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ABSTRACT 

The scaling down of nanoelectronic device dimension beyond the Moore’s 

Law era has introduced the use of new material and device architecture of Metal-

Oxide-Semiconductor Field-Effect-Transistor (MOSFET). The use of nanomaterial 

and advanced device architecture allows the mitigation of the short channel effect at 

narrow MOSFET gate length. The purpose of this research is to study the performance 

of 20nm GaAs Junctionless-Gate-All-Around (JGAA) transistor incorporating the 

quantum mechanical effect. This device performance is then compared with 

conventional silicon material for comparative study.  The device is designed, 

simulated and characterized using Technology Computer Aided Design (TCAD) from 

Sentaurus. The electrical parameter extracted from the current-voltage (I-V) 

characteristic includes the threshold voltage (Vth), drive current (Ion) and leakage 

current (Ioff). For JGAA MOSFET, the geometry scaling in radial direction includes 

the thickness of the channel radius and oxide layer, which can contribute to quantum 

effect. The charge distribution along the mid-region of the device is extracted to 

observe the carrier movement profile. Through simulation, it is proven that at shorter 

gate length, GaAs channel JGAA transistor exhibit better performance in terms of the 

on current and threshold voltage. Further evaluation shows that the classical model, 

the drift-diffusion model (DDM), which is the default carrier transport model, failed 

to incorporate the quantum effect, which is found to be non-negligible, particularly 

when the channel radius and oxide thickness is made less than 10nm and 14nm 

respectively. The inclusion of the quantum effect is based on the Density Gradient 

Model (DGM). It is found that the quantum effect significantly affects the drive current 

and leakage current by 28% for GaAs when the channel radius is scaled down less than 

5nm, while minimal effect can be seen on the threshold voltage. Due to the 

considerable quantum effect, the carrier distribution around the channel moves further 

away from the semiconductor/oxide interface to the centre of the channel. This work 

highlight 90% increment on the on-current for GaAs JGAA MOSFET compared to 

silicon JGAA MOSFET and further shows the flexibility of III–V compound materials 

as potential materials to replace the conventional silicon. The results also indicate the 

necessity of considering the quantum model to generate accurate data for the projection 

of future nanoelectronics devices. It can be seen that this work is in agreement with 

other results obtained using silicon as channel for junctionless MOSFET and close 

with International Roadmap for Devices and Systems (IRDS) target for low power 

application. 
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ABSTRAK 

Pengecilan dimensi peranti nanoelektronik yang melangkaui era Hukum 

Moore telah memperkenalkan penggunaan bahan baru dan seni bina peranti 

semikonduktor oksida logam transistor kesan medan (MOSFET). Penggunaan bahan 

nano dan seni bina peranti termaju membolehkan pengurangan kesan saluran pendek 

(SCEs) pada panjang pintu MOSFET yang sempit. Tujuan penyelidikan ini adalah 

untuk mengkaji prestasi transistor 20nm GaAs Junctionless-Gate-All-Around (JGAA) 

yang menggabungkan kesan mekanikal kuantum. Prestasi peranti ini kemudian 

dibandingkan dengan bahan silikon konvensional untuk kajian perbandingan. Peranti 

ini direka, disimulasikan dan dicirikan menggunakan Technology Computer Aided 

Design (TCAD) dari Sentaurus. Parameter elektrik yang diekstrak dari ciri arus–voltan 

(I-V) meliputi voltan ambang (Vth), arus salir (Ion) dan arus bocor (Ioff). Untuk JGAA 

MOSFET, penskalaan geometri dalam arah radial merangkumi ketebalan jejari saluran 

dan lapisan oksida yang boleh menyumbang kepada kesan kuantum. Taburan cas di 

sepanjang kawasan tengah peranti diekstrak untuk memerhatikan profil pergerakan 

pembawa. Melalui simulasi, terbukti bahawa pada panjang pintu yang lebih pendek, 

transistor GaAs Junctionless-Gate-All-Around (JGAA) menunjukkan prestasi yang 

lebih baik dari segi arus salir dan voltan ambang. Penilaian lebih lanjut menunjukkan 

bahawa model klasik, model drift-diffusion (DDM) yang merupakan model 

pengangkutan pembawa gagal menunjukkan kesan kuantum yang didapati tidak dapat 

diabaikan terutamanya apabila ketebalan jejari saluran dan lapisan oksida masing-

