
ORDER PRODUCT PRIME GRAPH AND ITS VARIATIONS OF SOME FINITE GROUPS

MUHAMMED BELLO

A thesis submitted in fulfilment of the

requirements for the award of the degree of

Doctor of Philosophy

Faculty of Science

Universiti Teknologi Malaysia

NOVEMBER 2021



DEDICATION

To my father and my mother, who with love and effort have accompanied me in this
process, without hesitating at any moment of seeing my dreams come true, which are

also their dreams.

iv



ACKNOWLEDGEMENT

In the Name of Allah, the Most Beneficent, the Most Merciful. All the praises

and thanks be to Allah, who in His infinite mercy bless me with the strengths to

complete this thesis. I would like to express my special and heartily thanks to my

supervisor, Assoc. Prof. Dr. Nor Muhainiah Mohd Ali for her patience, advice,

motivation, and supports in the completion of this thesis. I am also very grateful to

my external co-supervisor, Prof. Dr. Ahmad Erfanian from Ferdowsi University of

Mashhad for providing insight, expertise and encouragement that greatly assisted the

research.

I would like to extend my gratitude to Universiti Teknologi Malaysia for

supporting me with IDF and to Federal University of Kashere for all their full support.

I would also like to thank all friends and members of Applied Algebra and Analysis

Group (AAAG) for frequent organizing and participating in educative programs.

I am indebted to all my family members who have all made a great contribution

in helping me to reach this stage in my life and my studies. My special and deepest

thanks go to my mother Hafsat Isah, my father Ibrahim Dauda and my beloved

wife Fatima Abdullahi Aliyu for the endless support, continued prayers, and for

enlightening the whole world to me. There are no words that can express my gratitude

towards my brothers Rabiu Ibrahim, Kabiru Ibrahim and others who supported me

through this period.

v



ABSTRACT

The study of groups from geometric viewpoint has recently become one of
the focus of researches in group theory, which started with the Cayley graph. Later,
the study grew through the years, leading to the definition of many graphs of groups
and investigation of graphical properties of finite groups. This development exists
due to the fact that groups can be profitably studied as geometric objects in their
own right, since the geometry exists both in the group itself and in the spaces it
acts on. This study basically shows how groups and spaces interact together, which
helps in understanding the symmetries of much more complicated objects. In this
thesis, the order product prime graph of finite groups is defined as the graph whose
vertices are the elements of the groups, and any two vertices are adjacent if and only
if the product of their orders is a prime power. Moreover, another graph which is
commuting order product prime graph of finite groups is defined as the graph whose
vertices are the elements of finite groups, and any two vertices are adjacent if and
only if they commute and the product of their order is a prime power. Furthermore,
these definitions are extended to the order prime permutability graph of subgroups of
finite groups as the graph whose vertices are the proper subgroups of finite groups,
and any two vertices are adjacent if and only if they permute and the product of their
order is a prime power. Also the order prime permutability graph of cyclic subgroups
of finite groups is defined as the graph whose vertices are the proper subgroups of
finite groups, and any two vertices are adjacent if and only if they are permuting cyclic
subgroups and the product of their orders is a prime power. The order product prime
graph is connected, complete and regular on all quasi-dihedral groups, cyclic groups
of prime power order and generalized quaternion groups, Q4n, where n is even prime
power. On dihedral groups, the graph is connected only if the degree is prime power,
but complete and regular if the degree is even prime power. The commuting order
product prime graph is connected, complete and regular on cyclic groups of prime
power order and connected on quasi-dihedral groups, dihedral groups of prime power
degree and generalized quaternion groups, Q4n, where n is even prime power. Next
is the order prime permutability graph of subgroups, which is connected, complete
and regular on cyclic groups of prime power order and connected on quasi-dihedral
groups, dihedral groups, Dn and generalized quaternion groups, Q4m, where m is
even prime power or just prime. Finally, the order prime permutability graph of
cyclic subgroups, is connected, complete and regular on cyclic groups of prime power
order and connected on dihedral groups of prime degree and generalized quaternion
groups, Q4p. The properties of the graphs are used in obtaining their invariants
on cyclic groups, dihedral groups, generalized quaternion groups and quasi-dihedral
groups, which include the clique number, independence number, domination number,
girth, diameter, vertex chromatic number, edge chromatic number and some other
recently introduced chromatic numbers, which are the dominated chromatic number
and locating chromatic number. Moreover, the general presentations of the graphs on
the above groups are used in exploring the number of perfect codes of the graphs,
which has also been recently introduced on graphs of groups.
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ABSTRAK

