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ABSTRACT 

This study emphasises on detection and characterisation of gold nanoparticles 

based on its optical response. Water dispersed gold nanoparticles are synthesised 

from citrate reduction with dilute gold chloride under external energy sources. Three 

methods (i.e. heat-reflux, UV photoreaction, and UV photoinitiation) were used as 

reaction energy source to produce the nanoparticles. Firstly, exact solution of Mie 

equations was vigorously tested by varying particle diameter for monodisperse and 

polydisperse size distributions to investigate its limitations and effects on extinction 

cross-sections respectively. Changes in peak extinction cross-sections due to effect of 

temperature are negligible even at 100 °C. Simulated fragmentation mechanism in 

the particle size distribution produced calculated extinction cross-section that are 

comparable to time-resolved experiments with λpk blue-shifted from approximately 

610 nm to 520 nm. Secondly, verification of size distribution derived from photon 

correlation spectroscopy and small angle X-ray scattering was carried out with 

extinction profile used as comparison; the results shows general agreement between 

these instruments with mode particle size ranged from 20 nm to 80 nm. However, 

size distribution derived from small angle X-ray scattering produced expected 

extinction lower than measured values for λ > 600 nm. Thus, the following 

characteristics of the colloid are as follows: in general, heat-refluxed nanoparticles 

are smaller compared to UV synthesised particles. Weaker incident photon energy 

produced consistently larger particles with broader size distribution and emerged 

later when compared reactants exposed to high energy UV. The isoelectric point for 

our colloidal system was measured at pI = 2.31 ± 0.56. Lastly, time-resolved 

scattering measurements were carried out in three separate experiments involving 

photon correlation spectroscopy and home-built configurations. They collectively 

indicate the likelihood of fragmentation mechanism in particle size distribution 

during the time as the colloidal colour turn from transparent to blue. 
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ABSTRAK 

Kajian ini menekankan pada pengesanan dan pencirian zarah nano emas 

berdasarkan kaedah optik. Sebaran zarah nano dalam air disediakan daripada 

penurunan klorida emas dengan sitrat di bawah sumber tenaga luaran yang 

disediakan. Antara tiga cara yang digunakan sebagai sumber tindakbalas tenaga 

adalah refluks-haba, fotoreaksi ultraungu, dan fotopemulaan ultraungu. Mulanya, 

penyelesaian tepat persamaan Mie telah diuji dengan mengubah diameter zarah 

monosebar dan taburan saiz polisebar untuk menentukan batasan dan kesannya 

kepada keratan-rentas kelenyapan cahaya. Perubahan pada puncak kelenyapan 

keratan-rentas disebabkan oleh kesan suhu boleh diabaikan walaupun pada 100 C°. 

Simulasi mekanisme pemecahan dalam taburan saiz zarah menghasilkan keratan-

rentas lenyapan yang setara dengan eksperimen penyelesaian masa dimana λpk 

teranjak daripada 610 nm ke 520 nm. Kemudian, taburan saiz diperolehi daripada 

spektroskopi korelasi foton dan serakan sinar X bersudut kecil telah disahkan dengan 

profil kelenyapan; keputusannya menunjukkan persetujuan antara peralatan yang 

diuji dalam julat saiz zarah diantara 20 nm hingga 80 nm. Namun, taburan saiz 

diperolehi daripada serakan sinar X menghasilkan jangka kelenyapan lebih kecil 

daripada nilai cerapan mulai λ > 600 nm. Oleh demikian, kecirian koloid adalah 

seperti berikut: secara amnya, zarahnano refluks-haba didapati lebih kecil daripada 

zarah hasilan ultraungu. Pengarahan tenaga foton yang lemah tekal menghasilkan 

zarah yang besar dan bertaburan luas, serta muncul lebih lewat berbanding dengan 

bahan tindak balas yang terdedah kepada sinaran UV bertenaga tinggi. Takat 

isoelektrik dalam sistem koloid yang dikaji adalah ditentukan pada pI = 2.31 ± 0.56. 

Akhirnya, pengukuran serakan bertempoh telah dijalankan dalam tiga eksperimen 

yang berasingan dan secara kolektif mereka menunjukkan bahawa kemungkinan 

tinggi taburan saiz zarah mengalami mekanisme pemecahan semasa warna koloid 

bertukar daripada jernih ke biru. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background of Study 

Since the discovery of optical applications involving surface plasmons, liquid 

dispersed metallic nanoparticles has seen an explosion of research interest since the 

beginning of the 1980s. A systematic procedure to synthesize citrate-stabilised gold 

nanoparticles was discovered in 1951 by Turkevich [1]. This procedure, favoured for 

its simplicity and reliability has attracted many application studies. The Turkevich 

method was cited 4374 times as of 2016; yet despite widespread applications, the 

mechanistic behaviour of the colloid during and after synthesis has elucidated us. 

