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ABSTRACT 

The lung disease, due to COVID-19 for example, has caused devastation 

around the world. Even in the most developed nations, the growing number of cases 

has overwhelmed healthcare facilities. Radiographic imaging is still the most 

convenient screening method for lung diseases. A certified radiologist interprets the 

chest X-ray image according to their experience level. As such, the interpretations 

might vary for different radiologists based on the observed characteristics and due to 

possibility of human error. To counter this problem, an automated lung disease 

classification system using chest X-ray was proposed. The classification was achieved 

by using deep learning approach because artificial intelligence has been proven to help 

reduce human error in medical applications. In this project, five deep learning 

architectures namely ResNet18, ResNet50, ResNet101, Alexnet, and VGG16 

architectures were selected for transfer learning and classification of lung diseases. 

The lung X-ray images were classified into five output classes,  namely COVID-19, 

pneumonia, tuberculosis, nodule or normal lungs. Images from multiple public 

datasets were acquired to be used as train set and test set for this automated lung 

disease classification model. The five deep learning models were successfully tested, 

and the highest accuracy was 96.3%, achieved with the Alexnet architecture.  
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ABSTRAK 

Penyakit paru-paru, seperti yang diakibatkan oleh COVID-19, telah 

menyebabkan kehancuran di seluruh dunia. Bahkan di negara-negara yang paling 

maju, jumlah kes yang semakin banyak telah membanjiri kemudahan penjagaan 

kesihatan. Pengimejan radiografi merupakan kaedah pemerikasaan yang paling sesuai 

untuk penyakit paru-paru. Ahli radiologi yang diperakui menafsirkan gambar sinar-X 

dada mengikut tahap pengalaman mereka. Oleh itu, penafsiran mungkin berbeza untuk 

ahli radiologi yang berbeza berdasarkan ciri-ciri yang diperhatikan dan disebabkan 

kemungkinan kesalahan manusia. Untuk mengatasi masalah ini, sistem klasifikasi 

penyakit paru-paru automatik dari sinar-X dada dicadangkan. Klasifikasi tersebut 

dicapai dengan menggunakan pendekatan pembelajaran mendalam kerana kecerdasan 

buatan telah terbukti dapat membantu mengurangkan kesilapan manusia dalam 

aplikasi perubatan. Senibina ResNet18, ResNet50 ResNet101, Alexnet, dan VGG16 

dipilih untuk pembelajaran transfer dalam proyek ini untuk mengklasifikasikan 

penyakit paru-paru menjadi lima kelas, iaitu COVID-19, pneumonia, tuberculosis, 

nodul, dan paru-paru normal. Beberapa set data awam digabungkan dan digunakan 

sebagai set Latihan dan set ujian untuk model klasifikasi penyakit paru-paru automatic 

ini. Lima model pembelajaran mendalam Berjaya diuji dan ketepatan tertinggi adalah 

96.3%, dicapai dengan seni bina AlexNet. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background 

Lung disease is defined as any condition in the lungs that prevents the lungs 

from performing correctly[1]. Lung disease is one of the main causes of death in 

Malaysia [2]. Lung diseases can be categorised into 3 main types, such as lung tissue 

disease, airway disease, and lung circulation disease. Each of the disease category 

affects the lungs in a different way. Most of the common lung diseases fall into more 

than one category at once according to their impact [3]. Airway disease refers to 

diseases like asthma; affecting the airways that carry gases into and out of lungs [4]. 

Any scarring or inflammation of the lung tissue is categorised as lung tissue diseases 

[5]. The example of lung tissue diseases includes sarcoidosis, Sjogren’s syndrome, 

scleroderma, and others. Lung circulation disease is caused by the damage of vessels 

in lungs and reduction in oxygen absorption [6]. The most common example for lung 

circulation disease is pulmonary hypertension. Most of the lung diseases shared 

common symptoms like cough, wheezing, shortness of breath, chest illness and others 

[7]. Doctors will determine the proper diagnostic tests to assess an individual based on 

the patient’s symptoms. 

The available diagnostic tests for lung diseases can be divided into four 

categories,  which are simple tests, advanced tests, invasive tests, and imaging test [8]. 

Both simple tests and advanced tests basically help to measure how much volume of 

air the patient’s lungs can hold by requiring the patient to blow air into a tube. The 

advanced test will provide more accurate results compared to simple tests by including 

additional steps during the test. The example of simple tests include spirometry [9] and 

FeNO test [10] while the example of advanced tests include plethysmography [11] and 

diffusion capacity test [12]. Invasive test refers to the test where the trained operator 

inserts a medical instrument into patient’s body via cut skin or natural orifice [13]. 
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Invasive test usually provides results with higher sensitivity and precision compared 

to other tests but it required expertise in handling the test and  is time-consuming [14]. 

The example of imaging tests includes chest X-Ray (CXR), computerized tomography 

(CT), magnetic resonance imaging (MRI), position emission tomography (PET) scans 

and others. CXR imaging is the most common and preferred diagnostic examination 

in clinical care as it is painless, fast, relatively economical, and non-invasive. The 

radiography image is mainly used for detection, staging, follow-up, and quantification 

of lung disease [15]. 

