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ABSTRACT 

Cardiovascular disease is the leading cause of death worldwide, where the 

damage of cardiac tissues is one of its major effects. Current synthetic graft scaffolds 

to repair and replace cardiac tissues have limitations to cover small blood vessels and 

have compliance mismatch which later contribute to scaffold failure. Therefore, the 

incorporation of natural polymers, such as elastin and chitosan, into a synthetic 

electrospun polymer of polyurethane (PU) is necessary to overcome these 

complications. Natural polymers such as chitosan and its derivatives are beneficial for 

wound healing while elastin has shown a successful approach in providing viscoelastic 

properties. Polyurethane is a synthetic polymer which is commonly used as a substitute 

of cardiovascular soft tissues due to its biocompatibility, elasticity and mechanical 

properties. In this study, PU was blended with chitosan nanoparticles and elastin at 

different elastin concentrations (1% and 1.5%) to be electrospun to form mat fiber 

scaffolds. The formation of chitosan nanoparticles was verified by using ultraviolet-

visible (UV-Vis) spectrophotometer at an absorption peak of 290 nm. The physico-

chemical properties of the electrospun PU incorporated with chitosan/elastin were 

investigated through scanning electron microscopy (SEM), Fourier transform infrared 

spectroscopy (FTIR) and contact angle measurement. The SEM images were also 

subjected to fiber diameter, pore size and porosity analyses. The PU incorporated with 

chitosan/elastin nanofibers were homogenously electrospun with less beads at the flow 

rate of 0.5 mL/h and 12 kV voltage using 21-G stainless steel needle. The incorporation 

of chitosan and 1% elastin have increased the fiber diameter by 73.03%, the pore size 

by 21.05% and the porosity by 14.54% compared to the pure PU. The functional 

groups of chitosan and elastin (N–H and C–N) were presented in the FTIR spectral 

peaks. While the wettability of PU nanofibers incorporated with chitosan/elastin was 

increased by 22.53% compared to the PU nanofibers. The polymer scaffold that was 

made from natural and synthetic biomaterials in this study, is projected to be used in a 

range of cardiovascular applications, specifically to address the limitation on small 

blood vessels and to overcome the physiological properties mismatch. 
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ABSTRAK 

Penyakit kardiovaskular adalah penyebab utama kematian di seluruh dunia, di 

mana kerosakan tisu jantung adalah salah satu kesan utamanya. Perancah sintetik 

terkini untuk memperbaiki dan mengganti tisu jantung mempunyai batasan untuk 

meliputi saluran darah kecil dan ketidaksesuaian pematuhan yang kemudiannya 

menyumbang kepada kegagalan perancah. Oleh itu, penggabungan polimer semula 

jadi, seperti elastin dan kitosan, ke dalam polimer elektrospun sintetik poliuretan (PU) 

diperlukan untuk mengatasi komplikasi ini. Polimer semula jadi seperti kitosan dan 

terbitannya bermanfaat untuk penyembuhan luka sementara elastin menunjukkan 

pendekatan yang berjaya dalam memberikan sifat viskoelastik. Poliuretan adalah 

polimer sintetik yang biasanya digunakan sebagai pengganti tisu lembut 

kardiovaskular kerana sifat keserasian bio, keanjalan dan sifat mekaniknya. Dalam 

kajian ini, PU diadunkan dengan partikel nano kitosan dan elastin pada kepekatan 

elastin yang berbeza (1% dan 1.5%) untuk dielektro putar bagi membentuk perancah 

serat tikar. Nanopartikel kitosan telah disahkan dengan menggunakan 

spektrofotometer pencerahan ultra ungu (UV-Vis) pada puncak resapan 290 nm. Sifat 

fisiko-kimia putaran elektro PU yang digabungkan dengan kitosan/elastin disiasat 

dengan imbasan mikroskop elektron (SEM), spektroskopi inframerah transformasi 

Fourier (FTIR) dan pengukuran sudut kontak. Imej SEM juga digunakan untuk 

menganalisis diameter serat, ukuran liang dan keliangan. Fiber nano PU yang 

digabungkan dengan kitosan/elastin telah dielektro putar dengan sekata dan kurang 

