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ABSTRACT

Radiotherapy is a treatment that utilizes the high energy waves to treat cancers

and tumors. The high energy radiation released from the therapy might directly kill the

cancer cell or creates charged particles on the targeted area which consecutively damage

the DNA. The damage part of DNA resulted from the high energy radiationwill disrupts

the growth and division of the cancer cell. However, the high dose radiation may bring

side effects as it also may damages the nearby normal cell. The main objective of

radiotherapy treatment is to maximize the damage on the cancer cell and minimize its

side effect on the surrounding normal cell. Over the years, many mechanistic models

had been developed to study the dynamic behavior of the cell population after it had

been irradiated by high dose ionizing radiation. Determination of set of parameters of

the mechanistic model helps to understand the dynamic behavior of the cell population.

The current study aims at estimating parameter for a mechanistic model of high dose

irradiation damage using two optimization algorithms which are Nelder-Mead Simplex

(NMS) and Particle Swarm Optimization (PSO). The performance and efficiency of

both optimization algorithms are compared based on the minimum value of sum of

squared error, computational time and number of iteration to compute the objective

function. The analysis demonstrates that NMS has higher accuracy and requires shorter

time to minimize the objective function. On the other hand, PSO show a quicker

convergence to achieve the objective function as compared to NMS.
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ABSTRAK

Terapi radiasi adalah rawatan yangmenggunakan sinaran bertenaga tinggi untuk

merawat kanser dan tumor. Sinaran bertenaga tinggi yang dibebaskan daripada rawatan

tersebut boleh membunuh sel kanser secara langsung atau mencipta zarah bercas di

kawasan yang disasarkan yang seterusnya akan merosakkan DNA. Bahagian DNA

yang telah rosak disebabkan sinaran bertenaga tinggi akanmembantutkan pertumbuhan

dan pembahagian kanser sel. Walaubagaimanapun, sinaran bertenaga tinggi tersebut

boleh juga memberi kesan sampingan dimana ia mampu merosakkan kawasan sel

normal di sekitarnya. Objektif utama terapi radiasi adalah untuk memaksimakan

kerosakan ke atas sel kanser dan meminimakan kesan sampingan ke atas sel normal

disekitarnya. Saban tahun, banyak model mekanistik telah dimajukan untuk mengkaji

ciri-ciri dinamik populasi sel yang telah dipancarkan dengan radiasi ion berdos

tinggi. Penentuan kumpulan parameter daripada model mekanistik dapat membantu

untuk memahami dinamik populasi sel. Kajian ini bertujuan untuk menganggarkan

parameter model mekanistik menggunakan dua kaedah pengoptimuman iaitu kaedah

Nelder-Mead Simplex (NMS) dan Particle Swarm Optimization (PSO). Prestasi dan

kecekapan kaedah pengoptimuman tersebut akan dibandingkan berdasarkan jumlah

ralat persegi (JRP) yang rendah, pengiraan masa dan bilangan lelaran yang diperlukan

untuk mencapai fungsi objektif yang ditetapkan. Analisis menunjukkan kaedah

NMS mempunyai ketepatan yang tinggi dan memerlukan masa yang sedikit untuk

meminimakan fungsi objektif. Sebaliknya, PSO menunjukkan penumpuan yang lebih

cepat untuk mencapai fungsi objektif berbanding NMS.
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CHAPTER 1

INTRODUCTION

1.1 Background of the research

Radiation is the released of energy in the form of moving waves or particles

which move through space. Irradiation means exposure to the radiation will cause bad

effects to our body and specifically to our biological deoxyribonucleic acid (DNA).

Ionizing radiation is a type of radiation which have a large energy that have the

capabilities to remove bond of electrons from its orbit which make the atoms become

charged or ionized as reported by Ravanat et al. [1]. This phenomena if exposed to our

body will result in DNA damage.

Nowadays, radiation is widely used in many sectors such as archeology, geology

and medical field. An object is said to be irradiated when it is exposed to the radiation.

In medical sector, radiation is used as a technique to kill cancer cell. Radiation in

medical sector such as x-rays is used to check internal parts of the body or to treat

cancer. Beside the objective to kill the cancer cell, the main concern of this radiation

therapy is the side effects of the treatment. The radiation might not only targeting the

cancer cells but also to its nearby normal tissue. Once our body is exposed to this

radiation, it will trigger a self-repair mechanism to repair the damaged part of the body

as mentioned by Monson et al. [2]. However, the problem arise when the damaged

DNA is incorrectly repaired which will develop a secondary cancer cell.

Over the years, many mathematical models have been developed to relate the

irradiation effects to DNA. The mathematical models contain parameters which can be

manipulated experimentally to understand the cell behavior after irradiation process.

