

VERILOG MODELLING OF MODBUS TCP AT 100 MBPS

TAN ZHE JIE

A project report submitted in partial fulfilment of the

requirements for the award of the degree of

Master of Engineering (Computer and Microelectronic System)

School of Electrical Engineering

Faculty of Engineering

Universiti Teknologi Malaysia

FEBRUARY 2022

iv

DEDICATION

This project report is dedicated to my father, who taught me that the best kind

of knowledge to have is that which is learned for its own sake. It is also dedicated to

my mother, who taught me that even the largest task can be accomplished if it is

done one step at a time.

v

ACKNOWLEDGEMENT

In preparing this project report, I was in contact with many people. They have

contributed towards my understanding and thoughts. I wish to express my sincere

appreciation to my supervisor, Dr. Zulfakar bin Aspar, for encouragement, guidance,

critics, and friendship. I am also very thankful to my presentation examiner Assoc.

Prof. Ir. Dr. Muhammad Nadzir Bin Marsono and Dr. Ismahani Ismail for their advice

during the presentation. Without their continued support and interest, this thesis would

not have been the same as presented here. I am also indebted to Intel Technology Sdn

Bhd for funding my Master study.

My fellow postgraduate student should also be recognised for their support.

My sincere appreciation also extends to all my colleagues and others who have aided

at various occasions. Their views and tips are useful indeed. Unfortunately, it is not

possible to list all of them in this limited space. Lastly, I am grateful to all my family

member.

vi

ABSTRACT

With the continuous development of industry automation, industrial control

systems and programmable logic devices are being widely used in the manufacturing

production. Machines are required to work either in connection to each other or

remotely controlled at a centralized control room using Internet of Things (IoT),

Supervisory Control and Data Acquisition Systems (SCADA) or other communication

means. Among the many industrial networking protocols, Modbus TCP is widely

adopted. Software implementation of Modbus TCP network is common in the

industry. Although software does the job, it is a burden to the processor. There are also

Modbus TCP hardware modules selling in the market. But dedicated hardware incurs

high cost and not scalable for any feature change. Hence, this project aims to analyse

and design a hardware Modbus TCP client and server communication node with the

help of RTL-ASMChart and Petri Net. It will be implemented at 100Mbps Ethernet

speed within the appropriate power, performance, and area. This design is coded in

SystemVerilog and validation is done in Quartus ModelSim simulation. Running

testbench in ModelSim and Wireshark show the design is function as expected, after

it can be compiled and fit into the target Cyclone V FPGA. Timing closure and

throughput expectation of 100Mbps is met in Quartus, with power consumption of

around 350mW. Round trip test results showed that RTL designed TCP module has

speed improvement over the software TCP method of Windows operating system.

vii

ABSTRAK

Dengan perkembangan automasi industri yang berterusan, sistem kawalan

industri dan peranti logik yang dapat diprogramkan digunakan secara meluas dalam

pengeluaran pembuatan. Mesin diperlukan untuk berfungsi sama ada saling

berhubungan atau dikawalkan dari jarak jauh di bilik kawalan terpusat menggunakan

Internet of Things (IoT), Supervisory Control and Data Acquisition Systems (SCADA)

atau cara komunikasi lain. Antara banyak protokol rangkaian industri Modbus TCP

banyak digunakan. Rangkaian Modbus TCP secara perisian adalah popular di industri.

Walaupun perisian menjalankan tugas, ia menjadi beban kepada pemproses. Terdapat

juga modul fizikal Modbus TCP yang dijual di pasaran. Tetapi harga modul fizikal

agak mahal dan tidak boleh dinaik taraf untuk sebarang perubahan ciri. Oleh itu, projek

ini bertujuan untuk menganalisis dan melaksanakan nod komunisasi klien dan pelayan

Modbus TCP dengan bantuan RTL-ASMChart dan Petri Net. Ia akan dilaksanakan

pada kelajuan Ethernet 100Mbps dalam kuasa, prestasi dan kawasan yang sesuai.