Kajian kumpulan dari sudut pandangan geometri telah menjadi salah satu fokus
penyelidikan dalam teori kumpulan, yang bermula dengan graf Cayley. Kemudian, kajian ini
berkembang dari tahun ke tahun, yang membawa kepada banyak penakrifan graf kumpulan
dan penyiasatan sifat geometri kumpulan terhingga. Perkembangan ini wujud disebabkan
oleh hakikat bahawa kumpulan boleh dikaji sebagai objek geometri dalam hak mereka sendiri,
kerana geometri wujud dalam kumpulan itu sendiri dan di ruang yang ia bertindak. Kajian ini
pada dasarnya menunjukkan bagaimana kumpulan dan ruang berinteraksi bersama-sama, yang
membantu dalam memahami simetri objek yang lebih rumit. Dalam tesis ini, graf peringkat
hasil darab perdana bagi kumpulan terhingga ditakrifkan sebagai graf yang bucunya adalah
unsur-unsur kumpulan tersebut, dan mana-mana dua bucu adalah bersebelahan jika dan hanya
jika hasil darab peringkat mereka adalah kuasa bagi nombor perdana. Selain itu, satu lagi
graf iaitu graf peringkat hasil darab perdana bertukar tertib kumpulan terhingga ditakrifkan
sebagai graf yang bucunya adalah unsur-unsur kumpulan terhingga, dan mana-mana dua bucu
adalah bersebelahan jika dan hanya jika mereka adalah kalis tukar tertib dan hasil darab
peringkat mereka adalah kuasa bagi nombor perdana. Seterusnya, definisi ini diperluaskan
kepada graf peringkat kebolehaturan perdana subkumpulan kumpulan terhingga sebagai graf
yang bucunya adalah subkumpulan wajar kepada kumpulan terhingga, dan mana-mana dua
bucu adalah bersebelahan jika dan hanya jika mereka adalah berpilih atur dan hasil darab
peringkat mereka adalah kuasa bagi nombor perdana. Juga, graf peringkat kebolehaturan
perdana subkumpulan kitaran kumpulan terhingga ditakrifkan sebagai graf yang bucunya
adalah subkumpulan wajar kumpulan terhingga, dan mana-mana dua bucu adalah bersebelahan
jika dan hanya jika mereka adalah subkumpulan kitaran berpilih atur dan hasil darab peringkat
mereka adalah kuasa bagi nombor perdana. Graf peringkat hasil darab perdana adalah
bersambung, lengkap dan sekata pada semua kumpulan kuasi-dihedral, kumpulan kitaran
peringkat kuasa perdana dan kumpulan kuarternion umum, Q4n, di mana n adalah kuasa
perdana genap. Pada kumpulan dihedral, graf adalah bersambung hanya jika darjahnya adalah
kuasa perdana, tetapi lengkap dan sekata jika darjahnya adalah kuasa perdana genap. Graf
peringkat hasil darab perdana bertukar tertib adalah bersambung, lengkap dan sekata pada
kumpulan kitaran peringkat kuasa perdana dan bersambung pada kumpulan kuasi- dihedral,
kumpulan dihedral darjah kuasa bagi nombor perdana dan kumpulan kuarternion umum, Q4n,
di mana n kuasa perdana genap. Seterusnya adalah graf peringkat kebolehaturan perdana
subkumpulan, yang mana bersambung, lengkap dan sekata pada kumpulan kitaran peringkat
kuasa perdana dan bersambung pada kumpulan kuasi-dihedral, kumpulan dihedral, Dn dan
kumpulan kuarternion umum, Q4n, di mana n adalah kuasa perdana genap atau hanya perdana.
Akhir sekali, graf peringkat kebolehaturan perdana subkumpulan kitaran adalah bersambung,
lengkap dan sekata pada kumpulan kitaran peringkat kuasa perdana dan bersambung pada
kumpulan dihedral darjah perdana dan kumpulan kuarternion umum, Q4n. Sifat-sifat ini
digunakan dalam mendapatkan invarian umum graf kepada kumpulan kitaran, kumpulan
dihedral, kumpulan kuarternion umum dan kumpulan kuasi-dihedral, yang termasuk nombor
klik, nombor ketakbersandaran, nombor dominasi, lilitan, diameter, nombor berkroma bucu,
nombor berkroma tepi dan beberapa nombor berkroma lain yang baru-baru mi diperkenalkan,
iaitu nombor berkroma yang dominasi dan nombor berkroma penentu. Selain itu, persembahan
umum graf pada kumpulan graf di atas digunakan bagi meneroka bilangan kod sempurna
kepada graf, yang juga baru-baru ini diperkenalkan pada graf kumpulan.
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CHAPTER 1

