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a b s t r a c t

This study presents the development of a grey-box modelling approach and fuzzy logic control for
real time trajectory control of an experimental four degree-of-freedom Leader–Follower Robot (LFR)
manipulator system using a hybrid optimisation algorithm, known as Grey Wolf Optimiser (GWO) -
Whale Optimisation Algorithm (WOA). The approach has advantages in achieving an accurate model
of the LFR manipulator system, and together with a better trajectory tracking performance. In the first
instance, the white box model is formed by modelling the dynamics of the follower manipulator using
the Euler–Lagrange formulation. This white-box model is then improved upon by re-tuning the model’s
parameters using GWO-WOA and experimental data from the real LFR manipulator system, thus
forming the grey-box model. A minimum improvement of 73.9% is achieved by the grey-box model
in comparison to the white-box model. In the latter part of this investigation, the developed grey-box
model is used for the design, tuning and real-time implementation of a fuzzy PD+I controller on the
experimental LFR manipulator system. A 78% improvement in the total mean squared error is realised
after tuning the membership functions of the fuzzy logic controller using GWO-WOA. Experimental
results show that the approach significantly improves the trajectory tracking performance of the LFR
manipulator system in terms of mean squared error, steady state error and time delay.
© 2022 The Authors. Published by Elsevier Ltd on behalf of ISA. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Tasks such as grasping and manipulation using laparoscopic
nstruments have been made feasible through a technique known
s minimally invasive surgery (MIS), which goes as far back as
he 1960s. Reported benefits such as minimal scarring, shorter
ecovery time and less post-surgery pain are a few rewards that
IS presents for the patients [1]. However, some issues related

o limited dexterity, poor hand-eye coordination and difficulty in
ensing forces exerted by these laparoscopic instruments limits
he efficiency of the traditional MIS technique. The drawbacks
f using the traditional MIS technique can be resolved by incor-
orating robotic systems [2], of which a common type is widely
nown as the Master-Slave (MS) robotic system [3]. In this paper,
he MS robotic system will be referred to as the leader–follower
obot (LFR) manipulator system.

Leader–follower robotic systems typically comprise of two
ub-systems — the leader and follower robot manipulators [4]. In
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licenses/by/4.0/).
operation, the leader manipulator is controlled by a human user,
where position instructions are sent to the follower manipulator
which then transforms the hand movements of the user into
precise, real time and scalable motions [3]. In the medical field
for instance, existing leader–follower robot technology is used
particularly for minimally invasive surgeries, where the most
common type of robot system used is the da Vinci Surgical
System that is manufactured by Intuitive Surgical [5]. The widely
reported advantages of the da Vinci system include a reduced
risk of complications and blood loss. While these benefits are
attractive, a handful of drawbacks exist. For example, the da Vinci
surgical system is large and cost prohibitive. In addition, there is
a steep learning curve for the surgeon and the speed of operation
of these systems is limited due to the size of the actuator thus
increasing the amount of energy consumption.

The overall objective of the LFR manipulator system is for
the follower robot manipulator to accurately track the trajec-
tory of the leader robot manipulator in real time, with minimal
delay. It is required for the time delay to be a small as practi-
cally possible to prevent dire consequences in the applications
of LFR system, especially in a surgery [6]. To achieve the control
an open access article under the CC BY license (http://creativecommons.org/
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bjectives, an accurate dynamic model of the leader–follower
obot system is vital, together with an efficient control algo-
ithm. The fundamental idea behind modelling is to obtain an
ccurate representation of a real system’s dynamics that will be
uitable for controller design. Substantial research that addresses
he modelling of robot manipulators using analytical and data-
ased modelling approaches has been reported. Three common
echniques used in dynamic modelling exist and they include
hite-box, black-box, and grey-box modelling approaches.
White box models are derived analytically and are based on a

riori knowledge of system parameters, which are often challeng-
ng to quantify due to the physical constraints of the system [7].
lack box models on the other hand are developed using exper-
mental input/output data of a system. This approach, however,
acks in accuracy to a degree as important structural information
ill be lost during the mapping of experimental data to nonlinear
ifferential equations of a system [8]. The grey box modelling
echnique combines the properties of both white-box and black-
ox modelling by utilising a priori knowledge of the system and
dentifying immeasurable parameters using experimental data.

The successful application of the grey-box modelling approach
n dynamic systems has been widely addressed in literature. For
nstance, a grey-box approach using genetic algorithm (GA) is
roposed for the application on an aerodynamic system in [9].
his method estimates unknown parameters of the model us-
ng experimental data and a priori system information. Premku-
ar et al. [10] have proposed an enhanced chaotic JAYA algo-

ithm for the parameter identification of photovoltaic models.
l-Messabi et al. [11] have proposed the grey-box identification
f photovoltaic power systems using particle swarm optimisation.
izhen et al. [12] have presented the grey-box dynamic modelling
f a wind turbine generation system using genetic algorithms.
or robot manipulator systems, Gao et al. [13] have proposed a
rey-box parametric identification approach for a 6 degree-of-
reedom (DOF) industrial robot. The investigation considers the
evelopment of a kinematic model of the robot system using
he Denavit–Hartenberg technique and then uses an alternative
dentification algorithm to estimate the structural parameters
f the robot. Similarly, another investigation which uses a par-
icle swarm search approach to identify the kinematic model
arameters of a two-link robot manipulator is presented in [14].
oth methods employ kinematic models which do not take into
ccount the joint actuator torques that result in the motion of the
obots. Other grey-box modelling approaches found in literature
se analytical techniques such as the H∞-norm local approach
15], linear parameter varying method [16] and instrumental
ariable techniques [17].
Research on the application of fuzzy logic control on robotic

ystems is mature. In the work carried out by Li et al. [18], a
ybrid controller comprising of an incremental fuzzy logic pro-
ortional controller and an integral and derivative (Fuzzy P + ID)

controller is proposed for application on a robot manipulator. The
fuzzy controller is used to replace the proportional component
in the traditional PID but benefits from the properties of the
individual components such as improving rise time, reducing
steady state error and ensuring overall stability of the system.
Simulation studies on the application of fuzzy logic control on a 6-
DOF robot manipulator has also been presented by Alavandar and
Nigam [19]. The authors have designed a fuzzy PD + I controller
which consist of two inputs for the proportional and derivative
(PD) gains with a linear integral control added at the output.
The feasibility of the fuzzy PD + I controller is tested in terms
of trajectory tracking and results show that the performance of
the proposed controller improves noticeably in comparison to its
traditional PID counterpart.

The application of evolutionary algorithm techniques on fuzzy
logic control has received an increased interest by researchers
573
particularly in the robotics field. This is because the tuning pro-
cess of fuzzy logic controllers (FLCs) is time consuming and of-
ten requires an expert when the number of inputs and outputs
of a system are increased [20]. Studies involving evolutionary
algorithms such as particle swarm optimisation (PSO), genetic
algorithm (GA) and bee’s algorithm (BA) have been proven to
be effective in tuning the parameters of FLCs. More recently, the
trend of hybridising two or more algorithms resulting in better-
quality solutions for practical applications has risen. A broad
range of scientific contributions that have applied optimisation
algorithms for various applications including fuzzy logic control
tuning are presented in Table 1.