Projek ini dikodkan dalam SystemVerilog dan pengesahan dilakukan dalam simulasi

Quartus ModelSim. Menjalankan ujian dalam ModelSim dan Wireshark menunjukkan

modul berfungsi seperti yang diharapkan, selepas ia boleh disusun dan dimuatkan ke

dalam FPGA Cyclone V yang ditentukan. Penutupan masa dan jangkaan pemprosesan

sebanyak 100Mbps dipenuhi di Quartus, dengan penggunaan kuasa sekitar 350mW.

Keputusan ujian pergi dan balik menunjukkan bahawa modul TCP mempunyai

peningkatan kelajuan berbanding dengan kaedah TCP perisian dalam Windows

operating system.

viii

TABLE OF CONTENTS

 TITLE PAGE

DECLARATION iii

DEDICATION iv

ACKNOWLEDGEMENT v

ABSTRACT vi

ABSTRAK vii

TABLE OF CONTENTS viii

LIST OF TABLES xi

LIST OF FIGURES xii

LIST OF ABBREVIATIONS xv

LIST OF APPENDICES xviii

CHAPTER 1 INTRODUCTION 1

1.1 Problem Background 1

1.2 Problem Statement 2

1.3 Research Objectives 3

1.4 Scope 3

CHAPTER 2 LITERATURE REVIEW 5

2.1 Knowledge Background 5

2.1.1 RTL-ASMChart 5

2.1.2 Petri Net 6

2.1.3 Field Programmable Gate Array (FPGA) 8

2.1.4 Modbus TCP Stack 9

2.1.4.1 Application Layer 11

2.1.4.2 Transport Layer 15

2.1.4.3 Network Layer 18

2.1.4.4 Data Link Layer 22

2.1.4.5 Physical Layer 25

ix

2.1.5 SystemVerilog Queue 27

2.1.6 Wireshark and PCAP file 28

2.2 Systematic Literature Review 31

2.2.1 Findings 35

2.3 Product on the Market 37

CHAPTER 3 METHODOLOGY 41

3.1 Design Methodology 41

3.2 High Level Architecture 43

3.3 Top Level Design 45

3.3.1 Packet Receive Flow 48

3.3.2 Packet Transmit Flow 49

3.3.3 Connection Establishment Flow 50

3.3.4 Application Layer 52

3.3.5 Transport Layer 55

3.3.6 Network Layer 59

3.3.7 Data Link Layer 60

3.3.8 Physical Layer 62

3.3.9 How to Configure 64

3.4 Design Constraints 67

3.5 Testbench Design 69

3.5.1 Device_sim 72

3.5.2 Switch_sim 74

3.5.3 How to Run 75

3.6 FPGA Board 76

3.7 Physical Prototyping 78

3.8 Round Trip Time Test 81

3.8.1 Software TCP RTT Test Setup 82

3.8.2 Hardware TCP RTT Test Setup 83

CHAPTER 4 RESULT AND DISCUSSION 84

4.1 Functional Validation (per Layer) 84

4.1.1 Application Layer 84

x

4.1.2 Transport Layer 87

4.1.3 Internet Layer 89

4.1.4 Data Link Layer 90

4.2 Functional Validation (Overall Design) 91

4.2.1 ModelSim Result 92

4.2.2 Packet Flow 94

4.3 Resource Utilization 101

