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ABSTRACT 

A modified Sign Pressure Force (SPF) function able to enhance the existing Edge 

Stopping Function (ESF) in terms of simulation, visualization, and segmentation of high-

resolution satellite images of Nusajaya using the Geodesic Active Contour (GAC) model. 

The modified SPF function is formulated by integrating both the local SPF function and the 

global SPF function. Next, the modified GAC model is extended to a higher-order modified 

GAC model. The second-order and fourth-order modified GAC models are implemented 

using the Finite Difference Method (FDM) and developed into a tri-diagonal and Penta-

diagonal Linear System of Equations (LSE). Some numerical methods such as Second-Order 

Alternating Group Explicit (AGE2), Second-Order Red-Black Gauss-Seidel (RBGS2), and 

Second-Order Jacobi (JB2) methods are used to solve the LSE of second-order modified 

GAC model. Meanwhile, Fourth-Order Alternating Group Explicit (AGE4), Fourth-Order 

Red-Black Gauss-Seidel (RBGS4), and Fourth-Order Jacobi (JB4) methods are used to solve 

the LSE of the fourth-order modified GAC model. The sequential algorithm is developed 

using Matlab R2015a software. The indicator of numerical results is analyzed based on 

execution time, number of iterations, maximum error, root mean square error, and 

computational complexity. The actual high-resolution satellite images of Nusajaya generate a 

large amount of data, resulting in an enormous amount of execution time and high 

computational complexity. Thus, the implementation of a parallel algorithm is a reliable 

alternative for improving the sequential computation and reduced the execution time up to 

82.23%. The parallel computation obtains an extensive large scale simulation capability for 

high-resolution satellite image data. The domain decomposition strategy is implemented by 

using the Matlab parallel computing toolbox based on the shared memory architecture. 

Parallel performance evaluations of numerical methods are measured based on speedup, 

efficiency, effectiveness, temporal performance, and granularity. As a conclusion, this 

investigation has proven the second-order modified GAC model could be extended to a 

fourth-order modified GAC model to simulate and visualize edge-region segmentation of 

high-resolution satellite images. Consequently, the Parallel Fourth-Order Alternating Group 

Explicit (PAGE4) method is an alternative solution for large sparse segmentation process of 

high-resolution satellite images of Nusajaya as it improves the performance up to 82.26%. 

Based on the numerical results and parallel performance measurements, the parallel algorithm 

is proved to reduce the execution time and computational complexity up to 82.23% compared 

to the sequential algorithm. 
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ABSTRAK 

Fungsi Sign Pressure Force (SPF) yang terubah suai dapat menambah baik Edge 

Stopping Function (ESF) dari segi simulasi, visualisasi dan segmentasi imej satelit Nusajaya 

beresolusi tinggi menggunakan model Kontur Aktif Geodesik (GAC). Fungsi SPF yang 

terubah suai dirumuskan dengan mengintegrasikan kedua-dua fungsi SPF tempatan dan 

fungsi SPF global. Seterusnya, model GAC terubah suai diperluaskan kepada model GAC 

terubah suai peringkat lebih tinggi. Model GAC terubah suai peringkat kedua dan peringkat 

keempat berlaksana menggunakan Kaedah Perbezaan Terhingga (FDM) dan dibangunkan 

menjadi Persamaan Sistem Linear (LSE) Tiga Pepenjuru dan Lima Pepenjuru. Beberapa 

kaedah berangka seperti Kumpulan Tak Tersirat Berselang-seli Peringkat Kedua (AGE2), 

Gauss Seidel Merah Hitam Peringkat Kedua (RBGS2), dan Jacobi Peringkat Kedua (JB2) 

telah digunakan untuk menyelesaikan model GAC peringkat kedua tersebut. Manakala 

Kumpulan Tak Tersirat Berselang-seli Peringkat Keempat (AGE4), Gauss Seidel Merah 