In Malaysia, most of the lung illnesses are discovered when the diseases have 

progressed to the late stages [16]. The development of tools and systems that allow for 

faster and more precise diagnosis is critical in the world today. Image based lung 

diseases classification system play an important role in this and are now being 

expanded. Most of the existing research has focused on lung diseases classification 

based on textural characteristics and it demonstrated its effectiveness in classification 

potential [17]. Deep features, on the other hand, have emerged as a more promising 

path ahead in recent research. This is because it demonstrates a new level of robustness 

and wide depth of features that were previously unavailable. However, the training 

time and computational load of using huge feature sets is a key disadvantage of such 

approaches. Besides that, the performance of classification system is highly dependent 

on the training result from extracted features. Deep learning approach has recently gain 

popularity in the real-world application due to its ability to perform feature extraction 

and classification automatically [18]. 

Deep learning concept appeared firstly during 2006 as a new field of research 

within machine learning [19]. It has been widely implemented in many research fields 

related to pattern recognition. Deep learning model uses a cascade of multilayer of 

nonlinear processing units to perform feature extraction and classification. The 

learning process of deep learning could be supervised or unsupervised. Supervised 

learning refers to learning process with labelled target classes while unsupervised 

learning refers to learning process without labelled target classes [20]. One of the 

advantages of deep learning is its ability to perform automatic feature extraction 

instead of classifying handpicked feature based on domain-specific knowledge. This 
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helps in detecting and classifying certain medical conditions effectively [21]. Many 

deep learning algorithms are trained to solve specific tasks, and if the feature changes, 

the models must be rebuilt from scratch. Transfer learning overcomes such drawback 

by utilizing knowledge acquired for old task to solve another new task. Transfer 

learning gives better performance result with smaller sample size data due to its pre-

trained weights and improved efficiency. The pre-trained model is a model that was 

trained on a large benchmark dataset like ImageNet to solve a general problem [22]. 

The example for pre-trained model includes VGG16, ResNet, AlexNet, EfficientNet, 

GoogleNet, and others. 

1.2 Problem Statement 

CXR image-based lung disease detection is highly dependent on the diagnosis 

of the radiologists. According to Ang et al [23], there are 38.8% of misdiagnosis in 

community-acquired pneumonia (CAP) in Penang General Hospital while Poh et al. 

[24] reported 64.5% of inaccurate diagnosis of pneumonia by the emergency 

department of Hospital Tuanku Ja’afar Seremban. Most of the misdiagnosis was due 

to human error during the diagnosis of CXR images. 

Most lung disease classification research only focused on one to two types of 

diseases. Some of the lung diseases shared similar characteristics that may confuse the 

algorithm. Hence, existing lung classification system may have lower performance 

when extended to classifying varieties of diseases due to the increased difficulty. 

Besides, there are existing research that claimed to have higher accuracy by 

using smaller datasets. Smaller dataset could mean that some images had been 

excluded, particularly if those images did not provide good results.  Hence, the lung 

disease classification system may not be able to achieve the same level of accuracy 

when dealing with larger and noisy datasets, thus making it impractical to be 

implemented for actual medical applications.  
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1.3 Research Objectives 

(a) To implement a lung disease classification system on MATLAB platform 

using lung X-ray images and transfer learning method in deep learning neural 

network 

(b) To classify the lung X-ray images into five target classes of lung conditions 

(normal, pneumonia, tuberculosis, COVID-19, and nodule) with more than 

90% accuracy 

(c) To evaluate the performance of deep learning networks for classification of 

lung diseases 

 

1.4 Scope of Work 

(a) The lung diseases classification system utilized the lung samples from multiple 

selected public datasets. 

(b) The neural network was trained using X-ray images of healthy lung and 

diseased lungs, with nodule, tuberculosis, pneumonia and COVID-19. 

(c) AlexNet, ResNet18, ResNet50, ResNet101, and VGG16 were selected as pre-

trained networks to be used in transfer learning process. 

(d) The lung samples obtained from public datasets have only one single type of 

disease per image. 
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1.5 Report Organization 

The purpose of this report is to develop a lung disease classification system 

using a transfer learning approach and to assess the system using a variety of deep 

learning networks. The overall five chapters in the report are organized in the 

following sequences: introduction, literature review, research methodology, 

preliminary results, as well as the conclusion and recommendation. 

The first chapter introduces and give brief information about the purpose of the 

study. The introduction concludes the overview of the entire topic of study. The 

problem statements, research objectives and the related scopes on each objective are 

all included in this chapter. 

Chapter 2 provides a literature review of the research on lung diseases 

classification system. This chapter gives a general review on the background of lung 

diseases, image type, public dataset, and deep learning technique. Then, the trends in 

developing deep learning-based lung diseases classification system are included. 

Lastly, research on lung diseases classification system is discussed focusing on the 

outcome measure used by each system. 

Chapter 3 is focusing on the research methodology. All research activities in 

image acquisition, network training, network testing was presented in detail. These 

include the pre-processing and the experiments conducted to implement the system. 

The flow of developing the lung diseases classification system is described and 

presented in graphical form. This includes the performance metrices. 

Chapter 4 presents the results and discussion. The overall experimental and 

simulation results such as input image pre-processing, training process, and testing 
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process are presented and analysed in this chapter. The result from the experiment are 

presented in graphical form like table and chart for easier analysis. 

Chapter 5 is the summary and conclusion of the entire research paper. It 

summarises the essential elements of the main study topic as well as concluding the 

final obtained result to justify the result is acceptable or not. Any recommendations 

for further research as well as the limitations encountered during the study are 

explored. 
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