It is found that grey-box model identification of a LFR sys-
tem that takes into consideration the joint actuator torques and
optimisation algorithms is very limited in literature. In addi-
tion, designing an effective FLC by optimising the membership
functions (MFs) can be explored especially for control of a LFR
manipulator system. This paper therefore seeks to fill this re-
search gap by presenting the grey-box model identification and
fuzzy logic control of a 4-DOF LFR manipulator system based on
a hybrid Grey Wolf Optimiser (GWO)–Whale Optimisation Algo-
rithm (WOA) approach. The dynamic model is derived using the
Euler–Lagrange approach, and the optimisation approach is em-
ployed to optimally identify the parameters of the derived model.
The accuracy of the proposed model is verified by comparing with
the actual response of the system. Using the developed grey-box
model, a FLC design is proposed, and the MFs are tuned optimally.
The FLC is implemented on an experimental LFR manipulator
system to verify the performance of the controller in terms of
input tracking, steady-state error and time delay.

The main contributions of this work are given as follows:

a. Development of a unique hybrid GWO-WOA approach for a
grey-box model identification of a LFR manipulator system.
Parameters of the system’s mathematical model are opti-
mally identified, resulting in a more accurate model. The
approach can be utilised for accurate modelling of other
nonlinear dynamic systems.

b. Design of a FLC method for control of a LFR system with
optimised MF parameters using the unique GWO-WOA
approach. The proposed control technique is beneficial in
finding effective FLC controllers.

he breakdown of this paper is given as follows: Section 2 in-
roduces the experimental LFR manipulator system and gives
he mathematical equation of motion of the follower robot ma-
ipulator derived using the Euler–Lagrange method. Section 3
iscusses the proposed method of grey-box modelling using the
ybrid GWO-WOA algorithm and comparative results. Section 4
resent the design, development and tuning of the proposed FLC.
ection 5 presents the implementation and experimental results
btained in this investigation. Finally, Section 6 concludes the
aper and suggests future work.

. The leader–follower robot manipulator system

A prototype of the experimental LFR manipulator system un-
er investigation in this study is shown in Fig. 1. This system
onsists of a leader robot manipulator and a follower robot ma-
ipulator with 4-DOF respectively, a PC interface, a DC power
upply and an Arduino-based control system. The principle of
peration of the LFR manipulator system is similar to unilateral
eleoperation where no haptic feedback is present between the
eader and follower manipulators, as illustrated in Fig. 2. The
oints of the leader manipulator are fitted with sensors (i.e., po-
entiometers) and the follower manipulator’s joints are fitted
ith modified servo-motor actuators.
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Table 1
Scientific contributions that apply optimisation algorithms to various applications.
Ref. Technique Application

[21] Hybridisation of harmony search algorithm and cuckoo search
(HS/CS)

Benchmark evaluation of fourteen objective functions including the
Ackley, Rastrigin and Rosenbrock functions.

[22] Hybridisation of particle swarm optimisation and gravitational
search algorithm (PSO-GSA)

Benchmark evaluation of twenty-three objective functions.

[23] Hybridisation of whale optimisation algorithm and simulated
annealing (WOA-SA)

Feature selection evaluation which uses a custom objective function
that depends on a KNN classifier.

[24] Hybridisation of grey wolf optimiser and flower pollination
algorithm (GWO-FPA)

Benchmark evaluation of six objective functions.

[25] Hybridisation of grey-wolf optimiser and bat algorithm
(GWOBA)

Benchmark evaluation of thirty objective functions consisting of
unimodal, multi-modal, hybrid and composition functions to
simulate real life applications problems.

[26] Hybridisation of particle swarm optimisation and grey wolf
optimiser (HPSOGWO)

Benchmark evaluation of twenty-three objective functions comprising
of unimodal, multimodal, and fixed dimension multimodal functions.

[27] Hybridisation of whale optimiser algorithm with mean
strategy of grey wolf optimiser (HAGWO)

– Benchmark evaluation of twenty-three objective functions
comprising of unimodal, multimodal, and fixed dimension
multimodal functions.
– Bio-medical science real life problems using Iris, XOR, baloon and
breast cancer datasets.
– Welded beam design problem using a multi-objective cost function
and seven constraints to minimise the cost of production.
– Design of a cylindrical pressure vessel using a customised
objective function to minimise the total cost of design.

[28] Hybridisation of grey wolf optimiser and artificial bee colony
algorithm (GWO-ABC)

– Benchmark evaluation of twenty-seven functions comprising of
unimodal, multimodal, and composite objective functions.
– Trajectory tracking control of a 2-DOF robot manipulator with the
integral time absolute error (ITAE) objective function for optimising
the FOPID controller.

[29] Hybridisation of grey-wolf optimiser and whale optimisation
algorithm (GWO-WOA)

– Benchmark evaluation of ten functions comprising of unimodal
and multimodal objective functions.
– Model identification of a 4-DOF master–slave robotic manipulator
with the mean squared error (MSE) objective function.

[30] Hybridisation of cuckoo optimisation algorithm and harmony
search (COA-HS)

Gene selection for cancer classification which uses a custom
objective function that depends on the accuracy of a classifier and
the number of selected genes.

[20] Fuzzy logic control tuning using particle swarm optimisation Trajectory control of a 2-DOF robot using three objective functions
independently namely mean of root of squared error (MRSE), mean
of absolute value of the error (MAE) and reference-based error with
control effort (RBECE).

[31] Scaling factors tuning of a fuzzy logic controller using genetic
algorithm

Set-point tracking control of a single flexible link manipulator using
an objective function that is dependent on the tracking error and
overshoot of the system.

[32] Fractional PD+I fuzzy logic control tuning using genetic
algorithm

Numerical simulations of a high order plant system using the
integral time absolute error (ITAE) criterion as the objective function.

[33] Scaling factors and membership functions tuning of a fuzzy
logic controller using bee’s algorithm

Position and vibration control of a single link flexible robot using a
custom weighted objective function that is dependent on the time
delay, rise time, peak time, maximum overshoot, steady state error
and the robot’s deflection amplitude.

[34] Membership functions tuning of a fuzzy logic controller using
bee colony optimisation

Estimation of the average energy consumption of freight trains using
the energy to be minimised as the objective function.

[35] Membership functions tuning of a hybrid fuzzy-computed
torque controller using genetic algorithm

Position tracking control of a 2-DOF robot manipulator using a
custom objective function that is dependent on the applied torque
on each of the robot’s joints.

[36] Scaling factors tuning of a fuzzy fractional order PID controller
using a hybrid artificial bee-colony-genetic algorithm (ABC-GA)

Trajectory tracking control of a 2-DOF robot manipulator using the
ITAE criterion as the objective function.

[37] Type-1 and type-2 fuzzy logic controller tuning using a hybrid
particle swarm optimisation-genetic algorithm (PSO-GA)

Trajectory tracking control of an autonomous mobile robot using the
mean of the absolute error criterion as the objective function.

[38] Scaling factors tuning of a neuro-fuzzy subsets controller
using genetic algorithm

Position tracking control of a humanoid robot manipulator using the
absolute sum of errors as the objective function.

[39] Sliding surface gains tuning of a robust adaptive type-2 fuzzy
neural network controller using cuckoo algorithm

Trajectory tracking control of a quadrotor using the mean squared
tracking error as the objective function.
In this study, the dynamic model of the leader robot manipula-
or is not required for the synchronisation of the LFR manipulator
ystem as the measured joint positions of the leader robot are
sed. Therefore, only the mathematical model of the follower
anipulator will be presented. The 4-DOF correspond to the base,
houlder, wrist pitch and wrist roll joints and their angles are
574
denoted by θ0, θ1, θ2 and θ3 respectively. A schematic diagram of
the follower manipulator is shown in Fig. 3.