Hitam Peringkat Keempat (RBGS4), dan kaedah Jacobi Peringkat Keempat (JB4) pula 

digunakan untuk menyelesaikan model GAC peringkat keempat. Algoritma berurutan 

dihasilkan menggunakan perisian Matlab R2015a. Penunjuk kepada keputusan berangka 

dianalisis berdasarkan masa pelaksanaan, jumlah lelaran, ralat maksimum, purata ralat punca 

kuasa dua, dan kerumitan pengiraan. Imej sebenar satelit Nusajaya beresolusi tinggi 

menghasilkan jumlah data yang cukup besar, masa pelaksanaan yang cukup lama dan 

kerumitan pengiraan yang tinggi. Justeru itu, pelaksanaan algoritma selari adalah alternatif 

yang boleh dipercayai untuk meningkatkan pengiraan berurutan dan mengurangkan masa 

perlaksanaan hingga 82.23%. Pengiraan selari mempunyai keupayaan simulasi berskala besar 

yang luas untuk data imej satelit beresolusi tinggi. Strategi penguraian domain berlaksana 

menggunakan kotak alat pengkomputeran selari Matlab berdasarkan seni bina ruang ingatan 

berkongsi. Ukuran prestasi selari untuk kaedah berangka adalah berdasarkan kepada 

kepantasan, kecekapan, keberkesanan, prestasi sementara, dan pembutiran grid. 

Kesimpulannya, penyelidikan ini telah membuktikan bahawa model GAC terubah suai 

peringkat kedua boleh diperluaskan kepada model GAC terubah suai hingga ke peringkat 

keempat untuk menyelesaikan dan menggambarkan segmentasi kawasan pinggir imej satelit 

beresolusi tinggi. Oleh itu, kaedah Selari Kumpulan Tak Tersirat Berselang-seli Peringkat 

Keempat (PAGE4) adalah penyelesaian alternatif untuk proses segmentasi berskala besar 

bagi imej satelit Nusajaya beresolusi tinggi kerana berupaya meningkatkan prestasi hingga 

82.26%. Berdasarkan keputusan berangka dan ukuran prestasi selari, algoritma selari terbukti 

dapat mengurangkan masa pelaksanaan dan kerumitan pengiraan hingga 82.23% berbanding 

algoritma berurutan. 
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INTRODUCTION 

1.1  Research Background 

High-resolution satellite images provide enormous amounts of important and 

useful data, especially for people who are involved in urban planning, security, 

mapping, and environmental monitoring. However, the human eye is not sufficiently 

sensitive to detect small changes in satellite images, making manual inspection 

unsuitable for exploring hidden information in satellite images (Ganesan et al., 

2015). This manual process is also a time-consuming and challenging way of 

retrieving information from huge quantities of data due to the complexity and 

abundant textures of high-resolution satellite images. 

Image segmentation process is the most important and difficult task in image 

analysis (Gamba and Aldrighi, 2012; Ganesan and Rajini, 2014). Image 

segmentation is highly useful for detecting changes in land usage as well as road and 

building extraction. One part of the segmentation process is the partitioning process, 

in which a digital image is divided into several segments (pixels). Image 

segmentation can reduce image complexity to ease analysis process. More precisely, 

the aim of image segmentation process is to detect objects and image boundaries. 

The image segmentation process extracts an image into a set of contours.  

There are several image segmentation techniques such as threshold-based 

segmentation, edge-based segmentation, region-based segmentation, and clustering-

based segmentation. Threshold-based segmentation is one of the earliest and easiest 

methods in image segmentation and works as a tool to differentiate objects from the 

background. Some examples of threshold-based applications are to extract the region 

of mass in mammography (Makandar and Halalli, 2016), to detect glaucoma in 
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fundus images and to segment the optic disc and cup from a fundus image (Issac et 

al., 2015a, b).  

Threshold-based segmentation works well in segmenting images with 

homogeneous intensity. Homogeneous intensity is defined by the difference in 

intensity between the object and the background. On the contrary, inhomogeneous 

intensity means that both the object and the background have a common intensity in 

the image (Al-amri et al., 2010). However, threshold-based segmentation produces 

mediocre results in segmenting images with high level of noise (Makandar and 

Halalli, 2016).  

