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ABSTRACT 

Nowadays, membrane separation has become a popular method for various 

industries worldwide. Membrane separations are often used in water filtration, food 

industries and gas separation. For more efficient use of membranes, the control of 

membrane fouling, which can be defined as fouling requiring reagents is of 

importance. Fouling of membranes is a significant issue for the efficiency of 

membrane filtration in wastewater treatment systems. Research on ultrafiltration 

membranes for water treatment is gaining more attention especially in production 

sectors. However, in solving the reduction of fouling condition problems, previous 

studies mostly used an experimentation that varied one of the independent filtration 

conditions and fixed the others. The common problem is the ultrafiltration process 

cannot be performed effectively due to non-optimum settings of the filtration 

conditions. Hence, in order to solve these issues, this study aims to use Particle Swarm 

Optimization (PSO) to optimize the polyethersulfone (PES) ultrafiltration hollow fiber 

membrane conditions for oily wastewater treatment to maximize fouling index. In this 

experiment, five variables were evaluated. They were pH and temperature of feed 

solution, time, transmembrane pressure and surface area of membrane.  In order to 

minimize the number of experiments but still capable of quantifying the effect of each 

variables, Response Surface Methodology (RSM) of half factorial design was applied. 

The experimental plan was based on a combination of high levels and low levels, half 

factorial designs with resolution V, center points, as well as axial points. Furthermore, 

the regression models were generated by employing the Design Expert 6.0.5 software 

and they were found to be significant and valid. Then, the regression models obtained 

were proposed as the objective functions of PSO to determine the optimal fouling 

conditions. The MATLAB software was used to code and execute the PSO. Based on 

the results, the optimal conditions occurred at pH of 11.40, temperature of 32.5 °C, 

time of 28 minutes, transmembrane pressure of 2.97 bar and surface area of 0.042 m2. 

The membrane morphology under the influence of different ultrafiltration conditions 

was investigated via scanning electron microscope (SEM). As a conclusion, the 

fouling index during the ultrafiltration process of PES hollow fiber membrane has been 

optimized to reduce membrane fouling. The experimental results of this study can help 

to reduce the fouling of membranes, thus contributing to a more sustainable filtration 

system. As a future research direction, the solutions from PSO can be compared with 

other optimization techniques such as Genetic Algorithm (GA). 
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ABSTRAK 

Pada masa kini, pemisahan membran semakin dikenali di pelbagai industri di 

dunia. Pemisahan membran sering digunakan di dalam penapisan air, industri 

makanan dan pemisahan gas. Untuk penggunaan membran yang lebih cekap, kotoran 

membran hendaklah dikawal dengan mengenal pasti reagen pengotoran adalah sangat 

penting. Kotoran membran menjadi isu yang utama bagi kecekapan proses penapisan 

membran di dalam sistem rawatan sisa air. Penyelidikan ultrapenurasan membran 

untuk rawatan air amat popular terutamanya di dalam sektor pengeluaran. 

Walaubagaimanapun, di dalam mengurangkan masalah pengotoran, kebanyakannya 

kajian lepas ditangani dengan menggunakan eksperimen yang hanya mengubah salah 

satu keadaan semasa proses penapisan dan menetapkan keadaan yang lain. Masalah 

yang biasa berlaku ialah proses ultrapenurasan yang tidak dapat dilakukan dengan 

berkesan kerana keadaan tetapan yang tidak sesuai. Oleh itu, untuk menyelesaikan isu 

ini, tujuan kajian ini adalah dengan menggunakan kaedah pengoptimuman kumpulan 

zarah (PSO) untuk mengoptimumkan keadaan membran gentian geronggang 

ultrapenurasan polyetehersulfone (PES) yang digunakan dalam rawatan air sisa 

berminyak untuk meningkatkan indeks pengotoran. Dalam ekperimen ini, lima 

pembolehubah telah dinilai. Ia adalah pH, suhu cecair kajian, masa, tekanan 

transmembran dan luas permukaan membran. Untuk mengurangkan bilangan kajian 

tetapi masih berkeupayaan untuk mengukur kesan setiap pembolehubah, Metodologi 

Permukaan Tindakbalas (RSM) dengan reka bentuk faktoran pecahan telah digunakan. 

Pelan eksperimen ini berdasarkan gabungan tahap tinggi dan tahap rendah, reka bentuk 

faktoran separuh dengan resolusi V, titik tengah dan mata paksi. Perisian Design 

Expert 6.0.5 telah menghasilkan model regresi dan model didapati penting dan sah. 

Kemudian, model regresi yang diperolehi dicadangkan sebagai fungsi objektif PSO 

untuk menentukan keadaan pengumpulan kotoran optimum. Perisian MATLAB 

digunakan untuk mengaturcara dan melaksanakan PSO. Berdasarkan keputusan, 

kedudukan keadaan optimum berlaku apabila pH adalah 11.40, suhu adalah 32.5°C, 

masa adalah 28 minit, tekanan transmembran adalah 2.97 bar dan luas permukaan 

membran adalah 0.042 m2. Morfologi membran di bawah pengaruh keadaan 

ultrapenurasan berbeza disiasat menggunakan mikroskop imbasan electron (SEM). 