For a satisfactory control performance, the accurate modelling
of the LFR manipulator system’s dynamics is vital. In this study,
the Euler–Lagrange approach is used to formulate the dynamics
of the LFR manipulator system. Considering the follower robot
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Fig. 1. Prototype of the experimental 4-DOF leader–follower robot manipulator system.
Fig. 2. Schematic diagram of the leader–follower robot manipulator system.
Fig. 3. Schematic of the follower manipulator in 2-dimension (2D).
anipulator is driven by direct current (DC) servomotors, the
ynamics of these actuators are also accounted for in the follower
obot’s overall equation of motion. The overall equation of motion
f the 4-DOF follower robot manipulator (including the actuators’
575
dynamics) is derived as:

U = K T
−1

·
(
R ·
[
[A (θ) + Jmr] θ̈ + C

(
θ, θ̇

)
+ G (θ)

]
˙ ˙

) (1)

+K TK Erθ + BmRrθ
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here:

A (θ) 4 × 4 matrix of the follower robot’s inertia,
C
(
θ, θ̇

)
4 × 1 vector of the Coriolis and centrifugal
forces,

G
(
θ, θ̇

)
4 × 1 vector of the gravitational forces,

U 4 × 1 vector of the actuators input voltages,
r Servomotors’ gear ratios,
R 4 × 4 diagonal matrix of the actuators’ armature

resistances,
K T 4 × 4 diagonal matrix of the actuators’ torque

constants,
K E 4 × 4 diagonal matrix of the actuators’

electromotive force constants,
Jm 4 × 4 diagonal matrix of the actuators’ motor

moment of inertia,
Bm 4 × 4 diagonal matrix of the actuators’ motor

viscous friction constants, and
θ, θ̇ and θ̈ Joint angle positions, velocities, and

accelerations of the follower robot respectively.

t is important to note that the bold parameters in Eq. (1) signify
atrices while the other parameters are vectors. After expan-
ion, the parameters A (θ), C

(
θ, θ̇

)
and G

(
θ, θ̇

)
are simplified as

shown:

A (θ) =

⎡⎢⎢⎢⎢⎣
A11 0 0 A14

0 A22 A23 0

0 A32 A33 0

A41 0 0 A44

⎤⎥⎥⎥⎥⎦ (2)

C
(
θ, θ̇

)
=

⎡⎢⎢⎢⎢⎣
C1

C2

C3

C4

⎤⎥⎥⎥⎥⎦ (3)

G
(
θ, θ̇

)
=

⎡⎢⎢⎢⎢⎣
0

G2

G3

0

⎤⎥⎥⎥⎥⎦ (4)

where:

A14 = A41 = Ixx3 sin(θ1 + θ2)
A44 = Ixx3
A23 = A32 = Izz2 + Izz3 + M

(
L22 + L32

)
+ m3L22 + m2L2cg 2

+ m3L3cg 2 + 2ML2L3 + 2m3L2L3cg + cos θ2
(
ML1L2 + ML1L3

+m3L1L2 + m2L1L2cg + m3L1L3cg
)

A33 = Izz2 + Izz3 + M
(
L22 + L32

)
+ m3L22 + m2L2cg 2

+ m3L3cg 2 + 2ML2L3 + 2m3L2L3cg
11 = 2Ixx1 + 2Ixx2 + 2Ixx3 + 2Iyy1 + 2Iyy2 + 2Iyy3 + 2

+ 2M(L12 + L22 + L32) + 2m2L12 + 2m3L12 + 2m3L22

+ 2m1L1cg 2 + 2m2L2cg 2 + 2m3L3cg 2 + 4ML2L3 + 4m3L2L3cg
+ cos 2θ1

(
2Iyy1 − 2Ixx1 + 2m2L12 + 2m3L12 + 2m1L1cg 2

+2ML12
)
+ cos θ2

(
4ML1L2 + 4ML1L3 + 4m3L1L2 + 4m2L1L2cg

+4m3L1L3cg
)
+ cos(2θ1 + 2θ2)

[
2Iyy2 − 2Ixx2 − 2Ixx3 + 2Iyy3

+ 2M
(
L22 + L32

)
+ 2m3L22 + 2m2L2cg 2 + 2m3L3cg 2 + 4ML2L3

+4m L L
]
+ cos(2θ + θ )

[
4ML L + 4ML L + 4m L L
3 2 3cg 1 2 1 2 1 3 3 1 2

576
+4m2L1L2cg + 4m3L1L3cg
]

22 = Izz1 + Izz2 + Izz3 + M(L12 + L22 + L32) + m2L12

+ m3L12 + m3L22 + m1L1cg 2 + m2L2cg 2 + m3L3cg 2 + 2ML2L3
+ 2m3L2L3cg + cos θ2

(
2ML1L2 + 2ML1L3 + 2m3L1L2

+2m2L1L2cg + 2m3L1L3cg
)

For the Coriolis and centrifugal vector, C1, C2, C3 and C4 are

efined as:

1 = θ̇0θ̇1
[
sin 2θ1

(
Ixx1 − Iyy1 − ML12 − m2L12 − m3L12

−m1L1cg 2
)
+ sin (2θ1 + 2θ2)

(
Ixx2 + Ixx3 − Iyy2 − Iyy3 − ML22

−ML32 − m3L22 − m2L2cg 2 − m3L3cg 2 − 2ML2L3 − 2m3L2L3cg
)

+ sin(2θ1 + θ2)
(
−2ML1L2 − 2ML1L3 − 2m3L1L2 − 2m2L1L2cg

−2m3L1L3cg
)]

+ θ̇0θ̇2
[
sin(2θ1 + 2θ2)

(
Ixx2 + Ixx3 − Iyy2 − Iyy3

−ML22 − ML32 − m3L22 − m3L3cg 2 − 2ML2L3 − 2m3L2L3cg
)

+ sin (2θ1 + θ2)
(
−m2L2cg − ML1L2 − ML1L3 − m3L1L2

−m2L1L2cg − m3L1L3cg
)
+ sin θ2 (−m3L1L2

−m2L1L2cg − m3L1L3cg − ML1L2 − ML1L3
)]

+ θ̇1θ̇3 [Ixx3 cos(θ1 + θ2)] + θ̇2θ̇3 [Ixx3 cos(θ1 + θ2)]

2 = θ̇0
2 [sin (2θ1 + 2θ2)

(
2Iyy2 + 2Iyy3 + 2ML22 + 2ML32

+ 2m3L22 + 2m2L2cg 2 + 2m3L3cg 2 + 4ML2L3 + 4m3L2L3cg
−2Ixx2 − 2Ixx3

)
+ sin (2θ1)

(
2Iyy1 + 2ML12 + 2m2L12

+2m3L12 + 2m1L1cg 2
)
+ sin (2θ1 + θ2)

(
4ML1L2 + 4ML1L3

+4m3L1L2 + 4m2L1L2cg + 4m3L1L3cg
)]

+ θ̇1
2 [−0.5Ixx1 sin (2θ1)] + θ̇2

2 [sin(θ2) (−m3L1L2 − m2L1L2cg
−m3L1L3cg − ML1L2 − ML1L3

)]
+ θ̇1θ̇2 [ sin (θ2)

×
(
−2m3L1L2 − 2m2L1L2cg − 2m3L1L3cg − 2ML1L2 − 2ML1L3

)]
+ θ̇0θ̇3 [−Ixx3 cos (θ1 + θ2)]

3 = θ̇0
2 [sin (2θ1 + 2θ2)

(
2Iyy2 + 2Iyy3 + 2ML22 + 2ML32

+2m3L22 + 2m2L2cg 2 + 2m3L3cg 2 + 4ML2L3 + 4m3L2L3cg

−2Ixx2 − 2Ixx3) + sin (2θ1 + θ2) (4ML1L2 + 4ML1L3 + 4m3L1L2
+4m2L1L2cg + 4m3L1L3cg

)
+ sin (θ2)

(
2m3L1L2 + 2m2L1L2cg

+2m3L1L3cg + 2ML1L2 + 2ML1L3
)]