4.4 Static Timing Analysis 102

4.5 Power Estimation 103

4.6 Round Trip Time 105

4.7 Physical Prototyping 107

4.8 Comparison with Existing Work 109

CHAPTER 5 CONCLUSION 111

5.1 Outcome 111

5.2 Future Improvement 111

References 113

Appendices A - B 116 - 118

xi

LIST OF TABLES

TABLE NO. TITLE PAGE

Table 2.1 Modbus Public Function Codes 12

Table 2.2 TCP Flag 17

Table 2.3 Subset of ICMP Control Message 22

Table 2.4 RGMII (GMII) Interface 23

Table 2.5 Selected Articles for Systematic Literature Review 32

Table 2.6 Advantage and Disadvantage of Each Implementation

Approach 35

Table 3.1 On-board Status LED Indicators 47

Table 3.2 State and Definition of Ethernet LED 64

Table 3.3 Top Level Parameter 64

Table 3.4 Top Level Ports 66

Table 3.5 Cyclone V SE 5CSEMA4U23C6N FPGA Resources 76

Table 4.1 Fitter Resource Usage Summary 101

Table 4.2 Multicorner Timing Analysis Summary 103

Table 4.3 Operating Conditions Used in Power Analyzer 103

Table 4.4 Power Analyzer Summary 104

Table 4.5 Comparison with Existing Work 109

xii

LIST OF FIGURES

FIGURE NO. TITLE PAGE

Figure 2.1 Example of an RTL-ASMChart 6

Figure 2.2 An Example of Petri Net 7

Figure 2.3 4-inputs Lookup Table (LUT) 8

Figure 2.4 TCP Protocol Stack Operation 10

Figure 2.5 Frame Encapsulation of TCP stack 10

Figure 2.6 Modbus TCP Application Data Unit 11

Figure 2.7 DHCP Protocol Data Unit (PDU) 14

Figure 2.8 TCP Protocol Data Unit (PDU) 16

Figure 2.9 UDP Protocol Data Unit (PDU) 18

Figure 2.10 Example of Subnetting 20

Figure 2.11 IP Protocol Data Unit (PDU) 20

Figure 2.12 ICMP Message Format 21

Figure 2.13 Ethernet Frame Protocol Data Unit (PDU) 23

Figure 2.14 ARP Message Format 24

Figure 2.15 Ethernet Physical Layer Protocol Data Unit (PDU) 26

Figure 2.16 SystemVerilog Queue FIFO operations 28

Figure 2.17 Article Selection Process 31

Figure 2.18 Anybus Product Webpage 38

Figure 2.19 Microchip's Modbus TCP Stack Application Note 38

Figure 2.20 Softing Protocol IP Use Case in an FPGA 39

Figure 2.21 Required FPGA Resources of the Softing IP Core 40

Figure 3.1 Design Flow 41

Figure 3.2 Stack Component 43

Figure 3.3 Top Level Block Diagram 45

Figure 3.4 DDRIO module configuration 46

xiii

Figure 3.5 PLL module configuration 47

Figure 3.6 Petri Net of Packet Receive Flow 48

