution Framework for UML 2.0
Classes and State Machines," Innovations and Advanced Techniques in Computer and Information
Sciences and Engineering, pp. 421-427, 20007. Article (CrossRef Link)

[22] P. Papotti, A. Prado, W. Souza, C. Cirilo, and L. Pires, "A Quantitative Analysis of Model-Driven
Code Generation through Software Experimentation," in Proc. of CAiSE 2013: Advanced
Information Systems Engineering, pp. 321-337, 2013. Article (CrossRef Link)

[23] M. Kramer and J. Kienzle, "Mapping Aspect-Oriented Models to Aspect-Oriented Code," in Proc.
of MODELS 2010: Models in Software Engineering, pp. 125-139, 2011.
Article (CrossRef Link)

[24] J. Bennett, K. Cooper, and L. Dai, "Aspect-oriented model-driven skeleton code generation: A
graph-based transformation approach," Science of Computer Programming, vol. 75, no. 8, pp. 689-
725, 2010. Article (CrossRef Link)

[25] N. Cacho, C. Sant'Anna, E. Figueiredo, A. Garcia, T. Batista, and C. Lucena, "Composing design
patterns: a scalability study of aspect-oriented programming," in Proc. of the 5th international
conference on Aspect-oriented software development, Bonn, Germany, pp. 109-121, 2006.
Article (CrossRef Link)

[26] P. Greenwood et al., "On the Impact of Aspectual Decompositions on Design Stability: An
Empirical Study," in Proc. of ECOOP 2007 – Object-Oriented Programming, pp. 176-200, 2007.
Article (CrossRef Link)

[27] J. Kienzle, W. Al Abed, F. Fleurey, J.-M. Jézéquel, and J. Klein, "Aspect-Oriented Design with
Reusable Aspect Models," in Transactions on Aspect-Oriented Software Development VII, pp.
272-320, 2010. Article (CrossRef Link)

[28] M. V. Hecht, E. K. Piveta, M. S. Pimenta, and R. T. Price, "Aspect-oriented Code Generation," in
Proc. of the XX Brazilian Conference on Software Engineering, 2005. Article (Web Link)

[29] S. Clarke and E. Baniassad, Aspect-Oriented Analysis and Design: The Theme Approach, Addison
Wesley Object Technology, 2005.

[30] S. Maoz and D. Harel, "From multi-modal scenarios to code: compiling LSCs into aspectJ," in
Proc. of the 14th ACM SIGSOFT international symposium on Foundations of software engineering,
Portland, Oregon, USA, pp. 219-230, 2006. Article (CrossRef Link)

[31] J. Evermann, "A meta-level specification and profile for AspectJ in UML," in Proc. of the 10th
international workshop on Aspect-oriented modeling, Vancouver, Canada, pp. 21-27, 2007.
Article (CrossRef Link)

[32] J. Evermann, A. Fiech, and F. E. Alam, "A platform-independent UML profile for aspect-oriented
development," in Proc. of The Fourth International C Conference on Computer Science and
Software Engineering, Montreal, Quebec, Canada, pp. 25-34, 2011. Article (CrossRef Link)

[33] J. D. Bennett, "An approach to aspect-oriented model-driven code generation using graph
transformation. MS Thesis," MS, The University of Texas at Dallas, 2007.

https://doi.org/10.1109/DAPPCON.2019.00033
https://doi.org/10.1007/978-3-642-03764-1_1
https://www.researchgate.net/profile/T-Elrad/publication/200454641_Motorola_WEAVR_Aspect_Orientation_and_Model-Driven_Engineering/links/543d23cd0cf2278f58da4560/Motorola-WEAVR-Aspect-Orientation-and-Model-Driven-Engineering.pdf
https://doi.org/10.1007/978-3-642-03764-1_6
https://doi.org/10.1007/978-0-387-78578-3_36
https://doi.org/10.1007/978-1-4020-6268-1_75
https://doi.org/10.1007/978-3-642-38709-8_21
https://doi.org/10.1007/978-3-642-21210-9_12
https://doi.org/10.1016/j.scico.2009.05.005
https://doi.org/10.1145/1119655.1119672
https://doi.org/10.1007/978-3-540-73589-2_9
https://doi.org/10.1007/978-3-642-16086-8_8
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.84.8221
https://doi.org/10.1145/1181775.1181802
https://doi.org/10.1145/1229375.1229379
https://doi.org/10.1145/1992896.1992900

1992 Mehmood et al.: AJFCode: An Approach for Full Aspect-Oriented
Code Generation from Reusable Aspect Models

[34] L. Dai, "Formal design analysis framework: an aspect-oriented architectural framework,"
University of Texas at Dallas, Ph.D. Dissertation, 2005.

