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ABSTRACT 

AB stacked Bilayer graphene is a material of huge scientific interest due to the 

promise of superior electronic properties even when compared to monolayer graphene 

due to more  orbital overlaps in the x-y plane. In this research the Nearest Neighbor 

Tight-Binding (NNTB) model of AB stacked bilayer graphene will be developed. 

Using this NNTB approximation, a numerical analysis simulator that uses the Non-

Equilibrium Greens Function (NEGF) equations to describe the quantum transport of 

the electrons in the bilayer graphene crystal is built using MATLAB. From this 

numerical analysis simulation, various metrics of interest such as the E-K dispersion 

relation, density of states (DOS) and the transmission coefficients will be obtained for 

each of the specified lattice width and length. Electronic properties of two variants of 

the bilayer graphene are investigated in this simulation, which are the zigzag edge and 

the armchair edge types. The program constructs a fitting device Hamiltonian for the 

NEFG equation from the specified type, width, and length. The NEGF simulation 

obtains the solution for the dispersion relation, DOS and transmission coefficient for 

each of the eigen energies iteratively until the solution converges to a minimum error 

threshold value. The DOS simulation showed there is a huge concentration of quantum 

states in the mid-band for the zigzag edge, and for the armchair edge the number of 

states is the largest at the 1st quartile-band and 3rd quartile-band region. Transmission 

coefficient of both zigzag and armchair edges show similar distribution throughout the 

energy spectrum; however, the coefficients magnitude of the zigzag edge is larger. 

Dispersion relation of zigzag edge showed no bandgap, though the armchair edge 

showed an alternating trend of semiconducting (with bandgap) from the 3n-1 and 3n 

series and metallic (no bandgap) for 3n+1 series in agreement with contemporary 

research. 
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ABSTRAK 

Grafin dua lapis adalah bahan saintific yang amat menarik kerana ianya 

mempunyai janji ciri-ciri electronik yang lebih unggul berbanding grafin satu lapis. 

Topologi yang akan diterokai ialah timbunan AB grafin dua lapis. Hal ini kerana, 

struktur anjakan grafin satu lapis sesama sendiri memberikan lebih banyak pertindihan 

orbital  di satah x-y. Penyelidikan ini akan mengembangkan timbunan grafin dua 

lapis AB mengunakan paradigma ikatan ketat jiran terdekat (NNTB). Mengunakan 

penghampiran NNTB in suatu simulator numerical analysis yang mengunakan 

persamaan fungsi Greens tidak keseimbangan (NEGF) untuk memerihalkan transmisi 

kuantum elektron akan dibina. Simulator ini dibina mengunakan MATLAB sebagai 

bahasa program. Melalui simulasi numerical analysis ini, pelbagai metrik seperti 

hubungan dispersi E-K, ketumpatan keadaan (DOS) diterokai untuk setiap lebar and 

panjangan. Sifat elektronik bagi dua variasi grafin dua lapis yang akan diterokai dalam 

simulasi ini adalah bagi hujungan zigzag and hujungan kerusi berlengan. Program ini 

akan membina Hamiltonian peranti yang sesuai untuk setiap variasi, lebar and panjang. 

Simulasi NEGF memberi penyelesaian untuk dispersi E-K, DOS, dan pekali transmisi 

untuk setiap tenaga eigen untuk setiap iterasi sehingga penyelesaian bertumpu dengan 

nilai ralat yang minima. Simulasi DOS menunjukkan bahawa terdapat banyak 

konsentrasi keadaan kuantum di jalur tengah untuk hujungan zigzag, dan bagi 

hujungan kerusi berlengan bilangan keadaan kuantum yang paling banyak adalah di 

kuartil 1 dan 3. Pekali transmisi bagi hujungan zigzag dan kerusi berlengan 

menujukkan distribusi yang sama, tapi nilai pekali bagi hujungan zigzag adalah lebih 

besar. Dispersi E-K bagi hujungan zigzag tidak mempunyai jurang band tetapi 

hujungan kerusi berlengan menujukan arah aliran yang berayun antara aliran yang 

semikonduktor dan berlogam. Keputusan ini adalah sama dengan keputusan kajian di 

jurnal saintifik. 
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CHAPTER 1  
 

 

INTRODUCTION 

 Introduction 

Silicon based devices are found to be too slow and power hungry, hence a new 

novel material is proposed to overcome these hurdles, which is the AB stacked Bilayer 

Graphene. Monolayer Graphene has superior electronic properties and is already been 

extensively explored. Now the electronic transport properties of AB stacked Bilayer 

Graphene is explored. If AB stacked Bilayer Graphene properties are found to be 

exceptional, this will open the doors to faster, and less power-hungry devices to power 

our future. 

 Objectives 

The objective of this project can be split into 3 main components, the first is to 

produce the equations for the  electron – electron interactions of the bilayer graphene 

unit cells and neighbouring unit cells using nearest neighbour tight binding model in 

the form of the Hamiltonian, alpha and beta matrices. Then these matrices are used to 

form the NEGF numerical method equations to build the bilayer graphene simulator 

to yield the dispersion relation, and other electron wave properties of bilayer graphene. 

Once the simulation profile is obtained the simulation results such as the dispersion 

relation, DOS, transmission coefficients are then benchmarked against other published 

observation or other simulation runs that are found in the literature as validation. 
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 Research Scope 

The research is to explore the electronics properties of AB stacked bilayer 

graphene that emerges from this quantum systems geometric interactions of the  

bonds of neighbouring electrons, by creating a device modelling framework via 

numerical analysis simulation. The smallest unit cell of the AB stacked bilayer 

graphene ribbons dimensions will be 3-unit cell in length (source, channel and drain) 

and 16 (8 top and 8 bottom layer) carbon atoms wide in a zig – zag topology. The 

electronic properties of interest are the E-K dispersion relation, density of states, and 

transmission coefficient. The device modelling framework will be formalized in the 

Non-Equilibrium Greens Function (NEGF) numerical method, which will be coded in 

MATLAB.  

 Research Contribution 

Most of the contemporary quantum simulation is done on the electron transport 

properties of monolayer graphene, however not much simulation research is done on 

bilayer graphene. Hence this project serves to develop a numerical analysis simulation 

framework from first principles from the ground up, starting by creating a quantum 

mechanical model, which is described in the NEGF numerical method and coded in a 

programming language of choice. This code in this project is implemented in 

MATLAB, because it’s a powerful matrix operations tool with good visualization 

framework to plot the relations and simulation results. The simulator that is being 

developed in this project is a more cost-effective alternative to more commercial 

software tools such as Quantum Wise Virtual Nano Lab or Synopsys Quantum ATK 

albeit with lower functionality. This work will make it easier for future readers to build 

quantum device simulators, as the NEGF analytical method is the foundation of most 

of the quantum transport in device simulation engines. 
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