manik pada kadar aliran 0.5 mL/j dan voltan 12 kV menggunakan jarum keluli tahan 

karat 21-G. Penggabungan kitosan dan 1% elastin telah meningkatkan diameter serat 

sebanyak 73.03%, ukuran pori sebanyak 21.05% dan keliangan sebanyak 14.54% 

berbanding PU tulen. Kumpulan berfungsi kitosan dan elastin (N–H dan C–N) 

ditunjukkan dalam puncak spektrum FTIR. Manakala kebolehan serapan air fiber nano 

PU yang digabungkan dengan kitosan/elastin meningkat sebanyak 22.53% berbanding 

dengan fiber nano PU. Perancah polimer yang dibuat dari bahan bio semula jadi dan 

sintetik dalam kajian ini, dicadangkan untuk digunakan dalam pelbagai aplikasi 

kardiovaskular, khusus untuk mengatasi keterbatasan pada saluran darah kecil dan 

untuk mengatasi ketidak sesuaian sifat fisiologi. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Problem Background 

Cardiovascular disease remains the leading cause of death in the world. 

Prevention and treatment of excessive bleeding following cardiac surgery are of major 

concern among cardiac surgeons (1). Many attempts have been made, to engineer 

various cardiac tissues (1). In order to maintain the blood flow and prevent cardiac 

bleeding, synthetic vascular grafts have been explored in cardiovascular applications 

and have been used in patients to recover from cardiovascular diseases (2). 

In tissue engineering, the source of natural vascular grafts from native tissues 

can be classified into autogenic, allogenic and xenogeneic sources (3). Allografts and 

xenografts have some advantages such as long-term patency and reactivity, however, 

their utilization is limited by the high immunogenic response (3). In bypassing large 

diameter blood vessels (6 mm), synthetic grafts such as expanded polytetrafluoro or 

Dacron (polyethylene terephthalate fiber) have been used, in replacement to the natural 

vascular grafts (3). However, those synthetic grafts have demonstrated high failure 

rates on small diameter blood vessels (<6 mm) due to thrombosis, stenosis and 

occlusion (2). 

In this study, polymer membrane scaffolds were fabricated using an 

electrospinning technique to address the research gap for small diameter blood vessels. 

Electrospinning is a broadly used technology which provides an electrostatic fiber 

formation, that uses electrical forces to form fibers, ranging from 2 nm to several µm 

diameter (4). In tissue engineering, electrospun fibers are known as one of the 

approaches to form polymer scaffolds (5). Such replacement tissues for the 

cardiovascular system may require biocompatible and suitable mechanical properties 

comparable to native vascular tissues (4, 5). 
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Polyurethane (PU) is a type of biomaterial, widely used in the medical field as 

wound dressings, artificial prosthetics and vascular grafts (6). It is biocompatible and 

does not cause inflammatory reactions on tissues. Besides, it is biodegradable under 

certain conditions (4). Polyurethane has a wide range of physico-chemical, thermal an 

mechanical properties due to its segmented structure, which is composed of hard and 

soft segments (4). Moreover, it is easy to modify the properties of PU by changing its 

solvent reagents or by blending PU with other materials, such as natural materials (4). 

Therefore, PU was selected to be the main matrix for the incorporation of chitosan and 

elastin. The incorporation of chitosan and elastin is necessary to enhance the biological 

properties of PU for nanofibers vascular graft production. 

Chitosan and elastin have been applied as topical dressings in wound 

management, due to their haemostatic wound healing promotion (7). Elastin is an 

insoluble extracellular matrix protein that provides elasticity and resilience to the 

arteries, lungs and skin (7). It has sufficient mechanical strength for the elasticity 

function of certain biological organs (8). Chitosan, whilst is an aminopolysaccharide, 

found in the exoskeleton of crustaceans and the cell wall of fungi (8). Chitosan is 

considered as the second most abundant biopolymer, which has been used in gels and 

nanoparticles, to meet the preferable conditions in wound dressing applications (9). 