[35] I. Groher and S. Schulze, "Generating aspect code from UML models," in Proc. of The Third
International Workshop on Aspect-Oriented Modeling, 2003. Article (CrossRef Link)

[36] S. Haitao, S. Zhumei, and Z. Shixiong, "Mapping Aspect-Oriented Domain-Specific Model to
Code for Real Time System," in Proc. of The Sixth World Congress on Intelligent Control and
Automation, vol. 2, pp. 6426-6431, 2006. Article (CrossRef Link)

[37] A. Jackson, N. Casey, and S. Clarke, "Mapping design to implementation," AOSD-Europe TDC-
D111. Article (CrossRef Link).

[38] J. Araújo and J. Whittle, "Aspect-Oriented Compositions for Dynamic Behavior Models," in
Aspect-Oriented Requirements Engineering, 2013, pp. 45-60. Article (CrossRef Link)

[39] S. Loukil, S. Kallel, B. Zalila, and M. Jmaiel, "AO4AADL: Aspect oriented extension for AADL,"
Open Computer Science, vol. 3, no. 2, pp. 43-68, 2013/06/01 2013. Article (CrossRef Link)

[40] A. Mehmood, "Aspect-Oriented Model-Driven Code Generation Approach For Improving Code
Reusability And Maintainability," Ph.D. Thesis, Department of Software Engineering, Faculty of
Computing, Universiti Teknologi Malaysia (UTM), Ph.D. Thesis, 2014.

[41] W. M. Ma and W. S. Chao, "Structure-Behavior Coalescence Abstract State Machine for
Metamodel-Based Language in Model-Driven Engineering," IEEE Systems Journal, vol. 15, no.
3, pp. 4105-4115, 2021. Article (CrossRef Link)

[42] M. Miroshnyk, A. Shkil, E. Kulak, D. Rakhlis, I. Filippenko, and A. Miroshnyk, "Verification of
FPGA control systems by analyzing the correctness of state diagrams," in Proc. of 2020 IEEE 11th
International Conference on Dependable Systems, Services and Technologies (DESSERT), pp. 85-
89, 2020. Article (CrossRef Link)

[43] I. A. Niaz, "Automatic Code Generation From UML Class and Statechart Diagrams," PhD Thesis,
Graduate School of Systems and Information Engineering., University of Tsukuba, Ph.D. Thesis.,
2005.

[44] A. Derezinska and R. Pilitowski, "Correctness issues of UML class and state machine models in
the C# code generation and execution framework," in Proc. of International Multiconference on
Computer Science and Information Technology, pp. 517-524, 2008. Article (CrossRef Link)

[45] V. S. E and P. Samuel, "Automatic Code Generation From UML State Chart Diagrams," IEEE
Access, vol. 7, pp. 8591-8608, 2019. Article (CrossRef Link)

[46] J. Kienzle, W. A. Abed, and J. Klein, "Aspect-oriented multi-view modeling," in Proc. of the 8th
ACM international conference on Aspect-oriented software development, Charlottesville, Virginia,
USA, pp. 87-98, 2009. Article (CrossRef Link)

[47] A. Mehmood, D. N. A. Jawawi, and F. Zeshan, "An Approach for Mapping the Aspect State
Models to Aspect-Oriented Code," in Proc. of 2019 International Conference on Engineering and
Emerging Technologies (ICEET), pp. 1-6, 2019. Article (CrossRef Link)

[48] A. Mehmood and D. N. A. Jawawi, "A Text-based Implementation Model for Reusable Aspect
Models," Journal of Theoretical and Applied Information Technology, vol. 55, no. 2 pp. 209-224,
2013. Article (CrossRef Link)

[49] A. Mehmood and D. N. A. Jawawi, "Aspect-Oriented Code Generation for Integration of Aspect
Orientation and Model-Driven Engineering," International Journal of Software Engineering and
Its Applications, vol. 7, no. 2, pp. 207-218, 2013. Article (CrossRef Link)

[50] I. A. Niaz and J. Tanaka, "Code Generation from UML Statecharts," in Proc. of 7th IASTED
International Conf. on Software Engineering and Application (SEA 2003), Marina Del Rey, USA,
pp. 315-321, 2003. Article (CrossRef Link)

[51] I. A. Niaz and J. Tanaka, "Mapping UML Statecharts to Java Code," in Proc. of IASTED
International Conf. on Software Engineering (SE 2004), Innsbruck, Austria, pp. 111-116, 2004.
Article (CrossRef Link)