Figure 3.7 Petri Net of Packet Transmit Flow 49

Figure 3.8 Petri Net of Connection Establishment Flow 50

Figure 3.9 Block Diagram of Modbus Application Layer 52

Figure 3.10 Block Diagram of dchp_vlg 53

Figure 3.11 RTL-ASMChart of dhcp_vlg FSM 54

Figure 3.12 Block Diagram of tcp_vlg 55

Figure 3.13 RTL-ASMChart of tcp_vlg_engine FSM 57

Figure 3.14 Block Diagram of udp_vlg 59

Figure 3.15 Block Diagram of ipv4_vlg 59

Figure 3.16 Block Diagram of icmp_vlg 60

Figure 3.17 Block Diagram of mac_vlg 60

Figure 3.18 Block Diagram of arp_vlg 62

Figure 3.19 KSZ9031RN Auto Negotiation Flow Chart 63

Figure 3.20 Block Diagram of tb.sv 69

Figure 3.21 Overall Design Validation Flow 70

Figure 3.22 Block Diagram of device_sim 72

Figure 3.23 RTL-ASMChart of FSM of device_sim 73

Figure 3.24 Block Diagram of switch_sim 74

Figure 3.25 Block diagram of DE0-Nano-SoC 77

Figure 3.26 Physical Prototyping Setup 78

Figure 3.27 Screenshot of Server PC's IP Address Settings 80

Figure 3.28 Software TCP RTT Test Setup 82

Figure 3.29 Hardware TCP RTT Test Setup 83

Figure 4.1 Waveform of sender.sv 84

Figure 4.2 Waveform of receiver.sv 84

Figure 4.3 Wireshark Output of TCP Testcase 87

Figure 4.4 Seq and Ack Number Table for TCP Testcase 88

file:///C:/Users/Jack%20ZJie/Documents/Master/MKEH1826%20-%20Master%20Project%202/FYP%20Thesis%20-%20Tan%20Zhe%20Jie.docx%23_Toc95672407
file:///C:/Users/Jack%20ZJie/Documents/Master/MKEH1826%20-%20Master%20Project%202/FYP%20Thesis%20-%20Tan%20Zhe%20Jie.docx%23_Toc95672408

xiv

Figure 4.5 Waveform of ipv4_vlg 89

Figure 4.6 Waveform of mac_vlg 90

Figure 4.7 Wireshark Output of Testbench 94

Figure 4.8 Packet 14 Content Breakdown 100

Figure 4.9 Thermal Power Dissipation by Block Type 105

Figure 4.10 Screenshot of Ping.exe Output 105

Figure 4.11 Wireshark Output of Hardware TCP RTT Test 106

Figure 4.12 Ping Test Result on Physical FPGA 107

Figure 4.13 FPGA Board LED Status 108

file:///C:/Users/Jack%20ZJie/Documents/Master/MKEH1826%20-%20Master%20Project%202/FYP%20Thesis%20-%20Tan%20Zhe%20Jie.docx%23_Toc95672415
file:///C:/Users/Jack%20ZJie/Documents/Master/MKEH1826%20-%20Master%20Project%202/FYP%20Thesis%20-%20Tan%20Zhe%20Jie.docx%23_Toc95672418
file:///C:/Users/Jack%20ZJie/Documents/Master/MKEH1826%20-%20Master%20Project%202/FYP%20Thesis%20-%20Tan%20Zhe%20Jie.docx%23_Toc95672419

