
 

84:4 (2022) 139–148|https://journals.utm.my/jurnalteknologi|eISSN 2180–3722 |DOI: 

https://doi.org/10.11113/jurnalteknologi.v84.13778| 

 

 

Jurnal 

Teknologi 

 
 

Full Paper 

  

 

  

 

ADAPTIVE MODEL PREDICTIVE CONTROLLER FOR 

TRAJECTORY TRACKING AND OBSTACLE 

AVOIDANCE ON AUTONOMOUS VEHICLE 
 

Zulkarnain Ali Lemana,b, Mohd Hatta Mohammad Ariffa*, Hairi 

Zamzuria, Mohd Azizi Abdul Rahmana, Saiful Amri Mazlana, Irfan 

Bahiuddina,c, Fitri Yakuba 

 
aAdvanced Vehicle System Research Group, Universiti Teknologi 

Malaysia, Kuala Lumpur, Malaysia 
bDepartment of Mechanical Engineering, Universitas Sriwijaya, 

Indonesia  
cDepartment of Mechanical Engineering, Vocational College, 

Universitas Gadjah Mada (UGM), Jl. Yacaranda Sekip Unit IV, 55281 

Yogyakarta, Indonesia  

 

Article history 

Received  

23 April 2019 

Received in revised form  

15 April 2022 

Accepted  

25 April 2022 

Published Online  

20 June 2022 

 

*Corresponding author 

mohdhatta.kl@utm.my 
 

 

Graphical abstract 
 

 

 
 

 
 

 

 

 

 

 

Abstract 
 

Accurate vehicle trajectory tracking and collision free motion have 

become an active topic being discussed in autonomous vehicle research 

field. During an emergency obstacle avoidance manoeuvre condition, 

tyre force saturation greatly affects the trajectory tracking performance of 

the vehicle. Existing controllers such as conventional model predictive 

controller (MPC) and geometric controller (Stanley) need proper gain 

tuning to cope with this condition. This is due to the control gains were 

determined via linearization process at a certain targeted speed. 

Therefore, the control performance is limited considering the presence of 

speed variations with extreme manoeuvre trajectory. This paper proposes 

an adaptive MPC controller to solve aforementioned issues. First, optimized 

weighting gains for the steering control were obtained using PSO 

algorithm. The optimised weighting gains were then scheduled into the 

proposed adaptive MPC via a look-up table strategy. In this work, 

adaptive MPC was designed by using the linearization of the 7 degree-of-

freedom (DOF) non-linear vehicle model. Here, the linearized model for 

controller design was updated based on the instantaneous longitudinal 

speed of the vehicle system plant. To evaluate adaptive MPC 

performance, comparisons with the adaptive Stanley controller and 

conventional MPC are conducted to analyse its effectiveness in low, 

middle and high-speed scenario. Simulation results showed that adaptive 

MPC improved the tracking error performance with respect to the speed 

variation in extreme collision avoidance manoeuvre. In high-speed 

manoeuvre (i.e. 25 m/s), lateral error improvement of 27.3% and 42.3% 

compared to conventional MPC controller and adaptive Stanley 

controller were obtained respectively. 
 

Keywords: Autonomous vehicle, adaptive MPC controller, trajectory 

tracking, collisions avoidance 

 

 

Abstrak 
 

Penjejakan trajektori yang tepat dan pergerakan bebas perlanggaran 

telah menjadi topik aktif yang dibincangkan dalam bidang penyelidikan 

kenderaan berautonomi. Semasa pergerakan menjauhi halangan dalam 
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keadaan kecemasan, ketepuan daya tayar sangat mempengaruhi 