Hence, estimating the kinetic parameter values to be used in the mathematical model

is important as it can help to solve any related problem in the future.
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A mechanistic model has been developed by Siam et al. [3] to study the

population of cell which has been irradiated by high dose radiation. The mechanistic

model which based on structured population model and Linear Quadratic (LQ)

framework relates the number of DNA Double strand breaks (DSBs) and misrepair

of DSBs after irradiation. The author also developed parameter estimation algorithm

in order to understand the behavior of cell activity after irradiation using the existing

experimental results.

Optimization algorithms such as Nelder-Mead Simplex (NMS) method,

simulated Annealing and Genetic Algorithm had been used to estimate the best

parameter values in the mechanistic model suggested by Siam et al. [4]. In this study,

the parameter estimation procedure using the same mechanistic model of irradiation

damage will be established. We will estimate the optimal parameter values for the

mechanistic model which are (X, U1, U2, d, +<0G ,  <). The only difference from

[4] is the used of another optimization technique called Particle Swarm Optimization

(PSO) which to be compared to Nelder-Mead Simplex method. The performance and

efficiency of both optimization algorithms in term of the minimum value of sum of

squared error(SSE), computational time taken to estimate parameters and number of

iteration needed to converge to lowest SSE value.

1.2 Statement of the problem

The main objective of the radiation treatment is to kill the cancer cells, however

using the high dose radiation rays might have side effects to our body. The radiation

rays not only kill the cancer cells but might also damage the nearby normal tissue.

Once exposed to this radiation, a self-repair mechanism is triggered by our body to

treat the damaged part of the DNA. The side effects of this treatment might come when

the damaged part of DNA is incorrectly repaired by our body system which could lead

to the development of secondary cancer cell.

The needs to study the cell population dynamic after irradiation is very crucial

so that we can further analyze how many DNA Double strand breaks (DSBs) created,

number of misrepair of DSBs and cell death rate occur after the cell is exposed to
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ionizing radiation. Hencemanymathematical models which can fit with these data were

developed to help researchers and radiobiologist to understand the dynamic behavior

of the cell population.

1.3 Objectives of the study

The objectives of the study are:

1. To estimate the six mechanistic model parameters (X, U1, U2, d, +<0G ,  <)

which can explain the physical behavior of the cell population after irradiation

by using NMS method and PSO.

2. To compare the performance of NMS method and PSO in estimating kinetics

parameter values.

1.4 Scope of the study

The study will focus on the parameter estimation based on the mechanistic

model suggested by Siam et al. [3]. The model developed will be used to understand

the behavior of cell population after irradiation process. NMS will be used as local

optimizer and PSOwill be used as global optimizer to find an optimal model parameters

value. Next, the performance of both methods will be compared and analyzed using

MATLAB. Statistical analysis such as the mean Ḡ, the standard deviation B, the

correlation A and the confidence interval will also be discussed to further analyse

the parameter estimation results obtained.

3



1.5 Significance of the study

The significance of the study is to give a better understanding on cell population

after irradiation using mathematical model. Linear Quadratic relation will be applied

in the mathematical model to estimate the kinetic parameters value. Besides, this

study aims to suggest the best optimization method between NMS and PSO for the

mathematical model used. Finally, the optimal kinetic parameters value of the model

obtained could be used as reference to radiologist in radiotherapy planning in the future.

1.6 Thesis outline

This thesis contains of six chapters which consists of introduction chapter,

literature review, methodology of the research, the mechanistic model employed,

parameter estimation result analysis, conclusion and recommendation for future works.

Chapter 1 presents the background of the study followed by the problem statement and

objectives of the research. The scope of study and the significance of the study are also

discussed in this chapter.

Chapter 2 discusses on the literature review for this research. This chapter

highlights the past research on parameter estimation. The previous mathematical

model used to study the cell population dynamics after irradiation will also be reviewed

in this chapter. Chapter 3 explains the methodology used for this research. Chapter 4

explains in details the mechanistic model used for this research. The ODEs system and

the initial condition related to the model were also explained based on [3].

Chapter 5 will discuss in details the performance of the optimization algorithms

based on the minimum value of SSE, computational time and number of iteration

needed by the optimizers. Statistical formula such as correlation, standard deviation

and confidence interval will also be discussed to further justify our results. Finally, the

conclusion and recommendations for future research will be stated in Chapter 6.

4



CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter will discuss the chronology related to the cell population. It starts

with a fundamental introduction about cell, DNA structure and how it can be damaged

by radiation. The phenomena of how ionizing radiation can damage the DNA structure

will be explained in details. Next, the development of previous mathematical models

to relate with this cell population after irradiation will also be discussed.

2.2 Cell and DNA

Figure 2.1 The structure of a cell [3].

Figure 2.1 shows the basic structure of a cell which consist of cytoplasm and

nucleus which enclosed inside a membrane [5]. Inside the nucleus, genetic information

is stored in molecule called as Deoxyribonucleic acid (DNA). DNA contains genetic
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