ARC FLASH ANALYSIS ON KIMANIS POWER PLANT SWITCHGEARS BASED ON IEEE 1584 STANDARD

OLIVIA EYVONNIE GEOFFREY

A project report submitted in fulfilment of the requirements for the award of the degree of Master of Engineering (Electrical Power)

> School of Electrical Engineering Faculty of Engineering Universiti Teknologi Malaysia

> > FEBRUARY 2022

DEDICATION

This thesis is dedicated to my father, who taught me that the best kind of knowledge to have is that which is learned for its own sake. It is also dedicated to my mother, who showed me that even the most difficult endeavour can be completed if approached in small steps. Last but not least, to my lovely husband, daughter, my unborn child, and my siblings, who have been my rock throughout my academic path, encouraging me to persevere despite the many challenges I have encountered and bringing proud smiles to their faces.

ACKNOWLEDGEMENT

It is a genuine pleasure to express my deep sense of thanks and gratitude to my supervisor Ts. Dr Noor Azlinda binti Ahmad. Her dedication and keen interest above all their overwhelming attitude to help their students had been solely and mainly responsible for completing my thesis. Their timely advice, scholarly advice and scientific approach have helped me to a very good extent to accomplish my thesis writing.

I also would like to extend my thankfulness to the most precious persons in my life, my beloved father, mother, and husband for all their moral support, words of encouragement, prayers and financial support and always there for me. I also owe a deep sense of gratitude to my dear friends and colleagues for their keen interest on me at every stage of my research. Their prompt inspirations, timely suggestions with kindness, enthusiasm and dynamism have enabled me to complete my work. Not forgetting a big appreciation to Universiti Teknologi Malaysia (UTM) for giving me a golden opportunity to gain new knowledge in my Master Research. My sincere appreciation also extends to all my colleagues and others who have provided assistance at various occasions. Their views and tips are useful indeed. Unfortunately, it is not possible to list all of them in this limited space. I am grateful to all my family member.

ABSTRACT

An arc flash radiates energy that can seriously burn the skin and clothing and even can lead to death. In most protection systems, the fault clearance times are based on bolted short circuit currents. In the event of an arcing fault, the lower fault current may result in a longer fault clearance time. In some cases, this may result in an increase in the fault energy, which will pose a greater risk to personnel. In many facilities, most of the equipment will have a Category 1 or 2 PPE rating. Equipment that requires Category 3 or 4 would not be able to be identified until an arc flash analysis is completed. Hence in this study, arc flash analysis is done based on the IEEE 1584 Standard by using a short-circuit analysis. Studies of normal and abnormal operations are carried out to simulate maximum and minimum fault conditions. This analysis is performed using ETAP ArcSafety - AC Arc Flash simulation software. With the shortcircuit calculation and arc flash analysis done, the correct category rating of arc flash rated PPE according to the NFPA 70E clothing standard were able to be determined and other mitigation measures where necessary were recommended.

ABSTRAK

Kilat arka memancarkan tenaga yang boleh membakar kulit dan pakaian dengan serius dan juga boleh membunuh. Dalam kebanyakan sistem perlindungan, masa pelepasan ralat adalah berdasarkan arus litar pintas yang dibolt. Sekiranya berlaku keralatan arka, arus ralat yang lebih rendah boleh menyebabkan masa pelepasan ralat yang lebih lama. Dalam sesetengah kes, ini boleh menyebabkan peningkatan tenaga ralat, yang akan menimbulkan risiko yang lebih besar kepada pekerja. Dalam kebanyakn industri elektrik, kebanyakan peralatan akan mempunyai penarafan alat perlindungan perseorangan Kategori 1 atau 2. Peralatan yang memerlukan Kategori 3 atau 4 tidak akan dapat dikenalpasti sehingga analisis kilat arka diselesaikan. Oleh itu, dalam kajian ini, analisis kilat arka dilakukan berdasarkan piawaian IEEE 1584 dengan menggunakan analisis litar pintas. Kajian operasi biasa dan tidak normal dijalankan untuk mensimulasikan keadaan ralat maksimum dan minimum. Analisis ini dilakukan menggunakan perisian simulasi ETAP ArcSafety -AC Arc Flash. Dengan pengiraan litar pintas dan analisis kilat arka yang dilakukan, penarafan kategori alat perlindungan perseorangan yang betul mengikut piawaian pakaian NFPA 70E dapat ditentukan dan langkah-langkah pencegahan lain di mana dapat disyorkan.