xv

LIST OF ABBREVIATIONS

ALM - Adaptive Logic Module

ALUT - Combinational Adaptive Look-up Table

API - Application Programming Interface

ARP - Address Resolution Protocol

ASCII - American Standard Code for Information Interchange

ASIC - Application Specific Integrated Circuit

CIDR - Classless Inter Domain Routing

CRC - Cyclic Redundancy Check

DCHP - Dynamic Host Configuration Protocol

DDRIO - Double Date Rate Input Output

DSCP - Differentiated Services Code Point

DUT - Device Under Test

FCS - Frame Check Sequence

FIFO - First In, First Out

FPGA - Field Programmable Gate Array

FSM - Finite State Machine

GMII - Gigabit Media-Independent Interface

GMT - Global Mediterranean Time

GPIO - General-Purpose-Input-Output

HDL - Hardware Description Language

HPS - Hard Processor System

I/O - Input and Output

I2C - Inter-Integrated Circuit protocol

ICMP - Internet Control Message Protocol

ID - Identification

IoT - Internet of Things

IP - Internet Protocol

IPG - Interpacket Gap

IPv4 - Internet Protocol version 4

JTAG - Joint Test Action Group interface

xvi

LED - Light Emitting Diode

LUT - Lookup Table

LVDS - Low Voltage Differential Signalling

MAC - Media Access Control

MBAP - Modbus Application Protocol Header

Mbps - Mega bits per second

MDC - Management Interface Clock

MDIO - Management Data Input/Output

MLAB - Memory Logic Array Block

MSB - Most Significant Byte

OSI - Open System Interconnect

OSPF - Open Shortest Path First protocol

PC - Personal Computer

PCS - Physical Coding Sublayer

PDU - Protocol Data Unit

PHY - Physical Transceiver

PLC - Programmable Logic Controller

PLL - Phased Locked Loop

PMA - Physical Medium Attachment

PMD - Physical Medium Dependent

PPA - Power, Performance and Area

RAM - Random Access Memory

RFC - Request for Comment publication

RGMII - Reduced Gigabit Media-Independent Interface

RIP - Routing Information Protocol

ROM - Read-only Memory

RTL - Register Transfer Level

RTT - Round Trip Time

RTU - Remote Terminal Unit

RX - Receive path

SACK - Selective Acknowledgement

SCADA - Supervisory Control and Data Acquisition Systems

SCTP - Stream Control Transmission Protocol

xvii

Seq Ack - Sequence and Acknowledge Number

SFD - Start Frame Delimiter

SLR - Systematic Literature Review

SRAM - Static Random-Access Memory

TCP - Transmission Control Protocol

TCP/IP - A name that represents whole suite of Internet Protocol

TTL - Time to Live

TX - Transmit path

UDP - User Datagram Protocol

UTP - Unshielded Twisted Pair

VoIP - Voice over Internet Protocol

xviii

LIST OF APPENDICES

APPENDIX TITLE PAGE

Appendix A ModelSim Terminal Output Log 116

Appendix B SDF File 118

1

CHAPTER 1

INTRODUCTION

1.1 Problem Background

With the continuous advancement of manufacturing automation, industrial

control systems and physical devices like Programmable Logic Controllers (PLC) are

widely used in factory production. They must issue real time control command to and

read sensors data from the machinery, processing equipment and power distribution

equipment in a factory without any hiccup for 24 hours in a day. Large scale control

systems, also known as Supervisory Control and Data Acquisition (SCADA) systems

are connected to a local computer network or the Internet and enable remote operation

across the globe. Moreover, under the banner of Industry 4.0 more and more traditional

industry players are heeding the call to attach their physical component to the digital

infrastructure, connecting them to the Internet as part of Internet of Things (IoT).

Present day industrial control system has networking protocols that are

pervasive, such as Profibus, Profinet, EtherCAT, CANopen and Modbus. Among

many of these protocols, Modbus protocol is being widely used in many areas, for

instance in intelligent building system, machinery, independent sensors, or actuators.

Modbus is an open and royalty-free communication protocol for digital/analog I/O

information. It is used for register data transfer between industrial control and

monitoring devices such as PLC, Remote Terminal Unit (RTU), sensors, and actuators.

Control devices from different manufacturers can be connected to a single industrial

network for centralized monitoring using Modbus protocol. First published in 1979 by

Modicon Inc and now governed by Modbus Org, Modbus was designed to work over

serial lines such as TIA/EIA 232,422 or 485. Over the years it has become the common

industry standards for almost half a century. Large part of the existing automation

structures is using Modbus protocol, especially serial Modbus.

2

Serial Modbus has two variants, RTU and ASCII, which vary mainly in way

of data encoding, but they feature the same data frame structure. Subsequently Modbus

TCP was established to operate over standard Ethernet, TCP/IP-based networks. With

that said, all three variants are still being used and served its purpose. Modbus RTU

over serial lines commonly deployed for Remote Terminal Units (RTU) and PLC,

while Modbus TCP is generally used between and servers with SCADA features.

1.2 Problem Statement

Software implementation of Modbus TCP network is common in the industry.

Many resources such as library or firmware for the protocol are readily available and

widely supported in many operating system. Although software does the job, it is a

burden to the processor. The operating system needs to dedicate some threads to

maintain the connection and facilitate data transfer. It is especially the case for

Industrial Ethernet when the sensor is frequently transferring data to the host PC in

real time. This will take up precious processing resources which otherwise can be

utilized for much important tasks. Besides, processor speed may also be a limiting

factor of network performance.