Later, edge-based segmentation technique is introduced for segmenting 

specific objects in an image and to overcome the limitation of the threshold-based 

segmentation. Edge-based segmentation works well with images that have clear edge 

information. However, this method produces poor outcomes in segmenting images 

with low gradient and weak edge information (Akram et al., 2015). This is because 

edge-based segmentation depends on the clear edge information or influenced by the 

visibility of edges in an image. Therefore, threshold-based and edge-based 

segmentations have similar limitations. Both segmentation techniques aim to detect 

objects that have clear and meaningful edge information, thus, when the image has 

unclear edge information or lots of noise, the segmentation will not be successful. To 

overcome this limitation, region-based segmentation method is introduced. 

Region-based segmentation approach is better than edge-based segmentation 

because it occupies more pixels in an image (Saini et al., 2013). Compared to edge-

based segmentation, region-based segmentation uses both pixel intensity and image 

gradient. On the other hand, edge-based segmentation uses gradient of the image 

only. However, region-based segmentation produces unsatisfactory results for 

images with intensity inhomogeneity. In other words, the region-based method does 

not produce a successful outcome when both the object and background have 

common intensities. 
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Further research in image segmentation field results in the development of 

another type of image segmentation technique that is clustering-based segmentation. 

Clustering is a process by which objects or patterns are classified so that the samples 

are more similar in the same group than those in different groups (Choy et al., 2017; 

Ji et al., 2012). Clustering-based segmentation directly incorporates local spatial 

information into the segmentation process. The basic process of this technique is to 

replace the pixels with image patches. As a consequence, it provides an efficient way 

to reduce noise effects and sustain information when segmenting image. However, 

this technique is very sensitive to initialization condition of cluster number and 

center. Table 1.1 shows the advantages and disadvantages of each image 

segmentation technique. 

Table 1.1 Summary of image segmentation techniques. 

Techniques Characteristics Advantages Disadvantages Methods/Models 

Threshold-

based 

segmentation 

 

Differentiates 

objects from the 

background. 

Prior 

information of 

the image is not 

needed and 

computationally 

inexpensive. 

Highly noise 

sensitive and 

selection of 

threshold is 

crucial. 

Otsu Threshold 

Method 

(Makandar and 

Halalli, 2016) 

Edge-based 

segmentation 

 

Only uses the 

gradient of the 

image. 

Works for 

images with 

intensity 

inhomogeneity. 

Gives very 

poor results for 

images with 

noise and weak 

edges. 

Geodesic Active 

Contour (GAC) 

Model (Zubaidin, 

2013) 

Region-

based 

segmentation 

 

Uses both the 

intensity of the 

pixel and also 

the gradient of 

the image. 

Performs better 

on images with 

weak or blurred 

edges. 

Produces 

unsatisfactory 

results for 

images with 

intensity 

inhomogeneity. 

Chan-Vese (CV) 

Active Contour 

Model (Korfiatis 

et al., 2015) 
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Techniques Characteristic Advantages Disadvantages Methods/Models 

Clustering-

based 

segmentation 

 

Basically used 

in exploratory 

data analysis. 

Eliminates 

noisy spots 

obtain more 

homogenous 

regions. 

Sensitive to 

initialization 

condition of 

cluster number 

and center. 

Deep Clustering 

(Hershey et al., 

2015),  K-Means 

Clustering 

(Deepika and 

Vishnu, 2016) 

1.2  Active Contour Model (ACM) 

Another approach in image segmentation is Partial Differential Equation 

(PDE)-based segmentation technique. In image segmentation, PDE-based 

segmentation has been developed into an important tool in computer vision and has 

been applied to a wide variety of problems such as edge detection and region 

segmentation (Zubaidin, 2013). A well-known PDE-based segmentation is the active 

contour model (Zhang et al., 2017). Existing active contour models can be classified 

into edge-based (Liu et al., 2017; Pratondo et al., 2017) and region-based models 

(Soudani and Zagrouba, 2018; Liu et al., 2017).  