TABLE OF CONTENTS

TITLE

DEC	LARATION	iii
DED	ICATION	iv
ACK	NOWLEDGEMENT	\mathbf{v}
ABS	ГКАСТ	vi
ABS	ГКАК	vii
TAB	LE OF CONTENTS	viii
LIST	COF TABLES	xii
LIST	OF FIGURES	xiii
LIST	XV	
LIST	COF SYMBOLS	xvi
LIST	COF APPENDICES	xvii
CHAPTER 1	INTRODUCTION	19
1.1	Overview of Arc Flash Analysis	19

1.2	Problem Background	
1.3	Problem Statement	20
1.4	Research Goal	20
	1.4.1 Research Objectives	20
	1.4.2 Research Scope of Work	20
1.5	Chapter Summary	21
CHAPTER 2	LITERATURE REVIEW	22
CHAPTER 2 2.1	LITERATURE REVIEW Introduction	22 22
-		
2.1	Introduction	22
2.1	Introduction Arc Flash	22 22

2.4	Short-	Circuits	27
2.5	Incide	nt Energy	28
2.6	Worki	ng Distance and Arc Flash Boundary	30
2.7	Arc Ra	ated Personal Protective Equipment (PPE)	31
2.8	Chapte	er Summary	32
CHAPTER 3	RESE	ARCH METHODOLOGY	33
3.1	Introdu	uction	33
3.2	Data A	Acquisition	34
	3.2.1	Electrical System	34
	3.2.2	Transformer Ratings	37
	3.2.3	Kimanis Power Plant Overall Single Line Diagram	38
3.3	Data V	Verification	39
	3.3.1	IEEE 1584 formulas	39
		3.3.1.1 Arc Flash Current (Ia) Calculations	39
		3.3.1.2 Incident Energy (E) Calculations	40
		3.3.1.3 Arc Flash Protection Boundary (D _B) Calculations	41
3.4	ETAP setting	ArcSafety - AC Arc Flash simulation software	42
	3.4.1	Kimanis Power Plant High Voltage 275 kV GTG & STG Open Air Line to Main Utility Grid Busbar	43
	3.4.2	ETAP Setting for 275 kV High Voltage Busbar	
			44
	3.4.3	Kimanis Power Plant 11.5 kV High Voltage Generator Main Circuit Breaker Switchgear	45
	3.4.4	ETAP Setting for 11.5 kV High Voltage Switchgear	46
	3.4.5	Kimanis Power Plant 6.6 kV Medium Voltage Switchgear	47
	3.4.6	ETAP Setting for 6.6 kV Medium Voltage Switchgear	48
	3.4.7	Kimanis Power Plant 0.415 kV Low Voltage Switchgear	49