To this date there are no generally accepted complete mechanism to describe 

the physicochemical processes that occurs during nucleation and growth of the 

nanoparticles. LaMer et al. [2], proposed a nucleation mechanism for his work with 

sulphur sols, and was adopted by Turkevich based on applications of the Classical 

Nucleation Theory (CNT) but was later found insufficient to describe the changes of 

optical character exhibited by the colloid during synthesis. Recent investigations with 

ex-situ microscopy and in-situ scattering experiments [3 – 5] have reached radically 

different opinions on its nucleation mechanism with respect to the classical theory. 

On top of this confusion, it was found that nucleation can also be triggered by non-

thermal methods. These new initiation methods brought contrast to the classical heat-

assisted synthesis, which was thought the only way to initiate the chemical reaction. 

Understanding the nucleation and growth processes ultimately give us better 

control over the synthesis and thus the yield. Eventual industrial production of 

metallic colloids also drives research interest on the development of a rapid and 

affordable quality monitoring system by in-situ optical measurement of colloidal 

characteristics. It is therefore becoming a need to fulfil these gaps of knowledge. 
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1.2 Problem Statements 

Dipole approximation for the calculation of optical absorption coefficient for 

gold nanoparticles has been used extensively for rapid size characterisation. 

However, this approximation only holds true for the case when size distribution is 

sufficiently narrow (monodisperse) and with mode size no more than 1/10 of 

incoming radiation wavelength. How does polydispersity in sizes and the effects of 

dispersant temperature affects the spectral properties in UV-visible region such as the 

absorption, scattering and extinction cross-sections for spherical gold nanoparticles?   

It was found that electromagnetic radiation ranging from microwave to 

gamma rays are able to assist the chemical reduction process of citrate-stabilised 

gold nanoparticles. There is yet a systematic study regarding the photochemistry and 

mechanistic behaviour for colloidal systems triggered by these emissions. How does 

the exposure to sub-bands of ultraviolet radiation (UV-A, UV-C) affect the yield and 

dynamics of particle size distribution for citrate-stabilised gold nanoparticles?  

In the early 2010s, it was found via electron microscopy that the classical 

nucleation theory fails to support the observation of an intermediate nucleation stage 

where networks of gold nanowires or mesoscale aggregates appear as soon as 

nucleation occurs. Concurrently, small angle X-ray scattering utilising intense beam 

from synchrotron sources found such intermediate stage do not exist. Does the 

colloidal nuclei emerge from larger intermediate structures for citrate stabilised gold 

nanoparticles?  

Given both heat and ultraviolet radiation are capable of assisting the reduction 

process of gold complexes, how does different citrate to gold (Cit:Au) ionic ratio and 

pH affect the electrochemistry, particle size distribution (PSD) and zeta potential in 

considerably long timescales? What does it implies to the stability of the colloidal 

system? 
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1.3 Research Objectives 

The first portion of this thesis dedicates to the theoretical construct of 

extinction cross-sections using Mie theory. Simulations based on different particle 

size distributions are then used to fit experimental values. Colloidal dynamics of gold 

nanoparticles will be investigated by optical extinction, scattering and photon 

correlation spectroscopy. The aims of this thesis are: 

i. To simulate the absorption, scattering and extinction cross-sections 

contributed by multipole plasmon-polariton oscillations and size 

dependent scattering intensity of single and polydisperse gold 

nanoparticles.  

ii. To verify the consistency of size characterisation methods between 

photon correlation spectroscopy (PCS) and small angle X-ray 

scattering (SAXS) with optical extinction using heat-refluxed gold 

nanoparticles.   

iii. To measure the time-resolved and final optical extinction, particle size 

distribution (PSD), colloidal pH, and volume concentration for heat-

refluxed and UV-assisted reduction of gold ions in citrate environment  

so that the changes in particle sizes of gold nanoparticles can be 

characterised. 

iv. To measure scattering and baseline intensity changes in-situ correlated 

to formation of gold nanoparticles triggered by exposure to coherent 

405 nm Near-UV laser beam at different Cit:Au ratio. 
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1.4 Scope of Study 

Throughout this thesis, the focus of experiments is limited to optical response 

from water-dispersed gold nanoparticles reduced and stabilised from its ionic 

precursors in citrate environment. Hence, significant portions of analysis regarding 

particle sizes are derived from optical extinction and scattering measurements. With 

reference to the objectives of this thesis, the scopes are; 

All simulated optical parameters are computed by exact solution of Mie 

theory – chosen due to immediate relevance – for calculation of extinction and 

scattering cross-sections. Only lognormal size distribution was considered for 

simulation of monodisperse gold nanoparticles; this act as a reference to find the 

condition where dipole approximation fails to describe experimental optical 

extinction of large particle sizes. Bimodal and trimodal size distribution were used to 

simulate realistic optical extinction that matches experimental measurements. The 

total range of mode particle size was computed between 20 nm to 3000 nm to 

describe optical extinction from the nanoscopic to the mesoscopic scale. 

To verify the size distribution obtained from small angle X-ray scattering 

experiments, standard heat-refluxed gold nanoparticles with reliably known particle 

size characterised by optical extinction was used. Only two samples of the same 

Cit:Au ratio to be used for simplicity as the objective of the experiment was to verify 

characterisation methods.    