The edge-based model and region-based model each has their own 

advantages and disadvantages as shown in Table 1.1. The choice between an edge-

based model and region-based model depends on the variance of the images taken 

into account. Edge-based model creates an edge indicator that forces the 

development contour to object boundaries (Akram et al., 2013; Akram et al., 2014; 

Akram et al., 2015). However, this model has difficulty converging to the right 

boundaries when it works on images with extreme noise or weak edges. Geodesic 

Active Contour (GAC) model is one example of an edge-based model (Zhang et al., 

2017; Shafiq et al., 2015). 

Region-based model is much better than edge-based model at dealing with 

blurred edges. The region-based model is not sensitive and can efficiently detect 

object boundaries. A well-known region-based model is the Chan-Vese (C-V) model, 
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which has been extensively used for image segmentation (Korfiatis et al., 2015; 

Mukherjee and Acton, 2015). Although in some aspects the region-based model is 

better than edge-based model, there are limitations when images are intensively 

inhomogeneous. In other words, both the object and background have common 

intensities. 

In real images, intensity inhomogeneity can commonly appear especially in 

high-resolution satellite images. One effective way to work with images with 

intensity inhomogeneity is by taking the local information of the segmented image 

into account (Yuan et al., 2014; Shi et al., 2014; Liu et al., 2013). Li et al. (2008) 

proposed a Region-Scalable Fitting (RSF) active contour model that handles 

intensity inhomogeneity by using local intensity means as constraints. Due to its 

complicated procedures, the RSF model incurs high computational costs which limits 

the use of such method in practice. 

To enhance the performance of the region-based model, several researchers 

have proposed a hybrid model that combined local and global image intensities 

(Yuan et al., 2017; Akram et al., 2017; Soomro et al., 2016). This hybrid model is 

known as the Selective Binary and Gaussian Filtering Regularized Level Set 

(SBGFRLS) model. The signed pressure force (SPF) function is used in SBGFRLS 

for statistical information both inside and outside contours. However, this model 

does not work with inhomogeneous images (Dong et al., 2013; Wang et al., 2012). 

Therefore, the combination of local and global intensity information can evade 

contour evolutions being captured by a local minimum (Wang et al., 2012). 

SBGFRLS is sensitive to contour initialization and intense noise. It is clear that the 

global-based model is unable to be implemented with inhomogeneous images. On 

the other hand, the local-based model is easily affected by initialization, which may 

cause leaking at object boundaries. 

Numerous PDE-based segmentation algorithms have been recently proposed 

to solve the problems of image segmentation, noise removal, image enhancement, 

and image restoration in high-resolution satellite images. Many researchers have 

proved PDE-based segmentation to be very efficient through the use of evolving 
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nonlinear partial differential equations (Aherrahrou and Tairi, 2015; Özdemir and 

Dizdaroǧlu, 2016; Karasev et al., 2013). GAC model is one of the most-popular 

PDE-based tools for computer vision and is a powerful tool for edge detection. 

Nonlinear PDEs are now generally used for edge segmentation, edge detection, and 

image denoising. However, the GAC model also has its drawbacks, as nonlinearity 

will cause bad implementation. To linearize GAC model, Additive Operator Splitting 

(AOS) scheme is incorporated into the model (Li et al., 2016; Yu et al., 2014). Thus, 

the AOS numerical scheme is unconditionally stable for image processing problems. 

Many authors have recently proposed fourth-order PDE analogues for edge 

detection and image detection. There are several reasons to consider fourth-order 

PDEs. First, they are much faster than second-order PDE when working with parallel 

executions. Second, it is possible to have schemes that include curvature effects in 

their dynamics, making them more efficient than second-order PDE (Barbu, 2015; 

2016; Tan et al., 2013). Only a few segmentation techniques researchers have solved 

the segmentation model using numerical methods. Finite Element (FEM), Finite 

Volume (FVM), and Finite Difference Methods (FDM) are some alternative methods 

for PDE linearization (Meister, 2016; Liu et al., 2015; Chernogorova and Valkov, 

2011). PDE can be solved using finite difference approaches that approximate 

solutions at a finite number of points that are usually arranged in a regular grid. Due 

to this, the mathematical model in this research is solved using FDM. Further details 

on FDM are discussed in Chapter 2. 