prestasi penjejakan trajektori kenderaan. Pengawal sedia ada seperti 

pengawal ramalan model konvensional (MPC) dan pengawal geometri 

(Stanley) memerlukan gandaan penalaan yang sesuai untuk mengatasi 

keadaan ini. Ini disebabkan oleh gandaan kawalan ditentukan melalui 

proses pelurusan pada kelajuan yang tertentu. Oleh itu, prestasi kawalan 

adalah terhad disebabkan terdapatnya variasi kelajuan serta trajektori 

pergerakan yang ekstrim. Dalam kertas kajian, pengawal suai MPC akan 

dicadangkan untuk menyelesaikan isu-isu tersebut. Pertama, gandaan 

pengawalan yang dioptimumkan untuk kawalan stereng diperoleh 

menggunakan algoritma PSO. Gandaan kawalan yang dioptimumkan 

kemudian dijadualkan ke dalam suai MPC yang dicadangkan melalui 

strategi jadual lihat-rujukan. Dalam kajian ini, pengawal suai MPC yang 

direka bentuk dengan menggunakan pelurusan model kenderaan tak-

lelurus yang mempunyai 7 darjah kebebasan (DOF). Di sini, model 

terlelurus untuk rekabentuk pengawal, dikemaskini berdasarkan kelajuan 

membujur ketika bagi kenderaan. Untuk menilai prestasi pengawal suai 

MPC, perbandingan dengan pengawal suai Stanley dan MPC 

konvensional telah dijalankan untuk menganalisis keberkesanannya 

dalam senario kelajuan kenderaan yang rendah, sederhana dan tinggi. 

Hasil simulasi menunjukkan bahawa pengawal suai MPC dapat 

meningkatkan prestasi ralat penjejakan dengan variasi kelajuan semasa 

pergerakan menghindari pelanggaran yang ekstrim. Dalam pergerakan 

berkelajuan tinggi (iaitu 25 m/s), peningkatan ralat sisi masing-masing 

sebanyak 27.3% dan 42.3% telah diperolehi berbanding pengawal MPC 

konvensional dan pengawal suai Stanley. 

 

Kata kunci: Kenderaan autonomi, pengawal MPC Suai, penjejakan 

trajektori, pengelakkan pertembungan 

 

© 2022 Penerbit UTM Press. All rights reserved 

 

  

 

 

 

1.0 INTRODUCTION 
 

In the face of increasingly prominent traffic 

accidents, road congestion, environmental pollution 

and other issues, autonomous vehicle (AV) 

effectively integrates advanced information 

communication, control, sensor, computer and 

system integration technology used in road 

transportation systems [1-6]. In autonomous vehicle, 

advanced vehicle control and safety systems are 

used to develop various assisted driving techniques 

that assist drivers in controlling vehicles, thereby 

making driving safer and more efficient, such as 

adaptive cruise control system and trajectory 

tracking [3-8]. The adaptive cruise control is mainly 

focused on solving the longitudinal control of the 

vehicle, while trajectory tracking focuses on the 

lateral control of the vehicle to ensure that the 

vehicle travels along the trajectory.  

Common trajectory tracking controllers includes 

geometrical, PID, feedforward-feedback, preview 

tracking optimal and linear quadratic controller [4]. 

In reference [4, 9], a linear quadratic regulator (LQR) 

path tracking controller is obtained based on a 

linearized 2DOF vehicle model, which focuses on 

dynamic modelling and path tracking control of 

autonomous vehicle. 

Previously, large numbers steering control 

strategies in context of trajectory tracking had been 

proposed by researchers. Nevertheless, most of the 

reported works mainly focussed on the speed of 

either a fixed value or within the linear region of 

vehicle dynamic (i.e. low speed manoeuvre) [4, 10]. 

Gaining et al. [2] considering the time-varying 

parameters of vehicle lateral dynamics and 

designed BP neural network-based PID lane keeping 

control algorithm. Amer et al. in [1] consider the 

uncertainty of vehicle model and proposed the 

adaptive steering control algorithm. However, the 

selection of control parameters was fixed with 

respect to the targeted manoeuvre speed and the 

controller performance was assessed at low speed 

scenario. Soualmi et al. [10] studied the velocity 

disturbance in the vehicle driving process and 

studied the fuzzy based on Takagi-Sugeno (T-S) lane 

keeping control rate. Although the algorithm has 

lower requirements on model accuracy, but the 

control accuracy was limited likely due to the trade-

off issue.  