masing kurang dari 10nm dan 14nm. Rangkuman kesan kuantum adalah didasarkan 

pada model kecerunan ketumpatan (DGM). Ia mendapati bahawa kesan kuantum 

mempengaruhi arus salir dan arus bocor secara signifikan sebanyak 28% untuk GaAs 

ketika jejari saluran dikecilkan kurang dari 5nm, sementara kesan minimum dapat 

dilihat pada voltan ambang. Oleh kerana kesan kuantum yang besar, taburan pembawa 

di sekitar saluran bergerak lebih jauh dari antara muka semikonduktor/oksida ke pusat 

saluran. Kajian ini menonjolkan kenaikan 90% pada arus salir untuk GaAs JGAA 

MOSFET berbanding dengan Silicon JGAA MOSFET dan seterusnya menunjukkan 

kelenturan bahan kompaun III-V sebagai bahan berpotensi untuk menggantikan 

silikon konvensional. Hasilnya juga menunjukkan perlunya mempertimbangkan 

model kuantum untuk menghasilkan data yang tepat untuk unjuran peranti 

nanoelektronik masa depan. Ini dapat dilihat bahawa kajian ini sesuai dengan hasil lain 

yang diperoleh menggunakan silikon untuk junctionless MOSFET dan hampir dengan 

sasaran panduan antrabangsa untuk peranti dan sistem (IRDS) untuk aplikasi kuasa 

rendah. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research Background 

The evolution of transistor application in recent years have caught researcher 

attention in a field of nanoelectronics devices. The demand for higher processing 

speed, reduced cost and area has led to downsizing the size of the transistor. Transistor 

is a basic building for many aspects of electronic system and the technology associated 

with its architecture have dramatically changed since a past few years. It has many 

possible uses in amplification and Complementary Metal Oxide Semiconductor 

(CMOS) integrated circuit (IC). The sizing of transistor dimension follows the 

Moore’s Law where the scaling has reached its end and alternative approach is 

necessary to sustain the miniaturization of the transistor besides preserve its electrical 

performance. For the past few decades, the number of transistor in a single chip have 

been following the Moore’s Law [1]. Moore’s law stated that the number of transistor 

will be double for every two years. Figure 1.1 shows that the transistor scaling using 

Moore’s law prediction. The scaling factor is reduced by 70% size reduction of the 

technology nodes every two years has been adapted for linear scaling device. 

 

Figure 1.1Transistor scaling according to Moore's Law [2] 
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Thus, the advantages of such scaling can be seen through introduction of 

several processors in the market now. This is because its functionality has grown with 

transistors increment which much better in speed with small area at low cost. However, 

there are several issues as we downscale the size in traditional MOSFET such as 

threshold voltage roll-off, DIBL effect, velocity saturation decreases, leakage current 

increases, enhance surface scattering and mobility degradation [3]. All these effect 

might degrade the device performance. 

However, International Roadmap for Devices and Systems (IRDS) is the 

organisation who provide a standard semiconductor roadmapping has generally 

outlined several potential devices and possible issue occurred in future development 

and research [4 -5]. IRDS be responsible for a guideline in research direction which 

helps appointed to set roadmap of the transistor and IRDS is the evolution from 

National Technology Roadmap for Semiconductors (NTRS) and International 

Technology Roadmap for Semiconductor (ITRS) previously. NTRS and ITRS were 

more focusing on the alternative methods to improve the performance of transistor but 

less attention on the application. Therefore, additional information and guidelines 

features in emerging architecture and systems for big data and cloud storage (IoT) was 

added while remaining the guideline from ITRS. The evolution of IRDS as shown in 

Figure 1.2. 

 

Figure 1.2 Evolution of IRDS 
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In general, the evolution of many aspects of transistor architecture aimed to 

mitigate the short channel effect (SCEs) which becomes pronounced at smaller device 

dimension. One way to overcome the SCEs is to use transistor with architecture with 

an ability to withstand the scaling limit. There has been an extensive research on the 

use of transistor architecture like FinFET, Multigate structure, Junctionless transistor 

and GAA transistor [6-8]. These kind of device configuration has found to have 

positive impact on the device performance as the channel dimension shrinked down. 