On the other end of spectrum, there is hardware module for Modbus TCP

connection selling in the market. It may come in the form of ASIC semiconductor chip

or dedicated gateway module that slots into industrial server rack. But dedicated

hardware incurs high cost. Moreover, they are not flexible and scalable for any feature

change if it is required in the future. The supported functionality is determined by the

hardware manufacturer. Any change in feature or additional capacity often require

purchasing a separate module.

Implementing Modbus TCP on a FPGA can be a good option in terms of

flexibility for feature change without compromising network performance. Some

portion of software TCP/IP protocol can also be hardened into hardware to speed up

certain repetitive tasks. Price-wise FPGA is placed between the lower cost of software

approach versus dedicated hardware which in general much more expensive.

3

1.3 Research Objectives

The objectives of the research are:

• To analyze and design a hardware Modbus TCP client and server

communication node

• To implement the Modbus TCP module at 100Mbps Ethernet speed

requirement within the appropriate power, performance, and area (PPA)

• To design, simulate and test the design using SystemVerilog hardware

description language

1.4 Scope

Out of the various Industrial Ethernet protocol that is common today

(PROFINET, EtherCAT, CANopen, etc..) this project is designed for Modbus protocol

only, specifically Modbus TCP variant. Other protocol will not be supported in the

design. In addition to that, the design will be a dedicated communication node focusing

on data transfer between the client and server on a network. Additional functionality

such as telemetry and data analytics are not part of this design.

This project is based on Terasic DE0-Nano-SOC Board, which carries an Intel

Cyclone V FPGA. This board also equips with Ethernet networking capability, with a

RJ45 connector and a Gigabit Ethernet Physical Transceiver (PHY) readily available.

The PHY chip can support 10/100/1000 Mbps. Design validation is expected to be

done through testbench simulation in Quartus Prime environment, and if possible,

physical prototyping of the network through Ethernet cable interface to a computer.

113

REFERENCES

[1] M. Khalil-Hani, Advanced Digital System Design, Universiti Teknologi

Malaysia, 2019.

[2] C. A. Petri and W. Reisig, "Petri net," Scholarpedia, 2008. [Online].

Available: http://www.scholarpedia.org/article/Petri_net. [Accessed 2008

2021].

[3] Intel, FPGA Architecture White Paper v1.0, 2006.

[4] Acromag Inc, Technical Reference – Modbus TCP/IP, 2005.

[5] Modbus Org, Modbus Application Protocol V1.1b3, 2012.

[6] Defense Advanced Research Projects Agency, RFC 2131 - Dynamic Host

Configuration Protocol, 1997.

[7] Defense Advanced Research Projects Agency, RFC793 - Transmission

Control Ptotocol Specification, 1981.

[8] Defense Advanced Research Projects Agency, RFC 768 - User Datagram

Protocol, 1980.

[9] Defense Advanced Research Projects Agency, RFC791 - Internet Protocol

Specification, 1981.

[10] Defense Advanced Research Projects Agency, RFC792 - Internet Control

Message Protocol Specification, 1981.

[11] IEEE, IEEE 802.3-2018 - IEEE Standard for Ethernet, IEEE, 2018.

[12] Defense Advanced Research Projects Agency, RFC826 - Address Resolution

Protocol Specification, 1982.

[13] Verification Guide, "Systemverilog Queue - Verification Guide," [Online].

Available: https://verificationguide.com/systemverilog/systemverilog-queue/.

[Accessed January 2022].

[14] Wireshark, "LibpcapFileFormat," [Online]. Available:

https://wiki.wireshark.org/Development/LibpcapFileFormat.

114

[15] J. N. Chhatrawala, N. Jasani and V. Tilva, "FPGA based data acquisition with

Modbus protocol," in International Conference on Communication and Signal

Processing (ICCSP), 2016.