In lateral motion, vehicle lateral dynamics have 

characteristics such as non-linearity, time-varying and 

uncertainty and there are many disturbance factors 

in the vehicle during driving. Vehicle speed variations 

especially at high speed manoeuvre can be 

considered as one of the factors that significantly 

changed the vehicle dynamic behaviour [11]. In 

addition, when an emergency condition occurs, for 

the obstacle avoidance manoeuvre conditions, tyre 

saturation is easily happened. Tyre saturation occurs 

when the lateral tyre forces no longer increases with 
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increasing steering angle. This greatly affects the 

accuracy of tracking [12-13].  

The lateral displacement of the vehicle must be 

adjusted during the control process. It is necessary to 

control the yaw angle, also to smooth the system's 

driving response as much as possible to ensure the 

ride comfort of the vehicle [14]. Model Predictive 

Control (MPC) has good robustness against model 

mismatch, time-varying and uncertainty, and can 

effectively deal with multivariable and system 

constraints [15-21]. 

In Falcone et al. [22], model predictive control 

was implemented to predict an optimal steering 

input for obstacle avoidance task using dSPACE 

rapid prototyping module using both nonlinear MPC 

and linear-time-varying (LTV) MPC. However, the 

implementation of this approach will require high 

computational resources especially in solving the 

optimisation problem in real time. Ref [13-14] 

implemented MPC in autonomous vehicles for 

orchard environment, while Tomatsu et al. [15] 

implemented MPC for path tracking on an excavator 

in digging operation with slow speed. Beal [23] 

applied predictive control models using custom C-

Code tested on autonomous vehicles that can 

solved optimization.  

Moreover, there were several studies that 

discussed solving MPC optimization problems using 

meta-heuristic algorithms [19-20]. Merabti et al. [19] 

discussed three types of metaheuristic optimization 

algorithms to complete optimization of nonlinear 

MPC for control of tracking the mobile robot path. 

Falcone et al. [22] developed MPC combined with 

path planning based on bicycle vehicle model. 

Yakub and Mori [21] developed MPC based on 

Borelli concept combined with feed forward 

controller. However, these studies used trial and error 

methods in determining the MPC controller gain 

value. In addition, the linearization of the dynamic 

model of the vehicle used by the MPC controller is 

carried out at a selected speed.   

In order to address the shortcoming in terms of 

control parameter selection and speed variation 

issues, this paper proposes an adaptive MPC 

controller consist of gain scheduling weighting 

parameters which optimally tuned using meta-

heuristic approach. Here, a PSO algorithm was 

adopted to determine the optimal weighting value 

for MPC controllers. The weighting gain values are 

calculated based on vehicle longitudinal speed. The 

effectiveness of the proposed controller was verified 

by numerical simulation. The adaptive MPC controller 

performance was compared to the conventional 

MPC [21-23] and adaptive Stanley controller [1] in a 

broader speed range.  

The paper is organized as follows: Section 2 

presents the methodology adopted consist of 

sequential description on the non-linear vehicle 

model, controller design. Subsequently, non-linear 

vehicle model and controller design, trajectory 

generation, simulation setup and performance 

evaluation of the proposed controller will be 

discussed in Section 3. Finally, in Section 4 will 

describe the conclusion and description of potential 

future work. 

 

 

2.0 METHODOLOGY 
 

2.1 Non-Linear Vehicle Model  

 

The mathematical modelling of vehicle dynamic 

motion is obtained based on Newton’s 2nd law that 

describes the forces and moments acting on the 

vehicle body and tyres. In this work, a 7DOF non-

linear vehicle model was adopted as the system 

plant as depicted in Figure 1. Here, front wheel steer 

angle δ was adopted as the control input. The 

vehicle parameters lf, lr and tw are distance from front 

and rear axle to centre of gravity (CG) and width 

track the vehicle respectively, v is longitudinal speed 

of the vehicle on centre of gravity. Other vehicle 

parameters are vehicle mass m, moment inertia Iz. 

Longitudinal, lateral and yaw moment dynamic 

motion of the vehicle as shown in Equation 1 [24-32].  

 
Figure 1 The non-linear vehicle dynamic model 
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(1) 

2.2 Tyre Forces 

 

The generated tyre forces longitudinal and lateral 

directions depend on the load transfer of vertical 

direction force at the wheels. The load transfer in 

vertical direction at each wheel was presented by 

two terms of forces that are static and dynamic. The 

static and dynamic forces of the wheel were 

calculated using Equation 2 and Equation 3 

respectively. 
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(3) 

 

Here, Fz0f and Fz0r were static forces at front and 

rear tyres respectively. The dynamics load transfers 

(∆Fzfr, ∆Fzfl, ∆Fzrr, ∆Fzrl) due to longitudinal acceleration 

and lateral acceleration are as described in 

Equation 3. 