[52] I. A. Niaz and J. Tanaka, "An Object-Oriented Approach to Generate Java Code from UML
Statecharts," International Journal of Computer & Information Science, vol. 6, no. 2, 2005.
Article (CrossRef Link)

http://cs.iit.edu/%7Eoaldawud/AOM/AOM2003/Groher-AspectCodeFromUML.pdf
https://doi.org/10.1109/WCICA.2006.1714322
http://www.aosd-europe.net/deliverables/d111.pdf2008
https://doi.org/10.1007/978-3-642-38640-4_3
https://doi.org/10.2478/s13537-013-0105-1
https://doi.org/10.1109/JSYST.2020.3027195
https://doi.org/10.1109/DESSERT50317.2020.9125067
https://doi.org/10.1109/IMCSIT.2008.4747293
https://doi.org/10.1109/ACCESS.2018.2890791
https://doi.org/10.1145/1509239.1509252
https://doi.org/10.1109/CEET1.2019.8711837
http://www.jatit.org/volumes/Vol55No2/7Vol55No2.pdf
https://www.researchgate.net/profile/Abid_Mehmood3/publication/258148861_Aspect-Oriented_Code_Generation_for_Integration_of_Aspect_Orientation_and_Model-Driven_Engineering/links/540ea3150cf2d8daaacd546b/Aspect-Oriented-Code-Generation-for-Integration-of-Aspect-Orientation-and-Model-Driven-Engineering.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.9.9262
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.9.8608
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.77.1843&rep=rep1&type=pdf

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 6, June 2022 1993

[53] S. J. Mellor and M. Balcer, Executable UML: A Foundation for Model-Driven Architectures,
Addison-Wesley Longman Publishing Co., Inc., pp. 368, 2002.

[54] C. Sant'anna, A. Garcia, C. Chavez, C. Lucena, and A. von Staa, "On the Reuse and Maintenance
of Aspect-Oriented Software: An Assessment Framework," in Proc. of XVII Brazilian Symposium
on Software Engineering, 2003. Article (CrossRef Link)

[55] A. Garcia, C. Sant'Anna, E. Figueiredo, U. Kulesza, C. Lucena, and A. v. Staa, "Modularizing
design patterns with aspects: a quantitative study," in Proc. of the 4th international conference on
Aspect-oriented software development, Chicago, Illinois, pp. 3-14, 2005. Article (CrossRef Link)

[56] P. Tarr, H. Ossher, W. Harrison, and J. Stanley M. Sutton, "N degrees of separation: multi-
dimensional separation of concerns," in Proc. of the 21st international conference on Software
engineering, Los Angeles, California, USA, pp. 107-119, 1999. Article (CrossRef Link)

[57] T. T. Bartolomei, A. Garcia, C. Sant'Anna, and E. Figueiredo, "Towards a unified coupling
framework for measuring aspect-oriented programs," in Proc. of the 3rd international workshop
on Software quality assurance, Portland, Oregon, pp. 46-53, 2006. Article (CrossRef Link)

[58] I. Sommerville, Software Engineering, Pearson, 2010.

Abid Mehmood received the M.Sc. degree in computer science from Quaid-i-Azam
University, Islamabad, Pakistan, in 2001, and the Ph.D. degree in computer science from
Universiti Teknologi Malaysia, Johor Bahru, Malaysia, in 2014. Prior to entering academia,
from 2001 to 2009, he worked at the software development industry in different roles and
contributed to the design and development of various high-performance enterprise
applications. He is currently an Assistant Professor with the Department of Management
Information Systems, King Faisal University, Saudi Arabia. His research interests include
neural networks and deep learning, the Internet of Things, dynamic and self-adaptive systems,
model-driven engineering, and aspect-orientation.

Dayang N. A. Jawawi received the bachelor’s degree in software engineering from
Sheffield Hallam University, U.K., and the master’s degree in computer science and the Ph.D.
degree in software engineering from Universiti Teknologi Malaysia (UTM), Malaysia. She is
currently an Associate Professor at the Faculty of Engineering, School of Computing, UTM.
Her main research interests include software engineering, software reuse, software quality,
software testing, requirement engineering, and computing education. A major part of her
research projects focuses on rehabilitation and mobile robotics, real-time embedded systems,
and precision farming applications.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1038.152&rep=rep1&type=pdf
https://doi.org/10.1145/1052898.1052899
https://www.computer.org/csdl/proceedings-article/icse/1999/00841000/12OmNqI04FC
https://doi.org/10.1145/1188895.1188907