INTRODUCTION

Various techniques have been used by researchers in investigating the

properties of a group as well as classifying it according to its properties, which happen

to be one of the great achievements of modern mathematics. One of the techniques

found to be useful is by defining graphs to the groups and investigate their properties

in terms of the corresponding geometric structures. The study creates a bridge to move

from group theory to graph theory in order to obtain the properties of one in terms of

the other. According to Devi [1], the properties of a group can be explored through

the relationship among its elements or subgroups. This relationship can be considered

as the vertex adjacency of the corresponding defined graph.

Another technique is by classifying the groups in terms of their graphical

properties. The classification can be done based on the invariants or perfect codes

of the graphs of groups. Graph invariants are the properties of graphs that preserve

isomorphism, which can serve as analytical tools for investigating the abstract

structures of graphs. These invariants include clique number, independence number,

diameter, girth and many more. Also, the study of perfect code plays important role in

the theory of error correction, since it classifies codes that achieve maximum possible

error correction without ambiguity. The study of perfect codes has been recently

extended to algebraic structures leading to the investigation of the perfect codes for

graphs of groups and determining the subgroup perfect codes in finite groups.

In this research, some new graphs of finite groups are introduced, namely

the order product prime graph, the commuting order product prime graph, the

order prime permutability graph of subgroups, and the order prime permutability
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graph of cyclic subgroups of finite groups. The properties of these graphs are

investigated for some categories of finite groups which are cyclic groups, dihedral

groups, generalized quaternion groups, and quasi-dihedral groups. These groups

are chosen because cyclic groups are normal subgroups of dihedral groups and also

to generalized quaternion groups and quasi-dihedral groups. Thus, the relationship

among these groups are further explored. Meanwhile, the general presentations for

the graphs on these groups are investigated. Additionally, the cyclic groups, dihedral

groups, generalized quaternion groups, and quasi-dihedral groups are classified in

terms of their geometric structures as one of connected, complete, regular, and planar.

Moreover, some invariants of the graphs on these groups which are the clique number,

independence number, domination number, girth, diameter, vertex chromatic number,

edge chromatic number, dominated chromatic number, and locating chromatic number

are investigated. Furthermore, the number of the perfect codes of these graphs on

the cyclic groups, dihedral groups, generalized quaternion groups, and quasi-dihedral

groups are investigated.

1.1 Research Background

The study of groups in connection to graph theory was established by Cayley

[2] in 1878, when he defined the graph that explains the abstract structure of a group

generated by a set of generators. This study was reintroduced by Dehn in [3], where

he called the Cayley graph a group diagram which led to the geometric group theory

of today. More interestingly, the study attracted the attention of many researchers

leading to the establishment for the study of the properties of algebraic structures

such as groups, semi-groups, rings, modules, vector spaces, fields, and many more

by defining graphs to the structures and study its properties using graphs theoretical

tools. For example, after the introduction of the Cayley graph, Dehn in [3] used the

graph to solve word problem for fundamental groups of surfaces with genuse greater

than or equals to 2. Much later this graph has been used by Kelarev et al . [4] to

classify data which can be recorded as a set of strings or sequences of letters over a

2



finite alphabet.

Beside Cayley graph, there is another graph that is called order prime graph of

groups defined in [5] by Sattanathan and Kala as a graph with the elements of groups

as vertices and two vertices a, b are adjacent if and only if gcd
(
|a|, |b|

)
= 1. This

definition was generalized five years later by Rajendra and Reddy in [6], by defining

general order prime graph of finite groups as a graph having the elements of groups as

its vertices, and two vertices a and b are adjacent if and only if gcd
(
|a|, |b|

)
= 1 or p,

where p is a prime number. Later on
(
|a|, |b|

)
is used to represent gcd

(
|a|, |b|

)
.