On the other hand, the generation longitudinal 

and lateral forces are limited by the friction circle 

concept. This is to make sure the validity of available 

cornering force generated at the tyre model. The 

generation of longitudinal and lateral force are as 

described in Equation 4 and Equation 5 respectively.  
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Where subscript I, Ci, βi, and µ denoted as the 

index of indicating front and rear tyres, cornering 

stiffness, tyres side slip angle and friction coefficient of 

road respectively. 

 

2.3 Vehicle Kinematic Model 

 

Equation 6 described the position of the vehicle 

based on instantaneous velocity and yaw angle with 

respect to global coordinates (X - Y). Here,  is the 

yaw angle of the vehicle, while x and y are the 

longitudinal and lateral velocity of the vehicle 

respectively. 

sin cos

cos sin

X x y

Y x y

 

 

= + 


= − 
 

(6) 

 

2.4 Linearized Vehicle Model for Controller Design 

 

In this work, linearized vehicle dynamic model was 

adopted in order to design the proposed MPC 

controller. Dynamic model as in Equation 1 was 

linearized by assuming a constant vehicle speed and 

a small steering angle. The linearized vehicle model 

can be written as in Equation 7. 

( )v v
b x y

m F F
yryf

I r l F l F
z r yrf yf

+ = +

= −





 (7) 

Here, considering the vehicle has a small steering 

angle, and the tyre slip angle, the lateral tyre force 

can be calculated as in Equation 11. 

F
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F
r r

C
yf

C
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 (8) 

Where Cf and Cr are the front and rear tyre 

cornering stiffness respectively. Whereas 
f

  and 
r

  

are front and rear wheel slip angles which can be 

calculated using Equation 9. 
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 (9) 

Substituting Equation 8 and Equation 9 into 

Equation 7, the linearize model of the vehicle can be 

presented as in Equation 10. 
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2.5 Proposed Control Structure 

 

The proposed control structure is as depicted in 

Figure 2. The aim was to follow the desired trajectory 

as close as possible while avoiding obstacles. The 

desired path was in the form of a lateral position Yref 

and the yaw angle ψref as a function of the 

longitudinal position X. 

 
 

Figure 2 Proposed Control Structure 

 

 

2.5.1 Adaptive Model Predictive Controller 

(Adaptive MPC) 

 

The formulation of adaptive MPC in the state space 

has several advantages. It facilitates the 

representation of multivariable systems and analysis 

of closed loop properties. In this case, the system to 

be controlled can be described by a discrete time 
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invariant linear equation state space model as in 

Equation 11. 

( 1) ( ) ( )

( ) ( )

x k Ax k Bu k

y k Cx k

+ = + 

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 (11) 

Where x is the system state vector, u is the input 

vector, y is the output vector, A is the state matrix, B is 

the input matrix, C is the output matrix. 

The proposed adaptive MPC controller computes 

the front wheel steering angle such that is followed as 

close as possible at a given longitudinal speed. 

Controller gains were computed using Quadratic 

programs (QP) solved using quadratic objective 

functions. Here, the cost function optimization 

combines a set of performance indexes with various 

desired control objectives as written in Equation 12. 
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(12) 

The reference signal, ζref = (Xref, Yref, ψref) represents 

the desired input. The Q, R and S are weighting 

matrices of appropriate dimensions that a weighting 

coefficient that penalizes changes in the error to 

reference and control input. The output response of 

the model will follow the signal set-point when 

applying Q with a value greater than S. Conversely, if 

Q is smaller than S the difference from tracking 

reference to response plant output will rise. The Q, R, 

and S weights can change from one step to the next 

in the prediction horizon. Such a time-varying 

weight is an array containing the prediction 

horizon rows, and other number of outputs variable 

or control input columns. Using time-varying weights 

provides additional tuning possibilities. However, it will 

lead to tuning complexities. Here, PSO algorithm was 

adopted to optimally tune the weighting gains 

based on vehicle speed and the selection 

scheduled. Nevertheless, prediction horizon and 

control horizon were selected by trial and error basis.  