In this study, PU electrospun nanofibers were incorporated with chitosan and 

elastin for the potential use as vascular grafts. Specifically, the physico-chemical 

properties of the fabricated electrospun membranes were characterized by scanning 

electron microscopy (SEM). The SEM images were subjected to fiber diameter, pore 

size and porosity analyses. Other two characterization analyses were Fourier transform 

infrared spectroscopy (FTIR) and contact angle measurement. 

1.2 Problem Statement 

In recent years, demand for tissue engineering is increasing in medical 

applications and facing challenges towards treating and repair vascular damages as 

well as cardiac tissues. In the current treatment, patients with carotid artery stenosis 
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are treated with synthetic vascular patches known as Dacron (10, 11). Late wound 

complications and inflammatory reactions have occurred due to the limited properties 

of Dacron (10). In the same context, another research demonstrated that the treatments 

using synthetic materials such as Dacron, following aorta surgical repair have caused 

serious risk where 20 - 51% of aneurysm formation and rupture were reported (11). 

Furthermore, a high rate of vessel blockages had been referred following the 

implantation of Dacron due to discrepancy in mechanical characteristics between 

synthetic vascular grafts and arteries (6). 

Available synthetic materials have also been identified with cellular interaction 

limitations, which cause disappointment in clinical routines, mainly due to low hemo- 

or biocompatibility, lack of compliance and normal physiologic responsiveness that 

lead to inflammatory reaction and blockage (2). Several decades of efforts in 

bioengineering and tissue engineering, along with a growing understanding of 

cardiovascular pathologies, have driven researchers to develop regenerative 

approaches, focusing on new materials that imitate native tissues, including degradable 

and natural polymers for temporary scaffolding. (12).  

1.3 Research Objectives 

The objectives of the research are: 

(a) To electrospun PU incorporated with chitosan/elastin nanofibers by varying 

the concentration of elastin. 

(b) To characterize the electrospun PU incorporated with chitosan/elastin 

nanofibers through several physico-chemical analyses of SEM, FTIR and 

contact angle. 



 

4 

1.4 Scope of the study 

In this study, electrospun PU blended with chitosan/elastin scaffolds were 

fabricated at different concentrations of elastin. These scaffolds are intended to be used 

in soft tissue reconstruction, to be specific for cardiac and vascular tissues. The 

electrospinning parameters such as voltage, flow rate, working distance and syringe 

needle were kept constant during the electrospinning process. The PU incorporated 

with chitosan/elastin electrospun nanofibers were subjected to four physico-chemical 

characterization analyses. 

There are three analysis methods were conducted including SEM, FTIR, 

contact angle measurement. The SEM was conducted by observing the morphology 

structure and fiber diameter, while the FTIR was performed to determine the chemical 

composition and functional groups of the electrospun membranes. In order to assess 

the surface wettability of the electrospun membranes, the contact angle data were 

recorded. With regards to the porosity analysis, it was utilized to forecast the flow 

transport of nutrients, oxygen and metabolic waste products.  

1.5 Significance of the Study  

Loss of cardiac function caused by damaged heart tissues and vessels is 

considered as threating remark to patients’ health (1). Cardiologists and researchers 

have engineered tissues for possible solutions and methods to replace or repair 

different areas of the heart (1). The significant advantage of this study is to fabricate 

PU electrospun scaffold to be used as cardiovascular replacement tissues, to enhance 

the biological function of the scaffold by using elastin and chitosan. Furthermore, the 

blending of PU with natural polymers such as elastin will provide necessary 

viscoelastic properties which requires further exploration (4). Additionally, the 

incorporation of chitosan into the PU matrix will provide hydrophilicity and better 

cell-tissue interaction (9).
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