+ θ̇1
2 [sin (θ2)

(
2m3L1L2 + 2m2L1L2cg + 2m3L1L3cg + 2ML1L2

+2ML1L3)] + θ̇0θ̇3 [−Ixx3 cos (θ1 + θ2)]

4 = θ̇0θ̇1 [Ixx3 cos(θ1 + θ2)] + θ̇0θ̇2 [Ixx3 cos(θ1 + θ2)]

nd, the gravity vector parameters G2 and G3 are expressed

s:

2 = g
[
cos(θ1 + θ2)

[
ML2 + ML3 + m3L2 + m2L2cg + m3L3cg

]
+ cos θ1

[
ML1 + m2L1 + m3L1 + m1L1cg

]]
3 = g

[
cos(θ1 + θ2)

[
ML2 + ML3 + m3L2 + m2L2cg + m3L3cg

]]
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Fig. 4. Grey box model identification procedure.
here:

mi Link mass for the ith link,
M Mass of the end effector,
Li Link length of the ith link,
Li,cg Centre of gravity (i.e., midpoint) of link

length Li
g Gravity constant
Ixx,i, Iyy,i and Izz,i Mass moment of inertia in the x, y and

z-axis respectively for the ith link

ome assumptions were made in deriving the equation of motion
or the follower robot manipulator. These assumptions include
he following:

a. Point masses are located at the centre of each link of the
robot and the mass of each link is considered as a point
mass.

b. The effects of friction and transmission losses, and arma-
ture inductance of the actuators are negligible.

c. The gearbox coupling ratio is 1.

hile some parameters such as the link lengths and armature
esistances, can be quantified using specialist devices, it is as-
umed that these devices are inaccessible. As such, all physical
arameters of the follower robot manipulator are given an esti-
ated value, which are then included in the optimisation process

o ultimately improve the model’s accuracy.

. Grey-box model identification

Grey box modelling is an ingenious method that merges the
enefits of white and black box modelling techniques by utilising
priori knowledge of the system and identifying immeasurable
arameters using experimental data. Broadly speaking, this ap-
roach is seen to be superior in performance compared to each
f the white and black box techniques when used separately [8].
From an algorithm’s perspective, a cost function can either

e minimised or maximised. Also, defining limits of unknown
arameters to be estimated such as lower bound (lb) and upper
ound (ub), is essential as this provides a defined search space for
n algorithm to optimally find parameters within given bound-
ries. In this study, the objective is to minimise the mean squared

rror (MSE) function chosen as the cost function for this model
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identification task. The MSE function is described as:

MSE =
1
N

(
N∑
i=1

(
θ0 − θ̂0

)2
+

N∑
i=1

(
θ1 − θ̂1

)2
+

N∑
i=1

(
θ2 − θ̂2

)2
+

N∑
i=1

(
θ3 − θ̂3

)2)
(5)

where θ0, θ1, θ2 and θ3 are the joint angle positions of the real
LFR manipulator system and θ̂0, θ̂1, θ̂2 and θ̂3 are the joint angle
positions of the predicted grey-box model for joints 0, 1, 2 and 3
respectively. N is the number of collected output data samples.

Let us define a vector containing the unknown parameters to
be identified as v, where:

v = {v1, v2, v3, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .., v19, v20}

and vector v represents {J0, Ra0, Kt0, Bm0, r0, J1, Ra1, Kt1, Bm1, r1,
J2, Ra2, Kt2, Bm2, r2, J3, Ra3, Kt3, Bm3 and r3} respectively. These
are the parameters related to motors of Joint 0, 1, 2 and 3, in
which, five parameters are identified for each joint. They are
moment of inertia, armature resistance, torque constant, viscous
friction constant and reduction gear ratio.

Fig. 4 illustrates the grey box model identification procedure
where the same inputs from the leader manipulator are fed to
both the real follower robot manipulator and the previously de-
veloped Euler–Lagrange white box. The calculated position errors
from these outputs are then fed into an optimising algorithm,
which then minimises the cost function and finds the unknown
parameters optimally. In this work, a hybrid GWO-WOA is de-
signed and utilised to obtain optimal parameter values of the
follower robot manipulator.

3.1. The hybrid GWO-WOA algorithm

GWO and WOA are simple to implement and have only a few
modifiable parameters [40] amongst other attributes. However,
several papers in literature have reported the main drawback
of GWO is the algorithm’s ease in falling into a local optimum
particularly in complex situations that involve optimising high
dimensional data [27–29]. WOA on the other hand has good
exploitation abilities [41] but has a relatively poor convergence
rate.

Obadina et al. [29] have proposed a hybrid GWO-WOA algo-
rithm which inherits the benefits of original algorithms GWO [42]
and WOA [43]. The hybrid GWO-WOA is based on merging the
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Fig. 5. Hybrid GWO-WOA pseudo-code.
[

unctionalities of the Grey Wolf Optimiser and the logarithmic
piral equation of the WOA. By embedding the logarithmic spiral
ehaviour of WOA into the GWO algorithm, the hybrid algo-
ithm benefits from an increased efficiency, a faster convergence
ate and accuracy in finding global optima solutions. The per-
ormance of GWO-WOA has been studied in [29] and compared
ith state-of-art algorithms such as particle swarm optimisation
PSO), GWO and WOA respectively, of which the superiority of
WO-WOA is demonstrated.
The hybrid GWO-WOA considers all possible solutions as the

ositions of hunting grey-wolves in a pack, which are guided by
he alpha wolf (i.e., the best solution). As the position of the target
rey is unknown, the location of this target prey is regarded as the
ptimal solution. The second and third best solutions are known
s the beta and delta wolves respectively. The grey wolves deviate
rom each other to search for the prey and converge to attack
he prey [42]. The encircling behaviour of the alpha grey wolf
as been enhanced by integrating the spiral logarithmic equation
ound in WOA [43].

In the first iteration of the hybrid algorithm, an initial popu-
ation of grey wolves (i.e., solutions) is randomly generated and
he vector parameters a⃗, A⃗ and Q⃗ are initialised as [42]:

a⃗ = 2 −
t

Tmax
(6)

A⃗ = 2a⃗ ∗
−→r1 − a⃗ (7)

Q⃗ = 2−→r2 (8)

where a⃗ is a vector that linearly decreases from 2 to 0 over the
course of iterations; A⃗ and Q⃗ are coefficient vectors; t is the
current iteration; Tmax is the maximum iteration; −→r1 and −→r2 are
andom vectors between [0,1] and ∗ is an element-by-element
ultiplication.
The objective function for each grey wolf is computed where

he best, second best and third best fitness scores represent the
lpha, beta and delta grey wolves respectively. The other wolves
pdate their positions based on the locations of these top three
earch agents. The alpha wolf’s location is very important to note
ecause the hunt for prey (i.e., the best solution) is commonly
uided by the alpha wolf.
In the hybrid GWO-WOA algorithm, the alpha wolf can attack

ts prey in either an encircling manner or using a spiral logarith-
ic method. Thus, the position update vector d⃗ of the alpha wolf
α
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has been modified as follows:

d⃗α =

⎧⎨⎩Υ ∗

⏐⏐⏐Q⃗1 ∗ X⃗α(t) − X⃗(t)
⏐⏐⏐ if p1 < 0.5

ρ ∗ ebl ∗ cos (2π l) ∗

⏐⏐⏐Q⃗1 ∗ X⃗α(t) − X⃗(t)
⏐⏐⏐ if p1 ≥ 0.5

(9)

where X⃗α is the position vector of the alpha wolf; X⃗ is the position
vector of a grey wolf; Υ and ρ are random numbers between
0, 1]; b is a constant for defining the logarithmic spiral and l
is a random number between [−1, 1]. p1 is a random number
between [0, 1] and represents the probability of the alpha wolf
choosing the encircling method or the bubble-net mechanism to
update its position.