  

2.5.2 Adaptive Mechanism using Weighting Gain 

Scheduling Technique 

 

As reported in [3, 17], for accurate tracking 

performance, the tuning parameters in MPC need to 

be optimized in accordance to the instantaneous 

changes of the vehicle states. This results to 

computational burden of the control system. In this 

work, adaptive strategy with weighting gain 

scheduling was proposed aiming to adjust the tuning 

parameters of the MPC controller automatically to 

cope with the speed variation. Hence, it will reduce 

the effect of computational burden towards the 

control system. Here, PSO algorithm as in Equation 13 

was used to solve the potential optimum solution for 

various manoeuvre speeds.  

In order to generate the optimal weighting gain, 

the fitness function of the PSO as in Equation 14, for 

the path tracking utilized the root mean square (RMS) 

error value of the avoidance trajectory. 
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e t
F
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
=

2

1 2  (14) 

 

The purpose of the proposed adaptive strategy 

was to build knowledge databases that provide 

optimal selection for the MPC controller to decide 

suitable values of controller weights gain parameters. 

The knowledge database should have a complete 

set of weight gain parameters, namely Q1, Q2, and S, 

for each selected manoeuvre speeds. Minimum of 10 

m/s (≈36 km/h) and maximum of 25 m/s (≈90 km/h) 

were selected in this work. The application of PSO in 

this study is similar to previous researches by authors 

[1, 7]. The flowchart of PSO algorithm is as shown in 

Figure 3. Meanwhile, Table 1 and Table 2 shows the 

parameters used for the PSO algorithm and solution 

of optimized weighting gain respectively. Finally, the 

optimal weighting gain will be selected via a look up 

table and fed into MPC control law to produce 

appropriate wheel steering. 

 
 

 
 

Figure 3 PSO algorithm flow 
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Table 1 PSO parameters and MPC setting used in building 

knowledge database 

 
Parameter  Value 

Social coefficient, s  1.42 

Cognitive coefficient, c  1.42 

Inertial weight, iw  0.9 

No. of dimensions, Nd  3 (Q1, Q2 and S) 

Upper bound limit  [10; 10; 10] 

Lower bound limit  [−10; −10; −10] 

No. of particles, Np  25 

No. of iterations, Ni  15 

MPC prediction horizon 10 steps 

MPC control horizon 3 steps 

 
Table 2 Optimized parameters using PSO algorithm 

  

Vehicle Speed 

(m/s) 

Adaptive MPC 

Q1 Q2 S 

10 0.25 0.1 1.00 

12.5 0.25 0.11 1.05 

15 0.25 0.10 1.03 

17.5 0.50 0.12 0.11 

20 1.00 0.23 0.12 

22.5 2.50 0.5 0.10 

25 2.50 0.5 0.11 

 

 

2.6 Adaptive Stanley Controller 

 

In this work, an Adaptive Stanley controller was 

adopted as the benchmark to for performance 

comparison purpose. Generally, a basic Stanley 

controller was presented by Hoffman et al. [27] 

considering two properties the heading error, ϕ and 

the lateral error, e as shown in Equation 15. The 

heading error and the lateral error measured from 

the centre of steering wheel axle to the nearest point 

on trajectory [36].  

( )
k tan

( )

k e t

v t
 

 
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 
 

−
= +

1 2
1  (15) 

In order to have a fair comparison with the 

proposed adaptive MPC controller, the gain of basic 

Stanley control was optimally tuned. Here, PSO 

algorithm was used to determine the optimal gain (k1 

and k2) in Equation 15. The procedure for determining 

the gain value is carried out according to the 

explanation in section 2.5.2 and the optimized value 

of adaptive Stanley gains are as presented in Table 3. 

 
Table 3 Optimized parameters using PSO algorithm  

 

Vehicle Speed 

(m/s) 

Adaptive 

Stanley 

k1 k2 

10 0.05 0.01 

12.5 1.61 0.12 

15 1.54 0.05 

17.5 1.94 0.07 

20 0.59 0.08 

22.5 0.07 0.14 

25 1.18 0.04 

 

 

2.7 Conventional MPC Controller 

 

In this work, a conventional MPC was also being 

developed for performance comparison purposes. 