	3.4.8	ETAP Setting for 0.415 kV Low Voltage Switchgear	50
	3.4.9	Kimanis Power Plant 0.415 kV Low Voltage Panel Board	51
	3.4.10	ETAP Setting for 0.415 kV Low Voltage Panel Board	52
	3.4.11	ETAP Arc Flash Simulation Setting – Faulted Busses and Calculation Method Settings	53
	3.4.12	ETAP Arc Flash Simulation Setting – Bus Gap & Working Distance Analysis Method and Incident Energy Standard Settings	54
3.5	Simul	ation of Normal and Abnormal Operation	55
3.6	Chapt	er Summary	55
CHAPTER 4	RESU	JLTS & ANALYSIS	56
4.1	Simul	ation Results	56
4.2	Result	esults Acquisition	
	4.2.1	Scenario 1 - Normal Operation @ Minimum Fault	57
		4.2.1.1 Scenario 1 of Generating Block 1	57
		4.2.1.2 Scenario 1 of Generating Block 2	59
		4.2.1.3 Scenario 1 of Generating Block 3	62
		4.2.1.4 Scenario 1 of Balance of Plant	65
	4.2.2	Scenario 2 - MV Abnormal Operation @ Maximum Fault at MV busbar	67
	4.2.3	Scenario 3 - LV Abnormal Operation @ Maximum Fault at LV busbar	68
4.3	Result	s Analysis & Discussion	69
	4.3.1	Scenario 1 - Normal Operation @ Minimum Fault	69
	4.3.2	Scenario 2 - MV Abnormal Operation @ Maximum Fault at MV busbar	71
	4.3.3	Scenario 3 - LV Abnormal Operation @ Maximum Fault at LV busbar	72
4.4	Chapt	er Summary	73

CHAPTER 5	CONCLUSION AND RECOMMENDATIONS	75
5.1	Research Outcomes	75
	5.1.1 PPE Selections	76
	5.1.2 Warning Labels	77
5.2	Recommendations	77
5.3	Contributions to Knowledge	78
5.4	Future Works	78
5.5	Chapter Summary	78
REFERENCES		79
Appendices A - H	3	81 - 82

LIST OF TABLES

TABLE NO.	TITLE	PAGE	
Table 3.1	Summary of the research methodologies	33	
Table 3.2	Summary of transformer data ratings	37	
Table 3.3	Conditions for IEEE 1584 formulas is valid	39	
Table 3.4	Normal and abnormal operation scenarios for the simulation of minimum and maximum fault conditions	55	
Table 4.1	Summary of category rating for Kimanis Power Plant switchgears	69	
Table 4.2	Before accidentally closed MV busbar circuit breakers between SGM-TG2 & SGM-TG3.	71	
Table 4.3	After accidentally closed MV busbar circuit breakers between SGM-TG2 & SGM-TG3.	71	
Table 4.4	Before accidentally closed LV busbar circuit breakers between SGL-TG 2 A & B and SGL-TG 3 A & B.	72	
Table 4.5	After accidentally closed LV busbar circuit breakers between SGL-TG 2 A & B and SGL-TG 3 A & B.	72	

LIST OF FIGURES

FIGURE NO). TITLE	PAGE
Figure 2.1	Arc flash generating a fire blast from a switchgear [9]	22
Figure 2.2	Illustration of what happened during an arc flash [15]	23
Figure 2.3	Damages to equipment due to arc flash [20]	24
Figure 2.4	Severe injuries due to arc flash [20]	24
Figure 2.5	Bolted Short Circuit and Arcing Short Circuit [15]	28
Figure 2.6	Example of Bolted Short Circuit and Arcing Short Circuit [17]	28
Figure 2.7	First-, Second- and Third-Degree Burn [20]	29
Figure 2.8	Illustration of Working Distance and Arc Flash Boundary [5]	30
Figure 2.9	Arc-rated suit based on NFPA 70E clothing standard [12]	31
Figure 3.1	Kimanis Power Plant Overall Single Line Diagram	38
Figure 3.2	Kimanis Power Plant 275 kV GTG (left) and 275kV STG (right) open air line to main utility grid busbar	43
Figure 3.3	275 kV high voltage busbar nominal voltage, equipment enclosure type, and calculations method settings	44
Figure 3.4	Kimanis Power Plant 11 kV generator main circuit breaker switchgear	45
Figure 3.5	11.5 kV high voltage switchgear nominal voltage, equipment enclosure type, and calculations method settings	
		46
Figure 3.6	Kimanis Power Plant 6.6 kV medium voltage switchgear	47
Figure 3.7	6.6 kV medium voltage switchgear nominal voltage, equipment enclosure type, and calculations method settings	48
Figure 3.8	Kimanis Power Plant 0.415 kV low voltage switchgear	49
Figure 3.9	0.415 kV low voltage switchgear nominal voltage,	
C	equipment enclosure type, and calculations method settings	50
Figure 3.10	Kimanis Power Plant 0.415 kV low voltage panel board	51