For example, Sachdeva et al., (2016) [9] showed GAA MOSFET is promising solution 

to reduce SCEs and improvement in device reliability. In another work by Jena et al., 

(2015) [10] reported a cylindrical architecture which the gate is surrounded by the 

body of the channel have shown to have better gate controlled. Furthermore, the GAA 

architecture have also proven to have excellent short channel immunity. In IRDS also 

shows that the GAA transistor will become a new transition of architecture since 

FinFET now is likely to sustain in the industry until the end of 2023 as shown in Table 

1.1. Beyond 2019, a new transition from FinFET to GAA will be a hot topic in research 

area. In the same table shows that the technology node is keep decreasing by the year. 

It is to make sure that more transistor can be fit in a single chip. Recent research on 

nanoelectronic devices has also been focusing on the junctionless transistor [11]. This 

is due to less process involve in the fabrication as well as the simple architecture. 

Junctionless transistor used heavily doped with same doping level and have proven to 

improve the on current and large early voltage [12]. It has many advantages such as 

no P-N junction which make the structure simple, eliminates the doping concentration 

gradient and produce better short channel effect. Therefore, scaling down into 20 nm 

length is feasible. 

Table 1.1 Device architecture roadmap for logic device technologies [4] 
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Now, in the beyond Moore era have emerge the new device architecture such 

as, multiple gate transistor, gate all around (GAA) transistor and junctionless 

transistor. This is followed by the use of advance material such as carbon nanotube, 

graphene, strained silicon and the III-V materials [13-16]. IRDS have outlined several 

long-term challenges from 2021 - 2028. One of the important parameters delineated is 

on the device structure and materials. In IRDS under emerging research material has 

highlighted potential device which apart of high mobility material as shown in Table 

1.2. Hence, there is a needs to further study the capability and benefits for such 

materials. In general, the evolution of many aspect of transistor architecture using 

advance architecture and non - silicon material aimed to mitigate the short channel 

effect (SCEs) problem which become pronounce at smaller device dimension 

particularly at sub – 10 nm gate length. The use of new device architecture and 

materials are to mitigate the short channel effect (SCE) often happen as the transistor 

is scaled down particularly to nanoscale where it involves the modification of the 

transistors channel. However, the smaller device dimension seems to be traded off with 

its performance as the SCEs become pronounce [17]. 

Table 1.2 Material for transistor scaling from IRDS under Emerging Research 

Material 

Application Emerging Material Potential Advantage 

High mobility 

semiconductors 

InGaAs, InSb, strained 

III–V on silicon for p-

channel 

High hole mobilities for 

complementary 

MOSFETs 

High mobility and steep 

subthreshold transistors 

III–V (GaAs and GaN) 

nanowires, carbon 

nanotubes 

High electron mobility 

with high gate control of 

leakage current 

Ultra – high K gate 

dielectric with EOT 

Extremely high – k 

dielectric such as TiO2 or 

SrTiO2 

Improved transistor 

performance with low 

gate leakage and 

improved energy 

efficiency 

 

 

Although the effect of using this kind of transistor architecture in terms of its 

electrical properties have been demonstrated, more work need to be done on 
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investigating the feasibility of using Junctionless-Gate-All-Around (JGAA) MOSFET 

using III - V channel material. III-V materials are predicted to be a good candidate to 

replace silicon for next generation. III-V material are under consideration for use in 

nanowire FET because of their high mobility compared to silicon which advantages to 

increase the drive current [12]. The semiconductor material used for transistor has 

traditionally been silicon, but there are more options available materials nowadays. 

These include GaAs (Gallium arsenide) and GaN (Gallium nitride). Notably, studies 

have reported excellent performance for GaAs and GaN materials. These materials are 

rapidly becoming the preferred semiconductor material for many transistor 

applications. The interest in III-V CMOS comes from outstanding electron transport 

in these materials which leads to higher electron mobility, excellent thermal properties 

and suitable for higher frequencies. Due to its benefit, the work done among 

researchers related to application of III-V material on the multigate structure were 

highlighted in the literature. Since JGAA MOSFET have showing a good performance 

among the other multigate structure due to its better good electrostatic control, III-V 

materials will help to boost the electrical performance specifically on the on current 

(Ion), threshold voltage (Vth) and current ratio (Ion/Ioff).  