Here, the nonlinear vehicle model as in Equation (1) 

was linearized at the speed of 10 m/s. Constant 

weighting gains that are; Q1=0.25, Q2=0.1 were used 

in this case. The selected prediction and control 

horizon value were kept at the same value as 

described in Section 2.5.2.  

 

 

3.0 RESULTS AND DISCUSSION 
 

3.1 Trajectory Generation and Simulation Setup 

 

In order to evaluate the performance of the 

proposed controller, double-lane change maneuvers 

performed at several entry speeds had been 

simulated. The adopted generated trajectory 

emulated the scenario of lane change trajectory 

with a single static obstacle avoidance maneuver as 

shown in Figure 4. The desired trajectory was 

described in terms of yaw angle ψref, lateral position 

Yref, parameters z1 and z2 as function of longitudinal 

position X [19, 20]. The generated reference 

trajectory was calculated based on Equation 16 

which adopted from the work presented in [19].  
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 (16) 

The control system was simulated for a various 

initial speed values ranging from 10 m/s to 25 m/s on 

a dry surface road condition. Here, tracking error was 

used to evaluate the tracking performance of the 

vehicle system. All adopted vehicle parameters are 

as tabulated in Table 4. 
 

 
 

Figure 4 Double lane obstacle avoidance scenario 

  
Table 4 Vehicle parameters 

 

Parameter Value 

m 

lf 

lr 

Iz 

Cf 

Cr 

 2032 kg 

1.26 m 

1.90 m 

6286 kg/m2 

40,200 N/rad 

62,800 N/rad 
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3.2 Performance Evaluations 

 

A series of simulations have been conducted to 

evaluate the performance and effectiveness of the 

proposed controller. Here, lateral position and yaw 

angle error were observed between the vehicle and 

the desired trajectory. Hence, performance 

comparison with the adaptive Stanley and 

conventional MPC controller was analysed. Figure 

5(a) and 5(b) shows the results of the vehicle yaw 

tracking using adaptive MPC for velocities of 10 m/s 

and 15 m/s respectively. The results show that the 

vehicle able to perform the tracking task as desired 

although with the presence of negotiable oscillation 

at higher speed value.   

Table 5 summarized the overall results of vehicle 

tracking performance. Three types of controllers were 

compared namely; the Proposed adaptive MPC, 

conventional MPC controller and adaptive Stanley 

controller. Based on Table 5, proposed adaptive 

MPC controller had showed performance superiority 

by its ability to produce lower lateral position and 

compared to the benchmark as well as conventional 

MPC controller. On the other hand, in terms of yaw 

angle error, adaptive Stanley had better 

performance compared to the proposed controller. 

This is due to dominant gain of Adaptive Stanley 

controller control law as in Equation 15 was made up 

mainly to penalize the yaw angle error.  

 

 

  
(a) (b) 

Figure 5 Simulation results: (a) yaw response at vehicle speed of 10 m/s and (b) yaw response at 15 m/s 

 
Table 5 Root mean square error (RMSE) of the yaw and lateral position 

 

 Adaptive MPC controller Conventional MPC controller Adaptive Stanley Controller 

Vehicle speed Yaw Lateral Position Yaw Lateral Position Yaw Lateral Position 

10 m/s 

12.5 m/s 

15 m/s 

17.5 m/s 

20 m/s 

22.5 m/s 

25 m/s 

0.0157 

0.0172 

0.0164 

0.0339 

0.0781 

0.1486 

0.1652 

0.0098 

0.1544 

0.1522 

0.1517 

0.1665 

0.2265 

0.3033 

0.0351 

0.0275 

0.0263 

0.0552 

0.1731 

0.0380 

0.0415 

0.2604 

0.2605 

0.2591 

0.2645 

0.3454 

0.3804 

0.4201 

0.0086 

0.0179 

0.0137 

0.0135 

0.0149 

0.0191 

0.0226 

0.0141 

0.1611 

0.1906 

0.2575 

0.3367 

0.4459 

0.5254 

 