The position update vectors of the beta and delta wolves are
given as:

d⃗β =

⏐⏐⏐Q⃗2 ∗ X⃗β (t) − X⃗(t)
⏐⏐⏐ (10)

d⃗δ =

⏐⏐⏐Q⃗3 ∗ X⃗δ(t) − X⃗(t)
⏐⏐⏐ (11)

where
−→
Xβ and

−→
Xδ represent the position vectors of the beta and

delta wolves respectively.
The positions of the best three search agents (i.e., alpha, beta

and delta wolves) are therefore calculated as:

X⃗1(t) = X⃗α(t) − A⃗1 ∗ d⃗α (12)

X⃗2(t) = X⃗β (t) − A⃗2 ∗ d⃗β (13)

X⃗3(t) = X⃗δ(t) − A⃗3 ∗ d⃗δ (14)

The locations of the other grey wolves in the pack are then
updated based on the positions of the best three search agents
using the update equation:

X⃗ (t + 1) =

−→
X1 (t) +

−→
X2 (t) +

−→
X3 (t)

3
(15)

The pseudo-code for the hybrid GWO-WOA algorithm is shown
Fig. 5.

3.2. Model identification results

In this section, the accuracy of the LFR manipulator’s grey-
box model with GWO-WOA is analysed by comparing the joints’
output responses with the white-box model, and responses of
the real LFR manipulator system. The white-box model in this
investigation is obtained by using the equation of motion derived
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Table 2
Algorithm parameters for grey box modelling.
Algorithms’ parameters Value

Number of search agents 10
Maximum iteration 50
Number of variables 20
Objective function Mean Squared Error (MSE)
Lower bounds {0, 0.01, 0, 0, 0, 0, 0.01, 0, 0, 0, 0, 0.01, 0, 0, 0, 0, 0.01, 0, 0, 0}
Upper bounds {100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,

100, 100, 100}
Table 3
Physical characteristics of the follower robot manipulator.
Symbol Parameter Value Unit

m0 Mass of link 0 0.21 kg
m1 Mass of link 1 0.13 kg
m2 Mass of link 2 0.11 kg
m3 Mass of link 3 0.2148 kg
M Mass at tip 0 kg
L0 Length of link 0 0.086 m
L1 Length of link 1 0.14 m
L2 Length of link 2 0.049 m
L3 Length of link 3 0.172 m
L0,cg Position of point mass of link 0 0.043 m
L1,cg Position of point mass of link 1 0.07 m
L2,cg Position of point mass of link 2 0.0245 m
L3,cg Position of point mass of link 3 0.086 m
g Gravity constant 9.81 m/s2

Ixx0 Mass moment of inertia in the x-axis (Joint 0) 1.34 × 10−4 kg/m2

Ixx1 Mass moment of inertia in the x-axis (Joint 1) 3.17 × 10−5 kg/m2

Ixx2 Mass moment of inertia in the x-axis (Joint 2) 8.96 × 10−5 kg/m2

Ixx3 Mass moment of inertia in the x-axis (Joint 3) 1.37 × 10−4 kg/m2

Iyy0 Mass moment of inertia in the y-axis (Joint 0) 8.26 × 10−3 kg/m2

Iyy1 Mass moment of inertia in the y-axis (Joint 1) 3.98 × 10−4 kg/m2

Iyy2 Mass moment of inertia in the y-axis (Joint 2) 2.37 × 10−5 kg/m2

Iyy3 Mass moment of inertia in the y-axis (Joint 3) 2.78 × 10−4 kg/m2

Izz0 Mass moment of inertia in the z-axis (Joint 0) 1.24 × 10−4 kg/m2

Izz1 Mass moment of inertia in the z-axis (Joint 1) 3.98 × 10−4 kg/m2

Izz2 Mass moment of inertia in the z-axis (Joint 2) 1.13 × 10−4 kg/m2

Izz3 Mass moment of inertia in the z-axis (Joint 3) 2.45 × 10−4 kg/m2
in the previous section and applying estimated motor and other
physical system parameters. The parameters to be identified were
originally estimated in a previous work carried out by Bernth [44],
where the author conducted a friction and inertia experiment
to determine the motor moment of inertia and viscous friction
constant values for each joint of the LFR manipulator system. The
armature resistance values were derived by using a multi-meter
directly. It was also assumed that the motor torque constant is
equal to the electromotive force constant. The parameters that
have been used to run the optimisation algorithm are given in
Table 2. The white box model system parameters and motor data
are given in Tables 3 and 4 respectively. Two separate datasets
named Dataset 1 and Dataset 2 are used in this work to validate
he dynamic models. These datasets are real-time input and out-
ut joint position data of all joints of the LFR manipulator system,
hich were recorded via a serial Arduino measurement set-up
uring excitation of the leader manipulator.
An improvement in the accuracy of the developed white-box

odel is then considered by identifying the unknown motor pa-
ameters using the hybrid GWO-WOA, thus forming the grey-box
odel. The 20 unknown parameters of the follower robot ma-
ipulator as described in Section 3 are to be identified optimally
sing the hybrid GWO-WOA. The grey-box model parameters
hat were identified using the hybrid GWO-WOA are shown in
able 4, and it is noted that they were different from the white-
ox model parameters. The convergence curve of GWO-WOA
btained while identifying the unknown parameters of the LFR
anipulator system is shown in Fig. 6. It is observed that the

echnique converges to a fixed value at the 47th iteration. A
etailed comparative analysis of the hybrid GWO-WOA for model
579
identification is given in [29] where the hybrid algorithm has
proven to be advantageous compared to other state-of-the-art
techniques.

Figs. 7 and 8 present the time domain predicted output re-
sponses of the developed grey-box and white box models in
terms of 4-DOF system dynamics, together with the response
of the LFR manipulator system using Dataset 1 and Dataset 2
respectively. The input and output of the LFR manipulator system
are from manually exciting each joint of the leader robot manip-
ulator in real-time. For consistency, the same input is introduced
to the white-box and grey-box models to obtain both mod-
els’ predicted output responses. Noticeable improvements of the
grey-box model can be seen in majority of the plots as the grey-
box model’s responses closely match that of the experimental LFR
manipulator system.

From analysing the MSE values in Table 5, the grey-box model
is seen to show an 82.3% improvement with a total MSE value
of 0.0715 compared to the white-box model’s MSE value of
0.4042, using Dataset 1. Similarly, the total MSE of the grey-
box model is 0.1121, which is a 73.9% improvement compared
to the white-box model at 0.4293 using Dataset 2. These results
therefore strengthen the premise that grey box models are better
than white-box models. Consequently, the developed GWO-WOA
based grey-box model will now be used for the development and
synthesis of sophisticated control algorithms such as FLCs.