Thus, this research proposes a transistor utilizing a JGAA MOSFET based III–

V material channel which remains surrounded by a cylindrical structure using 

Sentaurus TCAD. To improve the accuracy and effectiveness of the device, suitable 

model taking into account in TCAD tools which are drift-diffusion and the quantum 

mechanical model. The outcome of this study is expected to produce high performance 

transistor using innovative device architecture at shorter gate length and improved 

power management in multibillion transistor circuit employed in microprocessor. This 

is in line with 11th Malaysia Plan for creation of new knowledge and identifying long 

term solution using advance material for electronic devices. 

1.2 Problem Statement 

For many applications using transistor, it is desirable to achieve high on 

current, low leakage current   and   lower   threshold   voltage.   However, a   major 
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challenge for transistor in nanoelectronics application is on the downsizing of the 

channel area to accommodate more transistors in an integrated circuit. In the IRDS 

also highlighted that the technology node used is predicted to be smaller as the gate 

length keeps on shrinking over the years. There are several issues when the size of 

conventional MOSFET been scaled down into a smaller size where short channel 

effects (SCEs) and quantum mechanical effects (QME) become pronounce. The issues 

such as threshold voltage roll-off, DIBL effect, leakage current increases etc.  As a 

result, maintaining a low leakage current and as the same time preserve the high on 

current has become difficult. This will consequently affect the threshold voltage. High 

on current and lower leakage current is necessary for high speed in any transistor 

technology and low static power dissipation. Previous studies have demonstrated a 

variety of advance transistor architecture including FinFET [18], multigate transistor 

[19], carbon based devices [20-21], junctionless type of MOSFET [11] and High-K 

dielectric materials [22].  Although these kind of architecture improves performance, 

the process parameter involves is far from optimal. This make it falls short of those 

predicted from IRDS. It also necessary to include the right model to be incorporate 

with the classical model in TCAD tools to improve the accuracy of device 

performance. Considering high mobility channel, this study will investigate the used 

III – V material as a channel to be replaced on silicon material as suggested by the 

IRDS under Emerging Research Material. There are many transistor options at the 

market today combine various technologies with different semiconductor materials. 

As a result, it can be confusing to narrow down which one is the most suitable for 

transistor applications. GaAs and GaN are the most suitable materials for high speed 

transistor application. This research aimed to develop a device that suits for transistor 

application such as memory. Therefore, in this work, GaAs and GaN which are the III-

V compound material is proposed as a substitute for silicon integrated with JGAA 

MOSFET to investigate the electrical significant of this material to sustain higher drive 

current while keeping the leakage current low which is hardly achieve using 

conventional silicon transistor. The technology node use in this research is 20 nm 

following the technology node predicted by IRDS. We predict smaller gate length is 

used for the future development of device as they keep moving to smaller dimensions. 

The development of device considering the quantum mechanical effect which is 

paramount important at thinner radius and gate oxide to improve the accuracy of the 

device model. The literature reviews highlighted in Chapter 2 can be a guideline in 



 

7 

finding the strength and weakness from the published works in order to find the 

research gap for this work.  

The research problems are summarized as follows: 

(a) The SCE and QME become pronounce when downscale the transistor size in 

conventional MOSFET.  

(b) Numerical model that effect the device performance specifically quantum and 

short channel model. 

(c) Alternative solutions to improve device performance which apart of high 

mobility material on channel such as III-V materials compared to silicon. 

 

1.3 Research Objectives 

From the research gaps and shortcomings that has been identified, the 

objectives of the research are summarized as follow: 

(a) To design the 20 nm GaAs JGAA MOSFET using Sentaurus Synopsys TCAD.  

(b) To study the effect of quantum mechanical effects on the 20 nm GaAs JGAA 

MOSFET. 

(c) To evaluate and benchmark the performance of 20 nm GaAs JGAA MOSFET 

in this work with published work using conventional silicon on junctionless 

MOSFET and IRDS targeted. 
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1.4 Research Scopes 

The scopes of the research are addressed as below: 

1. Simulation of 20 nm GaAs JGAA MOSFET: The work is performed using 

Sentaurus Technology Computer Aided Design (TCAD) tools. GaAs and GaN 

are used as channel materials and silicon dioxide (SiO2) as gate oxide material. 

The condition for quantum effect is considered when the radius and oxide 

thickness of GAA structure less than 10nm.  

2. Computational simulation: In the simulation, from the existing model from 

TCAD tools, Density Gradient model, high field degradation (mobility model) 

and hydrodynamic model are included to study the QME for short channel 

device. Drift diffusion model is the default carrier transport model in Sentaurus 

TCAD. 