 

Meanwhile, Figure 6 and Figure 7 depicted the 

graphical illustrations of vehicle tracking 

performance of the proposed adaptive MPC 

controller for the speed of 15 m/s and 20 m/s 

respectively. In terms of targeted global position, the 

adaptive MPC controller successfully managed to 

track the desired trajectory especially at the sharp 

cornering region for vehicle speed of 15 m/s. This is as 

shown in Figure 6(a). However, expected, the 

trajectory at higher speed (i.e. 20 m/s), an over-steer 

response was observed at the sharp cornering region 

and fluctuated trajectory response was noticed as 

the vehicle tries to get back to the straight line path 

as shown in Figure 7(a). This was the results of an 

aggressive steering response to cope with the 

extreme nature of the manoeuvre and wheel steer 

constraint as shown in Figure 7(c).  
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(a) (a) 

  

  
(b) (b) 

  
(c) (c) 

Figure 6 Simulation results: (a) Path tracking at vehicle 

speed of 15 m/s (b) lateral and yaw error for 15 m/s 

vehicle speed (c) wheel steering input at 15 m/s vehicle 

speed in double lane change manoeuvre 

Figure 7 Simulation results: (a) Path tracking at speed of 

20 m/s (b) lateral and yaw error for 20 m/s vehicle speed 

(c) wheel steering input at 20 m/s vehicle speed in 

double lane change manoeuvre 

Concurrently, Figure 6(b) and 7(b) show the yaw 

and lateral tracking error with respect to time at 

velocity 15 m/s and 20 m/s. At both velocities, lateral 

tracking error had reached a maximum value of 0.3 

m and 0.5 m respectively. As speed increases, higher 

yaw moment needed to prevent the vehicle from 

being further away from the desired obstacle 

avoidance trajectory. In critical manoeuvres (e.g. 

high speed), improper steering control input will 

cause the vehicle to most likely become unstable. 

The simulation results using the adaptive MPC 

controller better than adaptive Stanley controller and 

standard MPC to follow the trajectory properly in 

vehicle speed of 10 m/s - 25 m/s. As can been seen 

lateral and yaw error on Figure 5 and Table 5 which 

shows that the adaptive MPC controller managed to 

produce lower lateral and yaw error than adaptive 

Stanley controller and standard MPC. Figure 6c and 

7c shows the wheel steering as input control values of 

the adaptive MPC controller. Input control consists 

wheel steering with constraints ± 0.5 rad. 
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Figure 8 Comparison path tracking performance at vehicle 

speed of 17.5 m/s 

 

 

Figure 8 shows a selected comparison of path 

tracking performance for vehicle speed of 17.5 m/s 

using adaptive Stanley, standard MPC and adaptive 

MPC controller. Adaptive MPC controller yielded a 

better result in terms of tracking accuracy than the 

adaptive Stanley and conventional MPC controller. 

This is due to the optimal weighting gain selection, of 

the adaptive MPC controller which further improved 

the lateral error with the capability to compromise 

the trade-off higher yaw angle generation. The 

adaptive MPC with optimal weighting gains can 

perform high entry speeds and thus further improve 

vehicle manoeuvring comparing with other 

controllers. The deviation of yaw angle and lateral 

displacement relative to the reference are added to 

the cost function to reflect the tracking performance. 

At the same time, the control inputs and control input 

increments constraints are applied to prevent 

steering saturation as well. 

 

 

4.0 CONCLUSION 
 

This paper proposed a path tracking controller for 

autonomous vehicle at various speeds to analysis 

performance at avoidance obstacle manoeuvre. 

The proposed adaptive MPC controller using 

weighting gain scheduling had proved to perform 

satisfactory in avoidance obstacle scenario with 

various vehicle speeds. Here, the performance of the 

adaptive MPC controller was verified through 

simulation in MATLAB. 

The proposed control method does not take into 

account the stability response characteristic of the 

vehicle. Moreover, controller performance 

evaluation was only being analysed in simulation 

environment. Therefore, for future works, 

consideration of vehicle stability will be investigated 

to further improve the method and hardware-in-loop 

implementation will be conducted to validate the 

proposed controller. 
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