4. Fuzzy logic control design and tuning using GWO-WOA

Fuzzy control systems imitate the intuitive decision-making
process of human beings. These decisions are based on an ex-
pert knowledge base which consist of fuzzy IF-THEN rules [45].
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Fig. 6. Convergence curve of GWO-WOA for model identification.
Table 4
White-box and grey-box model parameters of the leader–follower robot manipulator.
Symbol Parameter Value

White-box model Grey-box model

Joint 0 (Base Joint)

J0 Motor moment of inertia 0.034 kg m2 18.302 kg m2

Ra0 Motor armature resistance 3.6 � 0.029 �

Kt0 Motor torque constant 0.9 N m/A 6.661 N m/A
Bm0 Motor viscous friction constant 0.046 N m s 0.495 N m s
r0 Motor reduction gear ratio 0.8 1.429

Joint 1 (Shoulder Joint)

J1 Motor moment of inertia 0.055 kg m2 4.477 kg m2

Ra1 Motor armature resistance 0.8 � 0.092 �

Kt1 Motor torque constant 1.2 N m/A 1.124 N m/A
Bm1 Motor viscous friction constant 0.063 N m s 5.731 N m s
r1 Motor reduction gear ratio 0.8 2.921

Joint 2 (Wrist Joint)

J2 Motor moment of inertia 0.025 kg m2 0.918 kg m2

Ra2 Motor armature resistance 2.4 � 0.275 �

Kt2 Motor torque constant 1.0 N m/A 8.922 N m/A
Bm2 Motor viscous friction constant 0.037 N m s 20.405 N m s
r2 Motor reduction gear ratio 0.8 0.897

Joint 3 (Wrist – Twist Joint)

J3 Motor moment of inertia 0.009 kg m2 0.176 kg m2

Ra3 Motor armature resistance 6.3 � 0.486 �

Kt3 Motor torque constant 0.8 N m/A 1.189 N m/A
Bm3 Motor viscous friction constant 0.025 N m s 0.457 N m s
r3 Motor reduction gear ratio 0.8 6.854
The overall fuzzy logic control process can be summed up into
three (3) stages namely fuzzification, fuzzy inference and defuzzi-
fication processes. The fuzzification step converts crisp inputs
into fuzzy sets through input membership functions. The fuzzy
inference system (FIS) is the knowledge base which consists of
linguistic control rules. Finally, the defuzzification step generates
crisp control outputs from output fuzzy sets using either the
Mamdani or Sugeno fuzzy inference system (FIS).

The proposed Fuzzy PD + I controller in this work is a
Mamdani-type that consist of two inputs and an intermediate
output. The overall controller output comprises the sum of this
intermediate output and an integral term. This phenomenon is
580
illustrated in Fig. 9. This Fuzzy PD + I controller is simple to im-
plement as its structure is similar to the traditional PID controller.
Considering the leader and follower robot manipulators have four
joints separately, each joint will be controlled in joint space. This
implies that four FLCs are required for the position control of
the whole experimental leader–follower manipulator system. A
block diagram of the overall LFR manipulator control scheme is
demonstrated in Fig. 10.

In terms of 1-DOF, the first input of the FLC is the tracking
error, which is defined as the difference between the desired joint
angle position from the leader manipulator, θm (k) and the actual
joint angle position of the follower manipulator, θ (k). The second
s
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Fig. 7. Time domain response plots using dataset 1.
Table 5
Mean squared error comparison of white-box and grey-box models.
Dataset 1

White-box model Grey-box model

Joint 0 0.1080 0.0077
Joint 1 0.0090 0.0062
Joint 2 0.0554 0.0120
Joint 3 0.2318 0.0456
All joints 0.4042 0.0715
Dataset 2

White-box model Grey-box model

Joint 0 0.0949 0.0307
Joint 1 0.0081 0.0050
Joint 2 0.0527 0.0122
Joint 3 0.2736 0.0643
All joints 0.4293 0.1122

input of the FLC is the change in tracking error, while the overall
output of the FLC is the control voltage from the servo motor that
drives the robot manipulator.

The tracking error, e (k) and change in tracking error, ce (k) are
defined as

e (k) = θm (k) − θs(k) (16)

ce (k) = e (k) − e(k − 1) (17)

The overall output of the Fuzzy PD + I controller is a function
of position tracking error and angular velocity. This function is,
581
thus, expressed mathematically as:

u (k) = Ku ∗
[
f
(
Kpe (k) , Kdce (k)

)]
+ Ki

∫
e (k) dk (18)

where

e (k) Tracking error
ce (k) Change in tracking error
u(k) Control voltage
Kp Proportional term scaling factor
Ki Integral term scaling factor
Kd Derivative term scaling factor
Ku Control output scaling factor

The fuzzification of inputs and defuzzification of the output are
characterised by a combination of trapezoidal and triangular MFs,
as shown in Fig. 11. The newness of this proposed FLC is in the de-
sign of the output MFs where triangular MFs of the control output
are used to mimic singleton MFs. The advantage of this method
is that the computational time of this fuzzy logic controller is
improved while also providing the full benefits of Mamdani-
type systems. In addition, the rising concern that increasing the
number of MFs of a FLC increases the total computation time and
by extension, the overall performance of the robot, is addressed
by using only nine MFs per FLC.

The input and output variables each have three MFs, which
are defined in the universe of discourse [−1,1]. The input scaling
factors are used to regulate the tracking error and angular velocity
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Fig. 8. Time domain response plots using dataset 2.
Fig. 9. Fuzzy PD + I control structure.
T
ithin the range [−1, 1] before going into the FLC. Similarly, the
utput scaling factor is used to convert the normalised output
alue to a real control voltage that will be fed into the robot
anipulator. In Fig. 11, the linguistic set {NE, ZE, PE} is assigned
s negative error, zero error and positive error. The sets {NCE,
CE and PCE} and {NU, ZU, PU} are assigned as negative change
n error, zero change in error and positive change in error, and
egative output voltage, zero output voltage and positive output
oltage respectively. The designed Mamdani-type FLC uses a min–
ax method of inferencing comprising of nine fuzzy control rules.
582
hese rules are presented in Table 6 in the form: if (e is XY ) and
(ce is XZ) then (u is YZ).

While FLCs have several advantages, the challenge of deciding
the membership functions’ parameters still exists. The trial-and-
error method is often used which can become burdensome. This
task can be solved by tuning the FLC parameters using optimi-
sation algorithms to obtain optimum solutions based on a given
cost objective function [46]. This section, therefore, explores the
optimisation of the designed FLCs parameters using the hybrid
GWO-WOA algorithm, for application on the experimental 4-DOF
LFR manipulator system. With the optimal parameters of the
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Fig. 10. Overall leader–follower robot manipulator control scheme.

Fig. 11. Membership functions before tuning.
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Table 6
Fuzzy logic controller rule base.
If (e is NE) and (ce is NCE) then (u is NU)
If (e is NE) and (ce is ZCE) then (u is NU)
If (e is NE) and (ce is PCE) then (u is ZU)
If (e is ZE) and (ce is NCE) then (u is NU)
If (e is ZE) and (ce is ZCE) then (u is ZU)
If (e is ZE) and (ce is PCE) then (u is PU)
If (e is PE) and (ce is NCE) then (u is ZU)
If (e is PE) and (ce is ZCE) then (u is PU)
If (e is PE) and (ce is PCE) then (u is PU)

MFs, the proposed FLC can be enhanced to minimise the position
tracking errors, steady state errors and the time delay between
the leader and follower’s joints of the LFR manipulator system.

For accurate control of the LFR manipulator system, optimal
arameters of the FLCs, i.e., input MF variables are determined
hrough optimisation offline, using the hybrid GWO-WOA algo-
ithm in MATLAB/Simulink environment. The chosen objective
unction for this tuning process is based on minimising the sum
f integral time weighted absolute error (ITAE) and integral time
eighted absolute control signal (ITAU). They are defined as:

ITAE =

∫
∞

0
k |e(k)| dk (19)

TAU =

∫
∞

0
k |u(k)| dk (20)

herefore, the overall objective function, J is expressed as:

=

∫
∞

k |e(k)| dk +

∫
∞

k |u(k)| dk (21)

0 0

P
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A closed loop system is typically driven by error i.e., the difference
between the setpoint and process output signals. As the objective
functions ITAE and ITAU depend on the absolute error and abso-
lute control signal respectively, which is weighted with the time
of occurrence of the error and control, it is believed that using
the sum of ITAE and ITAU could provide an optimal performance
during the optimisation process. In Eq. (21), the weightings used
for the cost functions ITAE and ITAU are set to 1 respectively.