3. Simulation work: The channel radius (Rchannel), oxide thickness (Tox) and 

doping concentration (Nd) were varied to see how it significantly influenced 

the quantum effect. The electrical performance evaluation was carried out by 

extracting the current-voltage (I – V) characteristic to evaluate the electrical 

properties such as Vth, Ion, current ratio (Ion/Ioff) and the charge distribution 

along the channel radius. 

 

1.5 Research Contributions 

The research contributions are summarised as below: 

1. Design device structure for 20 nm GaAs JGAA MOSFET: The silicon JGAA 

MOSFET has performed using Sentaurus TCAD. Then, III-V materials such 

as GaN and GaAs were tested on the JGAA MOSFET replacing the 

conventional silicon as channel material. The effect of gate length, radius of 
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channel, oxide thickness and doping concentration on the device structure were 

studied through the Current-Voltage (Ids-Vgs) characteristics curve. Both 

materials were compared to each other and with the published work to see the 

electrical performance for both devices. 

2. To study the quantum effect: To avoid mismatch and to extend the accuracy of 

the analysis, quantum mechanical and short channel effect are crucial to be 

considered. Conventional model is not able to capture the behaviour of device 

correctly. An appropriate model is chosen to accommodate for smaller radius 

and oxide thickness of the device. We used the simplified model to replace 

Schrodinger equation namely density gradient model to define quantum effect. 

The inclusion of High Field Degradation model and hydrodynamic model are 

necessary to include the short channel effects. The electrical performance 

evaluation was carried out by extracting the current-voltage characteristic and 

the normalised charge distribution (eDensity) along the channel radius. The 

GaAs JGAA MOSFET was first applied with classical model allowing the 

study of quantum effect.  

3. Device benchmarking: To further evaluate the results, the final device of 20 

nm GaAs JGAA MOSFET presented is compared with 20 nm silicon JGAA 

MOSFET. The performance is compare between Vth, Ion, and Ioff. In addition, 

the final device also is compared with the published work that using silicon 

channel on junctionless MOSFET and IRDS targeted for low power 

application. 

 

1.6 Thesis Organization 

Chapter 1 explained the fundamental knowledge regarding this research focus. 

The challenges and potential solutions is highlighted based on the roadmapping in the 

semiconductor field provided by the International Roadmap Device Semiconductor 

(IRDS) to give a landmark for research directions. The problem statements are 
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summarized in details after identifying the strength and weaknesses of previous works 

also following the IRDS projections for future nanoscale devices. The research 

objectives and research scopes are identified and discussed further through literature 

and tools available. Finally, the research covered and contributions are explained in 

chapter 1.  

Chapter 2 is the part where literature reviews is covered related to high mobility 

channel specifically III-V materials on advanced transistor. The evolutions from planar 

MOSFETs to the advanced MOSFETs are also covered to give an exposure and 

understanding on the concept to develop a device structure. Then, the review on the 

fundamental knowledge on quantum and short channel effect were highlighted to 

identify the appropriate model in describing the carrier transport in the GaAs JGAA 

structure.  

Chapter 3 elaborates the research flow using the general flowchart and then 

more specific on the development of device. Systematic research was executed related 

to the scope of works mentioned in Chapter 1. The model used in TCAD tools also 

emphasized. The important parameters used for TCAD simulations also highlighted in 

this section. 

Chapter 4 present the numerical simulation for short channel GaAs JGAA 

MOSFET. The simulation works has included the quantum and short channel effects 

to accommodate the analysis for short channel device. The analysis is conducted by 

variation of channel radius, oxide thickness and doping concentration since those 

parameters is vital to account the quantum effect. Besides, the study of III-V materials 

on channel replacing the conventional silicon is investigated before GaAs is chosen 

for final benchmarking due to better electrical performance. The benchmarking is 

compared between the published works and IRDS projection at gate length of 20nm. 

The electrical performance is carried out by investigating on the current-voltage (Ids-

Vgs) characteristics curve and normalized charge distribution along the channel radius. 

Chapter 5 summarized the finding and contributions reflected to the objectives 

in Chapter 1. The future work recommendation to improve the proposed device is 



 

11 

mentioned which very beneficial for upcoming research and may be used for many 

applications.  
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