In addition, non-commuting graph of groups defined by Newmann in [7],

which is the complement of commuting graph. Later, in [8], Bertram used the

combinatorial properties of the commuting graph to prove three fundamental and non-

trivial theorems on finite groups. Growing body of literature shows that this concept

was extended by defining graphs where the vertices are the subgroups of groups. For

instance, Aschbacher in [9], defined the commuting graph on subgroups of groups,

which led to defining some graphs whose vertices are the subgroups of groups. One

of these graphs is the permutability graph of conjugacy classes of cyclic subgroups

which was defined by Ballester et al. in [10]. More recently, Rajkumar and Devi

in [11], defined the permutability graph of subgroups of a given group, as a graph with

vertex set consisting of all the proper subgroups of a group and two distinct vertices

are adjacent if the corresponding subgroups permute. In the same year, Rajkumar and

Devi in [12], introduced the permutability graph of cyclic subgroups as a graph having

proper cyclic subgroups as its vertices and two vertices are adjacent if and only if they

permute.

The vertex adjacencies of the previous graphs of groups are associated with

single relationship, like the relationship among the generators of a group, coprimeness,

relatively primeness or commutativity among the elements of a group. However,

there are no graphs of groups, which the vertex adjacencies are associated with

both primeness and commutativity within the groups elements or subgroups of a

3



group. Accordingly, new graphs of groups called the order product prime graph of

finite groups, commuting order product prime graph of finite groups, order prime

permutability graph of p-subgroups of finite groups and order prime permutability

graph of cyclic subgroups of finite groups are introduced in this thesis. Furthermore,

those newly defined graphs are determined for some finite groups which are cyclic

groups, dihedral groups, generalized quaternion groups, and quasi-dihedral groups.

1.2 Problem Statement

Group properties investigation and group classification require considerable

amount of information that need reasonable time to complete. To tackle out this long

process, the study of group is linked with the concept of graph. Accordingly, part of

the aim of this research is to introduce some graphs of groups and use them to study the

graphical properties of groups. Futhermore there are limited works involving finding

the general presentations for graphs of groups, particularly on cyclic groups, dihedral

groups, generalized quaternion groups and quasi-dihedral groups. Thus, this research

involves investigating the general presentations of some types of graphs of groups.

Finally, not much work are available in the literature on perfect codes on graphs of

groups. Therefore, in this research, the perfect codes of the new graphs of groups are

investigated.
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1.3 Research Objectives

The objectives of this research are:

(a) To introduce some new graphs of finite groups and determine their general

presentations on cyclic groups, dihedral groups, generalized quaternion groups,

and quasi-dihedral groups.

(b) To investigate some basic properties of the new graphs on the groups in (a) such

as connectivity, completeness, regularity, and planarity.

(c) To obtain graph invariants of the groups in (a) which consist of clique number,

independence number, domination number, girth, diameter, vertex chromatic

number, dominated chromatic number, locating chromatic number, and edge

chromatic number.

(d) To investigate the number of perfect codes for the graphs on the groups in (a).

1.4 Scope of the Study

This research focuses on the study of the graphical properties of some finite

groups. Some new graphs of groups which are the order product prime graph,

commuting order product prime graph, order prime permutability graph of subgroups

of groups, and order prime permutability graph of cyclic subgroups of groups are

defined. Meanwhile, the properties of these graphs which are the general presentations

of the graphs are investigated. Moreover, the general presentations are used in

obtaining the invariants of the graphs. The groups under the scope of this research

are cyclic groups, Zn, dihedral groups, D2n, generalized quaternion groups, Q4n, and

quasi-dihedral groups, QD2n .
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1.5 Significance of Findings

Even though there are many techniques for investigating the properties of a

group, but one of those that found to be useful is by defining graph to the groups and

investigate the graphical properties of the group.

One of the major contributions of this research is to introduce some new graphs

of groups that will contribute in adding new dimension of finding graphical properties

of some finite groups. Furthermore, the general presentations of the new graphs are

obtained on cyclic groups, dihedral groups, generalized quaternion groups, and quasi-

dihedral groups, which may inspire future works in geometric group theory.