[16] B. Li, G. Chen, L. Wang and Z. Hao, "Tower Crane Remote Wireless

Monitoring System Based on Modbus/Tcp Protocol," in IEEE International

Conference on Computational Science and Engineering (CSE) , 2017.

[17] F. Yncio, R. Peña, A. Cadiboni, R. Fernández, G. Ahrtz and C. S. Tellechea,

"A Modbus client for the identification of an energy recovery system for a

water distribution network," in IEEE Power, Instrumentation and

Measurement Meeting (EPIM), 2018.

[18] G. Meza, C. d. Carpio, N. Vinces and M. Klusmann, "Control of a three-axis

CNC machine using PLC S7 1200 with the Mach3 software adapted to a

Modbus TCP/IP network," in IEEE International Conference on Electronics,

Electrical Engineering and Computing (INTERCON), 2018.

[19] Q. Bai, B. Jin, D. Wang, Y. Wang and X. Liu, "Compact Modbus TCP/IP

protocol for data acquisition systems based on limited hardware resources,"

IOPScience Journal of Instrumentation, vol. 13, 2018.

[20] W. You and H. Ge, "Design and Implementation of Modbus Protocol for

Intelligent Building Security," in IEEE International Conference on

Communication Technology (ICCT), 2019.

[21] S. Mangkalajan, W. Koodtalang, T. Sangsuwan and N. Pudchuen, "Virtual

Process Using LabVIEW in Combination with Modbus TCP for Fieldbus

Control System," in IEEE International Conference on Control System,

Computing and Engineering (ICCSCE), 2019.

[22] L. Chen and Z. Su, "Realization of Modern Tram Data Acquisition System

Based on Labview and Modbus TCP," in International Conference on Safety

Produce Informatization (IICSPI), 2019.

[23] Y. He and X. Lv, "The Application of Modbus TCP in Universal Testing

Machine," in IEEE Advanced Information Technology, Electronic and

Automation Control Conference (IAEAC), 2021.

[24] Anybus by HMS Networks, "Modbus TCP connectivity solutions with

Anybus," [Online]. Available:

115

https://www.anybus.com/technologies/industrial-ethernet/modbus-tcp.

[Accessed June 2021].

[25] Microchip, "Modbus TCP for the Microchip TCP/IP Stack Application Note,"

[Online]. Available:

https://www.microchip.com/wwwAppNotes/AppNotes.aspx?appnote=en5665

44. [Accessed June 2021].

[26] Softing Industrial , "Modbus TCP Server (Slave) for Intel Altera FPGA |

Softing," [Online]. Available: https://industrial.softing.com/products/protocol-

software-and-sdks/modbus-tcp-server-for-altera-fpga.html. [Accessed June

2021].

[27] Softing Industrial, "Industrial Ethernet Implementation using FPGAs | White

Paper".

[28] Modbus Org, MODBUS Messaging on TCP/IP Implementation Guide V1.0b,

2006.

[29] hypernyan, "GitHub - hypernyan/eth_vlg," [Online]. Available:

https://github.com/hypernyan/eth_vlg. [Accessed Nov 2021].

[30] Microchip, KSZ9031RNX Gigabit Ethernet Transceiver Datasheet, 2017.

[31] Terasic Inc., DE0-Nano-SoC User Manual Rev D0, 2019.

[32] Intel Community, "Windows 10 driver support for USB Blaster ? - Intel

Communities," [Online]. Available:

https://community.intel.com/t5/Programmable-Devices/Windows-10-driver-

support-for-USB-Blaster/td-p/55323.

[33] Intel Altera, "Quartus II Handbook Volume 2: Design Implementation and

Optimization," 2015.

[34] G. Sutter, M. Ruiz, S. Lopez-Buedo and G. Alonso, "FPGA-based TCP/IP

Checksum Offloading Engine for 100 Gbps Networks," in International

Conference on ReConFigurable Computing and FPGAs (ReConFig), 2018.