Different techniques of tuning the fuzzy logic controllers were
investigated in this study to determine the best way of achieving
a great control performance on the LFR manipulator system.
These methods include:

a. Tuning of the FLC’s scaling factors while keeping all MFs
constant.

b. Tuning of the FLC’s input MFs parameters while keeping
the output MFs and scaling factors constant

c. Tuning the FLC’s scaling factors and input MFs parameters
simultaneously.

imulation results of the follower robot manipulator responses to
multi-step reference input from the leader robot manipulator
sing all the tuning techniques are shown and discussed in the
ext section. It was discovered that tuning the FLCs’ input MFs
hile keeping the output membership (‘singleton’) functions and
caling factors constant produced the best results. Fig. 12 high-
ights the tuneable parameters of the input membership functions
or each FLC. The fuzzy control performance is improved by opti-
ising the input membership function parameters Ne_trapmf_c,
e_trimf_a, Pe_trapmf_b, Ze_trimf_c, Nce_trapmf_c, Zce_trimf_a,

ce_trapmf_b and Zce_trimf_c using GWO-WOA. The boundary
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Fig. 14. Simulated multi-step output response using tuned scaling factors.
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f each tuneable parameter is based on the symmetry and struc-
ure of the membership functions. For instance, the parame-
ers {Ne_trapmf_c, Ze_trimf_a, Nce_trapmf_c and Zce_trimf_a}
re within the range [−1,0] while the parameters {Pe_trapmf_b,
e_trimf_c, Pce_trapmf_b and Zce_trimf_c} are between [0,1].
These bounds will be used as part of the GWO-WOA algo-

ithms’ parameters to find the optimal parameters of the MFs. It
s important to note that the four different FLCs for the individual
obot joints will be optimised independently. Using optimisation
ingo, the aim of this ‘problem’ is to find optimal MFs parameters
y minimising the objective function using an algorithm and
ithin given constraints. The algorithm parameters that have
een used for tuning the MFs of the FLCs are given in Table 7.
et us assume the vector for optimisation is w, and this vector is
efined as:

= {w1, w2, w3, w4, w5, w6, w7, w8}i for(i = 0, 1, 2, 3)

here {w1, w2, w3, w4, w5, w6, w7, w8}i represents {Ne_ trapmf
_c, Ze_trimf_a, Ze_trimf_c, Pe_trapmf_b, Nce_trapmf_c, Zce_trimf
_a, Zce_trimf_c and Pce_trapmf_b} respectively for each joint, i of
the LFR manipulator system.

5. Implementation and results

5.1. Implementation

The fuzzy PD + I controller designed based on the GWO-WOA
is implemented on the experimental 4-DOF LFR manipulator sys-
tem for verification of their real-time performance. Fig. 13 shows
585
Table 7
GWO-WOA parameters for tuning MFs.
Algorithms’ parameters Value

Number of search agents 10
Maximum iteration 30
Number of variables 8
Objective function ITAE + ITAU
Lower bounds {-1, −1, 0, 0, −1, −1, 0, 0}
Upper bounds {0, 0, 1, 1, 0, 0, 1, 1}

the block diagram of the closed-loop control during the opti-
misation process of the FLCs. The developed GWO-WOA based
grey-box model discussed earlier is used to determine the op-
timal MFs of the input variables. This optimisation process is
carried out offline using the hybrid GWO-WOA algorithm in
MATLAB/Simulink environment, to ensure an effective control of
the LFR manipulator system.

In this investigation, three measures have been used to analyse
the effectiveness of the fuzzy PD + I controller on all joints of the
xperimental LFR manipulator system. Moreover, a comparative
nalysis on the performance of the LFR manipulator system be-
ore and after tuning the fuzzy PD + I controllers is also carried
ut. The measures are:

• Input tracking: This is measured by obtaining the mean
squared error (MSE) between the actual response and the
input command. A low MSE is desirable as this indicates
closeness to the desired response.

• Steady-state error: The steady state error is calculated by
finding the difference between the desired final position
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Fig. 15. Simulated multi-step output response using tuned scaling factors and membership functions.
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from the leader robot manipulator and the follower manip-
ulator’s actual position in steady state.

• Time delay: This is calculated by working out the differ-
ence between the times that the leader robot manipulator
gives a position command and the time the follower robot
manipulator begins to respond.

or comparison of the control performance before and after op-
imisation, it is intended to use the same input commands for
ach of the joints from the leader robot. However, in the actual
xperiments, it is not possible to get the exact same trajectory,
s the leader robot is manually excited. To mitigate this, similar
ommand trajectories from the leader manipulator have been
sed. For example, the step and square responses have similar
ime periods. The feasibility of the designed FLC is tested initially
y using step signals that are given by manually exciting the
eader robot manipulator. To further investigate the robustness
f the fuzzy PD + I controller, another dataset which includes
ulti-step trajectories is tested. The purpose of using different

rajectories and signals is to ensure that the designed and op-
imised controllers can cope with uncertainties, which mimic
eal-life scenarios.

.2. Comparative simulation study on different FLC tuning methods

In this section, the best tuning method for optimising the
LC is investigated through simulations. Validation tests using
multi-step trajectory are carried out on the three FLC tun-

ng approaches described in Section 4. Subsequent to observing
he behaviour of the LFR manipulator via simulation tests, the
586
Table 8
Tuned scaling factors of the FLCs.

Joint 0 Joint 1 Joint 2 Joint 3

Kp 1.0427 0.754 1.8448 0.9957
Kd 0.0018 0.3097 0.0089 0.0008
Ki 0.002 0.5871 0.0449 0.0004
Ku 20 20 20 20

best approach for tuning the FLCs will be implemented on the
experimental LFR manipulator system.

5.2.1. FLC tuning of scaling factors
The scaling factors of the FLC were tuned using the GWO-

WOA algorithm offline while keeping the MFs constant. The tuned
Kp, Kd, Ki and Ku scaling factors obtained after optimisation are
iven in Table 8. The tuned scaling factors are then applied to the
FR manipulator’s simulation model to give the multi-step output
esponses for all joints, as shown in Fig. 14. From the output
esponses, a change in direction of the leader robot’s multi-step
rajectory shows how the follower’s joints 0, 2 and 3 struggle to
rack the leader’s movements with large tracking errors. It is clear
hat tuning the scaling factors of the FLCs alone does not provide
robust control performance for the LFR manipulator system.

.2.2. FLC tuning of scaling factors and membership functions
Another simulation test was carried out to check the efficacy

f tuning the FLC’s MFs and scaling factors simultaneously using
ulti-step trajectories, and the obtained parameters are given

n Table 9. Similar to the results in Section 5.2.1, the follower
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Fig. 16. Fuzzy logic input membership functions after tuning.
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Fig. 17. Simulated multi-step output response using tuned membership functions.
Table 9
Tuned scaling factors and input membership functions of the FLCs.
MFs parameters Joint 0 Joint 1 Joint 2 Joint 3

Kp 0.956 0.783 1.853 0.824
Kd 0.243 1.699 0.017 1.223
Ki 0.461 0.343 0.075 2.072
Ku 15.3961 19.8269 20.0 18.802
Ne_trapmf_c −0.1675 −0.1142 −0.7425 −0.0852
Ze_trimf_a −0.4407 −0.3600 −0.1322 −0.2222
Ze_trimf_c 0.0 0.4083 0.3893 0.6173
Pe_trapmf_b 1.0 0.3134 0.1116 0.3293
Nce_trapmf_c −0.0943 −0.5980 −0.1630 −0.5694
Zce_trimf_a −0.6021 −0.7104 −0.2780 −0.1694
Zce_trimf_c 0.3860 0.4352 0.7679 0.3421
Pce_trapmf_b 0.1119 0.7732 0.6847 0.2051

manipulator struggles to track the multi-step trajectory given by
the leader manipulator thus resulting in large tracking errors and
steady state errors between joints 0 and 2. The output responses
are illustrated in Fig. 15.