1.6 Research Methodology

This thesis is divided into two parts. The first part focuses on introducing some

new graphs of groups, while the second part focuses on investigating the properties

of the new graphs on groups. Firstly, the fundamental and essential concepts of

some existing graphs of groups are studied. In the first part, inspired by the previous

researches on graphs of finite groups, some new graphs of finite groups which are order

product prime graph, commuting order product prime graph, order prime permutability

graph of p-subgroups, and order prime permutability graph of cyclic subgroups of finite

groups are presented.

In the second part, the properties of these graphs are presented. At first, the

general presentations of the graphs are presented using the properties of the elements

and subgroups of the cyclic groups, Zn, dihedral groups, D2n, generalized quaternion

groups, Q4n, and quasi-dihedral groups, QD2n . It is proven that the cyclic subgroups

are normal subgroups of the dihedral groups, generalized quaternion groups, and quasi-

dihedral groups. The computation of the general presentations of the graphs based

6



on the definitions requires determining the order and centralizers of the elements and

subgroups in the groups. Therefore, the order of the elements in the cyclic groups, are

determined using the idea of a cyclic groups, Zn, since the order of an element ak ∈ Zn,

is |ak| = n
gcd(n,k)

. While the rest of the elements of the dihedral groups, generalized

quaternion groups, and quasi-dihedral groups, their group presentation shows that the

order of each of the element is of even prime power. Hence, by the concept of the order

of the elements and subgroups with their centralizers, the general presentations of the

graphs of groups are provided. Afterwards, the general presentations of the graphs are

used in obtaining the invariants of the graphs, which are the clique number, indepedent

number, domination number, girth, and diameter. Moreover, the independent sets are

used in coloring the vertices of the graphs. In addition, the special case of Baranyai’s

Theorem and Vizing’s Theorem were used in coloring the edges of the graphs. Finally,

the independent sets and the concept of neighborhood of a vertex, which is defined

as the set of all the vertices incident to it is used in obtaining the perfect codes of the

graphs.

Figure 1.1 illustrates the research methodology of this thesis.

1.7 Thesis Organization

This thesis is composed of seven chapters which are the introduction, literature

review, results on order product prime graph, results on commuting order product

prime graph, results on order prime permutability graph of subgroups, results on order

prime permutability graph of cyclic subgroups of finite groups, and the conclusion.

The first chapter, is the introduction chapter, which gives the brief overview of

the thesis that includes the background of the research, problem statement, objectives

of the research, scope of the research, significance of the study, research methodology,

and thesis organization.
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In Chapter 2, the review of the related literature is provided. This chapter is

divided into three sections. The first section presents some preliminaries related to

group theory. It also contains some definitions and basic concepts on group theory. In

the second section, some terminologies on graph theory are presented. Finally, in the

third section, some definitions, basic concepts, terminologies, and previous studies on

graph of groups are presented.

Chapter 3 is divided into two sections. The first section is devoted to

presenting the first new graph of groups, which is called the order product prime graph.

Meanwhile, in the second section, the general presentations, the invariants and number

of perfect codes of the graph on cyclic groups, dihedral groups, generalized quaternion

groups, and quasi-dihedral groups are provided.

Chapter 4 is also divided into two sections. In the first section, the second

new graph of groups is presented, which is called the commuting order product prime

graph. Concurrently, in the second section, the general presentations, the invariants and

number of perfect codes of the graph on cyclic groups, dihedral groups, generalized

quaternion groups, and quasi-dihedral groups are given.

In Chapter 5, another graph of groups, which is called the order prime

permutability graph of p-subgroups is presented. In the second section, the general

presentations, the invariants and number of perfect codes of the graph on cyclic

groups, dihedral groups, generalized quaternion groups, and quasi-dihedral groups are

provided.

Similarly, Chapter 6 is also divided into two sections. The first section presents

the order prime permutability graph of cyclic subgroups. In the second section, the

general presentations, the invariants and number of perfect codes of the graph on cyclic

groups, dihedral groups, generalized quaternion groups, and quasi-dihedral groups are

presented.

8



Finally, Chapter 7 summarized and conclude the whole thesis which gives a

brief summary of the findings. Moreover, areas of further research are also suggested

in this chapter.

The outline of the thesis is illustrated in Figure 1.2.

Figure 1.1 Flow chart of research methodology
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Figure 1.2 Flow chart of thesis organization
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