Large sparse data for a linear system of equations (LSE) is obtained from 

FDM for simulation and visualization. In the existing image segmentation work on 

high-resolution satellite images, little attention has been paid to computational costs. 

Huge digital images may require a large amount of calculation. However, using only 

one CPU will take too much execution time to compute a solution. Therefore, to 

speed up computation, parallelization is implemented to solve large sparse data in 

large digital images. The parallel algorithm is implemented on a parallel computing 

toolbox. The sequential and parallel algorithms are developed using Matlab R2015a 

software in Windows 7 Ultimate on Intel (R) Core (TM) i5-3230M @ 2.60GHz CPU 
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with 8 GB RAM. A detailed description on the parallel algorithm design 

methodology is included and discussed in Chapter 2. 

1.3  Problem Statement 

Existing mathematical models for image segmentation that use GAC model 

with classical edge stopping function gives very poor results for images with 

extensive noise and weak edges. The C-V model with local region-based information 

also produces unsatisfactory result for images with intensity inhomogeneity. The 

second problem is that some researchers only solved the image segmentation model 

statistically and analytically. The third problem is the challenge in acquiring a good 

balance between efficiency and accuracy for large-scale high-resolution satellite 

images. Despite achieving good performance in many scenarios, the second-order 

GAC model still faces many problems in maintaining its efficiency and accuracy in 

large-scale cases. The fourth problem is that large sparse digital data images are 

almost impossible to solve and are highly time-consuming. Execution time increases 

dramatically due to the high computation of intensities both inside and outside the 

contour. 

Based on these limitations, the aim of this research is to enhance the GAC 

model with a modification on the Signed Pressure Force (SPF) function obtained 

from Zhang et al., (2011) and Reddy and Zaheeruddin, (2016). Enhancement of the 

GAC model will improve image quality in terms of resolution and desired detection 

efficiency. The proposed model is therefore capable of segmenting images with 

intense noise, weak edges, and inhomogeneity. Thereafter, the mathematical model is 

discretized using central FDM to obtain the results. This thesis developed algorithms 

for higher-order model, whose accuracies are improved based on higher-order FDM. 

The Jacobi (JB), Red Black Gauss-Seidel (RBGS), and Alternating Group Explicit 

(AGE) methods are used to solve LSE. Since this thesis deals with large digital data 

images, computational costs can be high, which renders its utilization for time-

critical applications problematic despite the advantages of the GAC model. 

Therefore, parallelization is used to reduce computational time and improve 

performance. 
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1.4  Research Objective  

The research objectives are as follows: 

a) To enhance the GAC model with a modification of the Signed Pressure Force 

(SPF) function obtained from Zhang et al., (2011) and Reddy and Zaheeruddin, 

(2016). 

b) To formulate the second-order modified GAC model in (a) for an extension to a 

fourth-order modified GAC model, which is discretized using FDM to 

approximate mathematical model solutions. 

c) To solve the LSE in (b) using AGE, RBGS, and JB methods. 

d) To develop sequential and parallel algorithms from (c) using Matlab R2015a 

software and MatlabMPI based on shared memory architecture. 

e) To analyze the results in (d) based on the numerical results for sequential 

algorithms and PPE for the parallel algorithm. 

1.5  Research Scope 

This research focuses on detecting the land-use changes on high-resolution 

satellite images of Nusajaya using the modified GAC model. Based on the 

limitations of the existing edge stopping function, a modification of the SPF function 

is proposed for the GAC model that incorporates the advantages from both global 

region-based and local-region based models. The mathematical model is discretized 

using FDM based on a central difference formula. The numerical solution that 

supported discretization is focused on AGE, RBGS, and JB methods. The numerical 

solution is solved using both sequential and parallel algorithms. The sequential 

algorithm is implemented in Matlab software. Since high-resolution satellite images 

involve large sparse algorithms and large digital data, the parallel algorithm is 

applied on standard parallel processing techniques and Message Passing Interface 

(MPI) implementations in Matlab. The scope of this research is illustrated in Figure 

1.1 where the highlighted component represents the area focused in this thesis. 
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1.6  Research Significance 

