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ABSTRACT 

Continuous scaling and performance optimization on transistors, the basic building 

blocks for every electronic devices are highly anticipated to fulfil the rocketing 

technology. By 2021, the transistors were manufactured with 5nm-scale technology 

by a numbers of chip manufacturer, this significantly increase the number of transistor 

per area in a chip. In the future, 3nm and 1nm technology will be discovered. The 

continuous size shrinking will impact the performance degradation on the conventional 

metal-oxide semiconductor field-effect transistors (MOSFETs). The International 

Roadmap Device Semiconductor (IRDS) have several alternative materials such as 

silicon nanowire, carbon nanotube (CNT), graphene, graphene nanoribbon (GNR) to 

continue the journey of continuous scaling. Apart from that, the advance device 

architecture such as FinFET, Multiple gate MOSFET, Gate-all-around FET, Vertical 

MOSFET, SOI MOSFET also been introduced. The aim of this work is to design a 

priority encoder by adopting GNRFETs-based model and FinFET CMOS-based 

model. Performance on propagation delay, average power, power-delay product (PDP) 

and energy delay product (EDP) were evaluated between these two models. The 

designed priority encoder was then implemented into a flash analog to digital converter 

to evaluate its functionality. All designs and performance evaluations was carried out 

by using HSPICE simulation software. Through simulation, it is found that the flash 

analog to digital converter behave accordingly when the GNRFETs-based priority 

encoder is applied. In addition, the propagation delay exhibit 61% improvement 

compared to FinFET CMOS counterpart. In terms of PDP and EDP exhibit 57% and 

83% improvement respectively. The outcome of this study is intriguing and can be 

further implement to other application.  
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ABSTRAK 

Pengurangan size dan pengoptimuman prestasi yang berterusan pada transistor, blok 

asas bagi setiap peranti elektronik sangat dinantikan untuk memenuhi teknologi 

meningkat dengan pantas. Menjelang 2021, transistor dapat dihasilkan dengan 

teknologi 5nm oleh pelbagai pembuat. Oleh  itu, bilangan transistor setiap chip 

meningkat secara ketara. Pada masa akan datang, teknologi 3nm dan 1nm akan 

ditemui. Pengecutan saiz berterusan akan mempengaruhi penurunan prestasi dan 

menghadapi halangan yang berterusan pada MOSFETs. IRDS mempunyai beberapa 

bahan alternatif seperti nanowire silikon, nanotube karbon nanotube (CNT), graphene, 

graphene nanoribbon (GNR) untuk meneruskan penyelidikan penskalaan yang 

berterusan. Selain itu, seni bina peranti canggih seperti FinFET, Multiple gate 

MOSFET, Gate-all-around FET, Vertical MOSFET, SOI MOSFET juga 

diperkenalkan. Matlamat kerja penyelidikan ini adalah untuk merancang pengekod 

prioriti dengan menggunakan model berasaskan GNRFETs dan model berasaskan 

CMOS FinFET. Prestasi kelajuan penghantaran data , penggunaan kuasa, PDP dan 

EDP akan dinilai antara kedua-dua model ini. Pengekod prioriti yang dirancang telah 

diaplikasi ke dalam litar penukar analog ke digital untuk penilaian fungsi. Semua reka 

bentuk dan penilaian prestasi telah dilakukan dengan menggunakan perisian simulasi 

HSPICE. Melalui simulasi, didapati bahawa penukar analog ke digital berfungsi 

dengan sewajarnta apabila penekod prioriti berasaskan model GNRFETs 

diaplikasikan. Di samping itu, prestasi kelajuan penghantaran data mempamerkan 

peningkatan sebanyak 61% berbanding dengan model FinFET. Dari segi PDP dan 

EDP, masing-masing menunjukkan peningkatan sebanyak 57% dan 83%. Hasil Kajian 

ini didapati menarik dan boleh diimplementasikan selanjutnya kepada aplikasi lain   
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Problem Background 

Moore’s Law refers to the number of transistors on a single integrated circuit 

(IC) doubles approximately every two years. The number of transistors of a single 

IC in 1970 was around 2000. While this number was grown up to 10 billion when 

approaching the year of 2020 [1]. The speedy ramping up of technology in the past 

decades increase the demand of the electronic devices drastically. Optimization on 

these electronic devices in terms of power, speed, and size always the most trending 

research directions to fulfil the needs of societies. Silicon has been widely used in 

semiconductor fabrication due to its stability, low cost and some unique 

characteristics. However the further optimization and miniaturization on the 

silicon-based electronic devices have led to some performances degradation in the 

Beyond Moore era. One of the main challenge on producing more competitive 

devices in the aspects of power, speed and size is the short channel effect in the 

silicon MOSFET. Short channel effect is the scenario that happened when the 

channel length is smaller than the sum of source and drain depletion region. The 

side effect including instability of the threshold voltage. The instability of the 

threshold voltage will impact the performance of transistor when doing the 

switching activities. 

Other than the conventional MOSFET, there are also some other advanced 

device architectures been introduced, such as, FinFET, Multiple Gate MOSFET, 

Gate-all-around FET, Vertical MOSFET, Silicon-on-Insulator MOSFET and etc. 

All of the advance architectures are trying to resolving the issue faced during 

miniaturization of MOSFET.  
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The key aim is still to achieve a smaller in scale and higher performance device 

in future. This is to fulfil the speedy digitalization of the current world and future. 

These high speed devices took a very important role in telecommunication, Internet 

of things and etc.  A borderless world that allowing individuals to access or share 

information between each other can be achieve with all of this aid. 

 

Figure 1.1: More Moore trend, Beyond CMOS and Applications [2]. 

1.2 Problem Statement 

Silicon as the main semiconductors raw materials has led to some performance 

degradation in the Beyond Moore era. Power consumption of electronics devices 

been increased in this era of digitalization, to cope with variety of functions and 

capabilities per user’s needs. Demand on data transmission speed between 

electronics devices in analog or digital format been surged to handle massive of 

data in recent years.  The research questions are: 

 

• How much of the speed improvement in terms of propagation delay of 

GNRFETs-based priority encoder compare to Silicon FinFET-based priority 

encoder? 

• How much of the power improvement of GNRFETs-based priority encoder 

compare to Silicon FinFET-based priority encoder? 

• How does a GNRFETs-based priority encoder impact the functionality of a 

Flash ADC? 
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1.3 Research Objectives 

This research focus on the utilization design on transistor level circuit, 

functional simulations and performance evaluations. The objectives are: 

• To design a priority encoder based on graphene nanomaterial. 

• To test the functionality of the graphene-based encoder in analog to digital 

converter. 

• To benchmark the performance of 16nm GNRFETs-based ADC with 16nm 

Silicon FinFET-based ADC. 

 

 

1.4 Project Scope 

HSPICE simulator will be used for functional simulation and performance 

evaluation of the designed circuit. The SPICE model for 16nm Silicon FinFET is 

adopted from Predictive Technology Model (PTM) [3]. While the SPICE model for 

16nm GNRFETs is adopted from Chen et. al [4]. The designed priority encoder will 

apply to Flash ADC circuit to verify its functionality. The figure of merit in this 

project include propagation delay, average power consumption, power delay 

product (PDP), energy-delay product (EDP). This study did not consider the effect 

of interconnect. 
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