The method to initiate chemical reactions are limited to reflux-heating the 

reagents to boiling point (100 °C) and UV exposure either through photoreaction or 

photoinitiation by selected sample wavelengths, representing different bands of UV 

at 405 nm (NUV), 366 nm (UV-A), and 253.7 nm (UV-C). The dynamics of log-

normal particle size distribution (PSD) and volume concentration are derived from 

speckle intensity flux in a PCS instrument. Autocorrelation of scattering speckle 

intensity flux are analysed and fitted with built-in least square inverse Laplace 

CONTIN algorithm designed to describe mono- and bimodal polydisperse particle 

populations. Emphasis in discussions is given on the characteristics of gold 
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nanoparticles rather than in-depth verification of optical characterisation methods as 

the objective is to study time-resolved size characteristics. Also, time-resolved 

measurements (PCS and extinction) are limited to the speed of physical sampling, 

perceived changes based on extinction, and highest possible temporal resolution of 

our instruments, which are never shorter than 40 seconds for PCS and 10 ms for 

scattering time-series.  

Discussions involving in-situ multiparticle scattering experiments were 

carried out assuming isotropic particle distribution during synthesis. The results from 

scattering experiments are qualitative by nature, and are meant to compliment PCS 

results on photoreaction and photoinitiation experiments as it is the last objective of 

this thesis. Subsequently, UV assisted reactions was found to be wavelength specific 

and thus discussions regarding particle size dynamics are strictly limited to their 

respective reaction energy sources. 

1.5 Significance of Study 

The problem inherent in mechanistic studies lies at the lack of precision for 

in-situ characterisation. Most mechanistic studies involving size characterization are 

usually obtained with Transmission Electron Microscopy (TEM) or Scanning 

Electron Microscopy (SEM). These techniques although having the advantage of 

visualizations in high resolution but require the sample to be extracted and isolated 

from the medium. Ex-situ extraction, purification and drying involved during sample 

preparations ultimately leads to agglomeration or at least environmental changes for 

the particles. Furthermore, intensely focussed electron beams or X-rays has been 

shown to interact destructively with sub-micrometer sized particles. For these 

reasons, electron microscopy cannot reflect the actual nucleation and growth 

condition of the colloid. 

Investigating colloidal system through optical methods has the critical 

advantage of being in-situ and less invasive on the particles at the cost of resolution. 

To the best of our knowledge, systematic studies on nucleation and growth processes 
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for ultraviolet-assisted citrate reduced gold nanoparticles have not been investigated 

simultaneously by PCS and optical extinction measurements. Following careful data 

interpretation and verification, PCS is a powerful experimental method for extracting 

particle size distribution within a very short amount of time. Results from the 

experiments provide insight on undisturbed nucleation and growth mechanism which 

has seen much confusion and conflict found in the literature over the past decade.  

Ongoing interest in fundamental colloid chemistry may need verification of 

size distribution in the viewpoint of physics such as computation of optical extinction 

in addition to other size characterization methodologies. This thesis served as a 

proof-of-concept in an interesting cross-disciplinary research where it demonstrates 

rapid size characterization for metallic colloids can be obtained via extinction 

measurements without a priori assumption of small monodisperse sample. 

1.6 Thesis Outline 

This thesis begins with an introduction on the ongoing problems regarding 

colloidal dynamics of citrate reduced and stabilised gold nanoparticles. It is followed 

by stating the purpose, limitations and a summary on research significance. 

The second chapter thoroughly reviews concepts on optical properties of 

colloidal gold and experiments involving nucleation. It provides an overview on 

colloidal terminologies followed by detailed description of the Turkevich-Frens 

synthesis pathways. Derivations and various aspects regarding optical absorbance 

and scattering cross-sections, PCS correlation functions and physics of small angle 

X-ray scattering were examined. Investigations in the past regarding nucleation 

dynamics are also reviewed to illustrate key points necessary for result discussions. 

The third chapter states the methodologies employed in this study. This 

chapter is broadly separated into three sections where the first describes the 

equations and computational methods for simulation of optical responses from gold 

colloids. Second and third sections are separated into sub-sections based on synthesis 
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parameters and experiment details on heat-assisted reduction, UV-assisted reduction, 

and near-UV scattering experiments.      

The fourth chapter presents the outcome of computation and experimental 

works. Based on simulations, calculated optical extinction spectra are compared with 

experiments to obtain information regarding size and polydispersity. The trends in 

PSD from photon correlation spectroscopy and small angle X-ray scattering are 

compared to earlier results to find consistency. Zeta potential and pH measurements 

provide insights on colloidal stability for extended shelf life. Lastly, the scattering 

and baseline intensity changes by 405 nm laser irradiation of reagents are correlated 

to formation of gold nanoparticles.  

The last chapter concludes the findings and discussion of this thesis. The 

summary includes reiteration of shortcoming and limitations of this study followed 

by suggestions for future investigations. 
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