Figure 3.11	0.415 kV low voltage panel board nominal voltage, equipment enclosure type, and calculations method settings	52
Figure 3.12	Placing all possible bus at fault to simulate minimum fault and selecting IEEE 1584-2018 as calculations method settings	53
Figure 3.13	Selection of IEEE 1584-2018 as Bus Gap & Working Distance analysis method and NFPA 70E as Incident Energy standard level	54
Figure 4.1	275 kV, Generating Block 1 11 kV, and SGM 6.6 kV Switchgear	57
Figure 4.2	Generating Block 1 0.415 kV Low Voltage Switchgear	58
Figure 4.3	Generating Block 1 Low Voltage Panel Board	59
Figure 4.4	Generating Block 2 11 kV, and SGM 6.6 kV Switchgear	59
Figure 4.5	Generating Block 2 0.415 kV Low Voltage Switchgear	60
Figure 4.6	Generating Block 2 Low Voltage Panel Board	61
Figure 4.7	Generating Block 3 11 kV, and SGM 6.6 kV Switchgear	62
Figure 4.8	Generating Block 3 0.415 kV Low Voltage Switchgear	63
Figure 4.9	Generating Block 3 Low Voltage Panel Board	64
Figure 4.10	BOP 0.415 kV Low Voltage Switchgear	65
Figure 4.11	BOP Low Voltage Panel Board	66
Figure 4.12	Before accidentally closed MV busbar circuit breakers between SGM-TG2 & SGM-TG3	67
Figure 4.13	After accidentally closed MV busbar circuit breakers between SGM-TG2 & SGM-TG3	67
Figure 4.14	Before accidentally closed LV busbar circuit breakers between SGL-TG 2 A & B and SGL-TG 3 A & B	68
Figure 4.15	After accidentally closed LV busbar circuit breakers between SGL-TG 2 A & B and SGL-TG 3 A & B	68
Figure 5.1	Selected arc-rated suit based on NFPA 70E clothing standard [12]	76
Figure 5.2	Printable warning labels from ETAP software	77

LIST OF ABBREVIATIONS

SC	-	Short Circuit
AR	-	Arc Rated
PPE	-	Personal Protective Equipment
AC	-	Alternating Current
IEEE	-	Institute of Electrical and Electronics Engineers
IE	-	Incident Energy
WD	-	Working Distance
3 Phase	-	Three Phase
OSHA	-	Occupational Safety and Health Administration
NFPA	-	National Fire Protection Association
AFHCS	-	Arc Flash Hazard Calculation Research
FR	-	Flame Resistant
ETAP	-	Electrical Transient Analyzer Program
KPP	-	Kimanis Power Plant
KPSB	-	Kimanis Power Sdn Bhd
GB	-	Generating Block
GTG	-	Gas Turbine Generator
STG	-	Steam Turbine Generator
BOP	-	Balance of Plant
MV	-	Medium Voltage
LV	-	Low Voltage
IAC	-	Internal Arc Classification
GIS	-	Gas-insulated Switchgear
RMU	-	Ring Main Unit
MCC	-	Motor Control Centre

LIST OF SYMBOLS

Ia	-	Short Circuit Current or Arcing Current
Ibf	-	Bolted Fault Current
Κ	-	Constant
Log	-	Log 10
V	-	Voltage
G	-	Gap of Conductors
E	-	Incident Energy
Cf	-	Calculation Factor
En	-	Incident Energy Normalised
t	-	Arcing Time
D	-	Distance from the Possible Arc Point
Х	-	Distance Factor
D	-	Distance of the Boundary from the Arcing Point
EB	-	Incident Energy at the Boundary Distance
dB	-	Decibel
Cal/cm ²	-	Calories per Centimetre Squared
J/cm ²	-	Joules per Square Centimetre
М	-	Metre
kV	-	Kilo Voltage
kA	-	Kilo Ampere
mm	-	Millimetre
Hz	-	Hertz Frequency