5.2.3. FLC tuning of membership functions
The input MFs of the FLC are tuned using the GWO-WOA al-

orithm offline while keeping the output MFs and scaling factors
onstant. The scaling factors Kp, Kd, Ki and Ku used for joints 0,
, 2 and 3 are {0.513, 0.160, 0.313, 15.0}, {0.590, 0.147, 0.201,
1.55}, {0.630, 0.244, 0.251, 13.15} and {0.782, 0.169, 0.233, 14.5}
espectively, and the optimised input MFs for all joints are il-
ustrated in Fig. 16. Table 10 presents the optimised input MFs
arameters after tuning with GWO-WOA offline, while keeping
he output MFs and scaling factors constant. Simulation results in
ig. 17 reveal a favourable performance of the tuned FLCs across
588
all joints as the follower manipulator is able to efficiently track
the multi-step trajectories given by the leader with no tracking
errors or steady state errors.

5.3. Experimental results

The main idea behind using the hybrid GWO-WOA for tuning
the MFs of the FLC is to search a global optimisation space to
find a set of parameters that will produce the best control per-
formance of the fuzzy logic controller. The tuned MFs parameters
given in Table 10 have been used for the real-time fuzzy logic
control of the experimental LFR manipulator system. A compari-
son of the experimental step output responses for all joints of the
LFR manipulator system before and after tuning the MFs using the
GWO-WOA algorithm is depicted in Fig. 18. The performances of
the FLCs are quantified and analysed in terms of MSE, steady-state
error and time delay, as shown in Table 11.

The results depicted in Fig. 18 and Table 11 demonstrate a
significant improvement in the trajectory tracking performance
of the FLC using the GWO-WOA approach, particularly in terms
of MSE, steady state error and time delays between the leader
and follower manipulator joints. For example, the total MSE of the
entire LFR manipulator system after tuning is 0.0405 in compar-
ison to the MSE value of 0.1858 before tuning. This shows a 78%
improvement which is due to the improved exploration capability
of the hybrid GWO-WOA. The hybrid algorithm can find optimum
parameters of the FLC’s MFs that minimises its objective function
and updates its best solution using the top three fitness scores.

Similarly, a significant reduction in the steady state errors and
time delay across all joints of the LFR manipulator system was
achieved with the GWO-WOA approach. Joint 1’s steady state



O.O. Obadina, M.A. Thaha, Z. Mohamed et al. ISA Transactions 129 (2022) 572–593

Fig. 18. Step response performance of the LFR manipulator system before and after GWO-WOA optimisation.
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Fig. 19. Convergence curves of FLCs after GWO-WOA optimisation.
Table 10
Tuned inputs’ membership functions parameters of the FLCs.
MFs parameters Before tuning Joint 0 After tuning (J1) After tuning (J2) After tuning (J3)

Ne_trapmf_c −0.3 −0.0785 −0.9801 −0.0659 −0.0800
Ze_trimf_a −0.3 −0.0920 −0.5437 −0.6279 −0.5139
Ze_trimf_c 0.3 0.0363 0.2473 0.4669 0.0212
Pe_trapmf_b 0.3 0.0466 0.3113 0.0423 0.1444
Nce_trapmf_c −0.1 −0.2918 −0.2138 −0.2578 −0.1637
Zce_trimf_a −0.1 −0.6524 −0.9454 −1.0 −0.5776
Zce_trimf_c 0.1 0.2340 0.2689 0.2580 0.1579
Pce_trapmf_b 0.1 1.0 0.8877 0.1657 0.7692
error was reduced by 96.7% which is substantial as large steady
state errors could become catastrophic in surgical applications,
for instance. Also, a reduction in time delay between the leader
and follower’s responses ensures that the LFR manipulator system
remains stable always, as perturbation and disturbances intro-
duced to the system can be acted upon quickly. The convergence
curves of all joints of the LFR manipulator system while tuning
the FLC parameters using GWO-WOA are given in Fig. 19. Joints
0 and 2 converge to the final solution after 20 iterations while
Joints 1 and 3 converge to the final solution after iterations 29
and 27 respectively.

5.4. Robustness test

The multi-step (or square) signals have also been used to test
he robustness of the tuned FLC for application on the experi-
ental LFR manipulator system in real time. These multi-square

rajectory signals are multi-step in nature and are introduced by
xciting the leader manipulator while the follower manipulator is
xpected to follow the given trajectory. Fig. 20 shows the multi-
tep responses of the LFR manipulator system for all joints before
nd after optimisation.
590
Table 11
Performance comparison of the fuzzy logic controllers before and after tuning.

Before tuning After tuning

Mean squared error

Joint 0 0.0324 0.0034
Joint 1 0.0808 0.0106
Joint 2 0.0235 0.0180
Joint 3 0.0492 0.0086
All joints 0.1858 0.0405
Steady-state error (radians)

Joint 0 0.14 0.02
Joint 1 0.31 0.01
Joint 2 0.15 0.03
Joint 3 0.12 0.01
Time delay (seconds)

Joint 0 0.20 0.10
Joint 1 0.25 0.10
Joint 2 0.25 0.15
Joint 3 0.30 0.10
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Fig. 20. Multi-step response performance of all joints of LFR manipulator system before and after GWO-WOA optimisation.
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Table 12
MSE comparison of experimental multi-step response before and after
GWO-WOA tuning the FLCs.
MSE Before tuning After tuning

Joint 0 0.1021 0.0250
Joint 1 0.1040 0.0974
Joint 2 0.0384 0.2364
Joint 3 0.2974 0.0772
All joints 0.5420 0.4360

Although some tracking errors exist across the joints in Fig. 20,
he tuned FLCs are observed to still perform satisfactorily as the
ollower manipulator joints are seen to follow the trajectories
f the leader robot’s joints closely in real time. The tracking
ehaviour of the LFR manipulator system after implementing the
uned FLCs is evaluated in Table 12 using the MSE measure. It
s observed that the fuzzy PD + I controller performance of the
LFR manipulator system after tuning is better and more robust
in Joints 0, 1 and 3. The total MSE for all joints after tuning
is 0.4360 while the MSE before tuning is 0.5420. This 19.6%
improvement implies that the tuned FLC is robust enough to
handle system uncertainties such as unfamiliar trajectories, when
tuned appropriately.

6. Conclusions

This proposed work considers the grey-box modelling and op-
timal control design of a FLC for application on an experimental 4-
DOF LFR manipulator system, using a hybrid grey wolf–whale op-
timisation algorithm (GWO-WOA). Analysis on the performance
of the GWO-based grey-box model in comparison to the Euler–
Lagrange based white box model has clearly shown the advantage
of utilising the grey-box modelling technique. The fuzzy PD + I
ontroller presented in this paper provides a practical approach
or the real time trajectory tracking and position control of a LFR
ystem. Parameters of the input MFs for the fuzzy logic controller
ave been obtained by minimising the sum of ITAE and ITAU
bjective functions using the hybrid GWO-WOA. Experimental
esults have shown a satisfactory tracking ability, and a reduction
n the steady state errors and time delay across all joints be-
ween the leader and follower robot manipulators. These results
uarantee the performance of GWO-WOA in determining optimal
ystem and control parameters for use in position control and
rajectory tracking applications. In future research, GWO-WOA
an be employed for the online tuning of the fuzzy controller’s
caling factors and membership functions.
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