The first significance of this research is the modification of the SPF function 

for the GAC model as an alternative method for simulating and visualizing the edge-

region segmentation of high-resolution satellite images. The second significance of 

this thesis is the extension of the modified GAC model to a fourth-order PDE for 

high-resolution satellite image segmentation to improve partial differential equation 

accuracy. The third significance is the implementation of the AGE, RBGS and JB 

numerical methods to solve the modified GAC model. The fourth significance is the 

use of parallel implementation to solve large sparse data for the modified GAC 

model on a parallel computing system, reducing computational time and increasing 

performance. The numerical results are measured to prove that the AGE method is 

the best iterative method. It is also found that the fourth-order modified GAC model 

has better accuracy than the second-order modified GAC model. In addition, the 

parallel algorithm performed better than the sequential algorithm. Furthermore, this 

research is of great significance in ensuring sustainable land development. 

1.7  Thesis Organization 

This thesis presents two segmentation models for high-resolution satellite 

images using GAC model to address pertinent issues in satellite images such as weak 

edges and intensity inhomogeneity. Overall, this thesis contains six chapters. Chapter 

1 describes the research problem of using image segmentation techniques on high-

resolution satellite images. This chapter also discusses the research objectives, scope, 

and significance of the research. 

Chapter 2 reviews past and current literature related to the GAC image 

segmentation tool. The review reveals the strengths and weaknesses found in each of 

the segmentation models. The chapter also provides intensive literature coverage on 

FDM and a basic scheme for solving PDE. JB, RBGS, and AGE numerical methods 

are also discussed in this chapter. The chapter then explains the numerical analysis 

based on convergence, consistency, stability, numerical error, and computational 
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complexity. The parallel performance evaluation is based on speedup, efficiency, 

effectiveness, temporal performance, and granularity. This chapter also contains an 

overview of the parallel computing toolbox on Matlab. This chapter ends with 

summary on the GAC model in producing satisfactory segmentation result for 

satellite images. 

Chapter 3 gives an overview of the methodology of the two proposed models 

that are able to improve the performance of the classical GAC model in segmenting 

more challenging satellite images. The chapter provides the formulation of the 

modified SPF function. Simulation of the segmentation models is analyzed and 

shown through graphical representations using Matlab R2015a software in Windows 

7 Ultimate on Intel (R) Core (TM) i5-3230M @ 2.60GHz CPU with 8 GB RAM. 

Chapter 3 ends with a summary of each proposed method. 

Chapter 4 introduces the first proposed second-order modified GAC model 

that improves the classical GAC model using modified SPF function. This chapter 

contains the governing process of the mathematical model, numerical results, and 

parallel performance evaluations of the sequential and parallel algorithms for the 

second-order modified GAC model. The LSE obtained from FDM is solved using the 

SAGE2, SRBGS2, and SJB2 numerical methods. Sequential performance is based on 

execution time, number of iterations, maximum error, and root mean square error 

(RMSE).  These numerical methods are parallelized to improve the performance of 

the sequential algorithm. The parallel performance evaluations of the PAGE2, 

PRBGS2, and PJB2 methods are measured based on speedup, efficiency, 

effectiveness, temporal performance, and granularity. 

Chapter 5 describes the governing process of the proposed fourth-order 

modified GAC model to enhance the capability and accuracy of the second-order 

modified GAC model for segmenting satellite images in the presence of high level of 

noise and high intensity inhomogeneity. The fourth-order modified GAC model is 

discretized using FDM with a fourth-order central difference formula to create a set 

of Penta-diagonal LSE. The LSE is solved using the SAGE4, SRBGS4, and SJB4 

methods. The numerical results are compared based on execution time, number of 
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iterations, maximum error, and RMSE. The parallel performance evaluations of the 

PAGE4, PRBGS4, and PJB4 methods are reported accordingly. To support the 

segmentation results, quantitative evaluation is conducted which is based on 

accuracy metric to measure the percentage of accuracy of the segmentation models. 

Chapter 6 concludes the research and provides suggestions for future works. 

It mainly highlights the outcomes of the research in terms of its aim and objectives. 

The chapter also gives some recommendations for future research. 
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