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix A	Constructed Diagram in Simulation Software	81
Appendix B	Complete Results for Scenario 1	82

CHAPTER 1

INTRODUCTION

1.1 Overview of Arc Flash Analysis

Since the early 1960s, researchers have been investigating the causes and prevention of electrical arcs. Engineering design, equipment enclosure construction, structural protection changes, and, more recently, mandates for employee safe work practises have all targeted the threats of electrical arc hazards. Despite this, arcs and explosions continue to occur in electrical systems. The unforeseen release of explosive electrical energy in the workplace is caused by both human factors and equipment failures.

When working personnel are exposed to energized equipment or conductors, arc flash can happen, and the possibility to have a fatality incident is very high. Arcing fault can even occur while remotely switching and without involving any personnel. Therefore, calculation of incident energy is very important to determine the correct arc flash Personal Protective Equipment (PPE) category. With the correct PPE category, it may reduce the thermal effect towards personnel when arc flash happened and might be able to prevent fatality incidents.

1.2 Problem Background

An arc flash radiates energy that can seriously burn the skin and clothing and even can kill. There is a need to look specifically into the condition of arcing fault current. In most protection systems, the fault clearance times are based on bolted short circuit currents. In the event of an arcing fault, the lower fault current may result in a longer fault clearance time. In some cases, this may result in an increase in the fault energy, which will pose a greater risk to personnel.

1.3 Problem Statement

An arc flash rated clothing is needed to protect workers from an arc flash but purchasing the wrong clothing before an arc flash analysis can be dangerous and expensive. These types of personal protective equipment (PPE) clothing can offer protection to electrical workers to perform switching activities. Most of the equipment in the facilities will only have Category 1 or 2 PPE rating. However, equipment that requires Category 3 or 4 will only be able to be identified until an arc flash analysis is conducted.

1.4 Research Goal

1.4.1 Research Objectives

The objectives of the research are:

- (a) To carry out studies of normal and abnormal operation scenarios to simulate maximum and minimum fault conditions.
- (b) To calculate the incident energy released in an arcing fault and the acceptable arc flash boundary using the IEEE 1584 Standard.
- (c) To determine the correct category rating arc flash rated PPE required to be worn for personnel safety against the thermal effects of electrical arcs.

1.4.2 Research Scope of Work

The scopes of work are:

(a) The approach and calculation of the analysis are based on the IEEE 1584
 Standard "Guide for Performing Arc-Flash Hazard Calculations".

- (b) The calculation is limit to a 3-phase (line-to-line) AC system.
- (c) The selection of arc flash rated PPE according to the NFPA 70E standard.

1.5 Chapter Summary

This chapter concludes the overall overview of this project report. Throughout this thesis, all considerations, calculations, scopes, and method are based on what have been mentioned in this chapter 1.

REFERENCES

- "General Industry; safety standards for electrical systems and safety-related work practices, Occupational Safety and Health Administration (OSHA) Standards", "Title 29 of the Code of Federal Regulations (29 CFR). Part 1910".
- [2] R. Lee, "The Other Electrical Hazard: Electrical Arc Blast Burns", *IEEE Transactions on Industry Applications*, vol. IA-18, no. 3, pp. 246-251, May/June 1982.
- [3] A. D. Stokes and D. K. Sweeting, "Electric Arcing Burn Hazards", *IEEE Transactions on Industry Applications*, vol. 42, no. 1, pp. 134-141, Jan/Feb 2006.
- [4] A. D. Stokes and D. K. Sweeting, "Closure to Discussions of "Electric Arcing Burn Hazards", *IEEE Transactions on Industry Applications*, vol. 42, no. 1, pp. 146-147, Jan/Feb 2006.
- [5] T. L. Gammon and J. H. Matthews, "IEEE 1584-2002 Incident Energy Factors and Simple 480-V Incident Energy Equations", *IEEE Industry Applications Magazine*, vol. 11, no. 1, pp. 0023-31, Jan/Feb 2005.
- [6] R. L. Doughty, T. E. Neal, and H. L. Floyd, "Predicting Incident Energy to Better Manage the Electric Arc Hazard on 600 V Power Distribution Systems", *IEEE Transactions on Industry Applications*, vol. 36, no. 1, pp. 257-269, Jan/Feb 2000.
- [7] "NFPA 70E-2004, Standard for Electrical Safety in the Workplace, National Fire Protection Association".
- [8] IEEE 1584-2002 IEEE Guide for Performing Arc-Flash Hazard Calculations. IEEE, New York. NY.
- [9] Lang, M.; Jones, K, "Exposed to the Arc Flash Hazard," in Industry Applications, IEEE Transactions on, vol.51, no. l, pp.51-61, Jan.-Feb. 2015
- [10] Wei-Jen Lee; Gammon, T.; Zhenyuan Zhang; Johnson, B.; Vogel, S., "IEEE/NFPA Collaboration on Arc Flash Phenomena Research Project," in Power and Energy Magazine, IEEE, vol. 10, no.2, pp.116-123, MARCWAPRIL 2012

- [11] Hoagland, H., "Arc-Flash PPE Research Update," in Industry Applications, IEEE Transactions on, vol.49, no.3, pp. II77-1187, MayJune 2013
- [12] R. L. Doughty, T. E. Neal, T. A. Dear, and A. H. Bingham, "Testing Update on Protective Clothing and Equipment for Electric Arc Exposure", *IEEE PC/C Conference Record*, pp. 323-336, 1997.
- [13] IEEE 1584a-2004 IEEE Guide for Performing Arc-Flash Hazard Calculations-Amendment 1. IEEE, New York. NY.
- [14] Cooper Bussmann (Eaton), Total Clearing Time-Current Characteristic Curves for LPS-RK Low Peak (RK1) Fuses, no 307-2 rev B, 10-24-00, ECN A00151.
- [15] J.R. Dunki-Jacobs, "The Escalating Arcing Ground-Fault Phenomenon," *IEEE Transactions on Industry Applications*, vol IA-22, pp 1156-1161, Nov/Dec 1986.
- [16] Cooper Bussmann (Eaton), Max. Clearing Time-Current Characteristic Curves for KRP-C 601SP to 6000SP Fusible Links, no 263 rev A, 5-18-01, ECN A01062.
- [17] R. L. Doughty, T. E. Neal, T. L. Macalady, V Saporita and K. Borgwald, "The Use of Low-Voltage Current Limiting Fuses to Reduce Arc-Flash Energy", IEEE Transactions on Industry Applications, vol. 36, no. 6, pp. 1741-1749, Nov/Dec 2000.
- [18] Hadi Saadat, "Power System Analysis", McGraw Hill, USA. Third Edition. 2002.
- [19] R. A. Jones, D. P. Liggett, M. Capelli-Schellpfeffer, T. Macalady, L. F. Saunders, R. E. Downey, L. B. McClung, A. Smith, S. Jamil, and V. J. Saporita, "Staged Tests to Increase Awareness of Arc-Flash Hazards in Electrical Equipment," IEEE Transactions on Industry Applications, vol 36, No. 2, March/April 2000, pp. 659-667.
- [20] G.-R. Yan, M. Li, and Y. Wu, "A clinical analysis of 836 cases with electrical injury", Ann. New York Acad. Sci., vol. 888, pp. 88-99, Oct. 1999.
- [21] Bureau of United States Labour Statistics