Sebagai kesimpulan, indeks pengotoran semasa proses ultrapenurasan membran 

gentian beronggang PES telah dioptimumkan untuk mengurangkan pencemaran 

membran. Hasil kajian ekperimen ini dapat membantu mengurangkan kotoran  

membran sekaligus menyumbang kepada sistem penapisan yang lebih lestari. Untuk 

penyelidikan masa hadapan, penyelesaian daripada PSO boleh dibandingkan dengan 

teknik pengoptimuman yang lain seperti Genetik Algoritma (GA). 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Problem Background 

Membrane separation has become very popular separation in various industries 

in the world especially in the global oil industry. Membrane separation is often used 

in water filtration, food industry and gas separation. Nowadays, global oil demand is 

increasing due to the rapid development of many industries, such as high vehicle and 

fuel consumption for the manufacturing industry. By the year 2015, the global oil 

demand is expected to increase to 94 million barrel per day (MB/d) (1 barrel = 100-

200 L). For every barrel of oil produced, three times of barrel of oily wastewater is 

generated. As a result, large amounts of oily wastewater have been generated from the 

oil refining industry (Agustin et al., 2008; Ong et al., 2015). To avoid polluting the 

environment, all wastewater must be treated before being discharged. Malaysia’s 

maximum oil discharge limit is 10 ppm, which is much lower compared to the other 

countries (International Energy Agency (IEA), 2021). Since oily wastewater consists 

of various compositions of harmful hydrocarbons, chemical elements and heavy 

metals before being discharged into water bodies, it needs to be treated properly. 

However, biological, chemical, and physical treatments are unable to completely 

separate oil molecules from water, and the process requires a large working area (El-

Naas et al., 2009).  

Membrane filtration technologies are considered as one of the best option to 

devoted oily wastewater treatment to meet the stringent local discharged limit and to 

deal with increasing global oil demand. Membrane separation processes must become 

more flexible and practical in order to become one of the most effective and demanding 

methods used to meet demand in a variety of separation-related industries (Gryta et 

al., 2001). The ability of this membrane technology to separating the composition of 

various components into two or more products makes it more popular choice to be 
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selected based on its potential and advantages. The research by Loeb and Sourirajan 

in early 1960s in high-flux asymmetric membranes have started the development of 

further membrane separation methods. Membrane filtration is not economically 

realistic in the last thirty years, but with the revolution of new technologies, processes, 

and material used, membrane technology has been acknowledged as a commercially 

attractive and highly successful option for purification and separation systems 

(Wiesner & Chellam, 1999). Therefore, they produce water with stable quality in 

meeting human, environmental, and industrial demands. 

Currently, many membrane separation methods are available. But somehow, 

there is one of the membrane processes that having rapidly growth in recent years, 

which is ultrafiltration (UF) processes. Basically, UF membranes is the separation 

process of very small particles and dissolving macromolecules from compositions 

using asymmetric membranes with a size of pore between 0.01 to 0.1 μm. Moreover, 

UF process is the widest method used in many industries compared to other membrane 

processes because of high efficiency separation technology with low energy consume 

(Nunes & Peinemann, 2006). The materials used in membrane research include both 

organic and inorganic materials. Many studies have been conducted in recent years to 

improve membrane performance in terms of membrane characteristics such as top 

layer porosity, thickness, sub-layer porosity, and presence of macrovoids, as well as to 

find new membrane methods and materials for developing high-performance 

membranes.  

In general, membrane performance can be divided into two attributes which 

are membrane productivity (flux) and extent of separation (rejection of various feed 

components). Membranes with highest flux and rejection are required, where periodic 

efforts for maximizing one property will degrade properties of vice versa (Qin et al., 

2000). In addition, the process of membrane separation using polymer membranes has 

been marketed. Polyethersulfone (PES) is selected as the main material (polymer) in 

this research because of its simple approachability and processing, good selectivity 

attributes, strong permeability and mechanical characteristics (Li et al., 2004). PES is 

also identified as an amorphous glassy and hydrophilic polymer in a group of sulphons 

and is suitable for use in UF separation processes through wet-dry inversion technique. 
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UF membranes made from PES polymers showed wider level of temperature 

resistance and different of pH level (Wang et al., 2010).  

The phase inversion spinning technique has been generally accepted as the 

standard technology for manufacturing commercial membranes. It is widely used and 

has become a popular technology for manufacturing asymmetric hollow fiber 

membranes. In short, when the spinning solution is immersed and coagulated in the 

coagulation bath, the phase inversion spinning technique begins. During the whole 

process, the solvent and non-solvent in the spinning solution are exchanged. As a 

result, it produces the characteristic structure of an asymmetric membrane, which 

consists of a dense top layer and porous sub layers (Jung et al., 2004). In this research, 

asymmetric PES UF hollow fiber membranes would be fabricated according to the 

dry-wet phase inversion spinning technology. 

Membrane modules are another important aspect that needs to be considered 

because of the approach and performance. Comparing membrane modules, hollow 

fiber configurations are preferred for industrial practice due to their large membrane 

packing density, which is used in high membrane areas in small devices 

(Darvishmanesh et al., 2011). Additionally, compared to flat sheet and spiral wound 

modules, hollow fiber modules are the favourite option for modules in the filtration 

method because they have some advantages, high productivity due to their strong 

mechanical properties, highly flexible modules, and easy handling (Khayet et al., 

2012). With these good properties makes hollow fiber membranes very unique from 

an industrial point of view. Currently, hollow fiber membranes are widely used in more 

scope of the membrane separation process, such as distillation, UF, nanofiltration 

(NF), reverse osmosis (RO), and some other filtration processes. 

In the area of industrial wastewater treatment, membrane technology has been 

used to recycle trivalent chromium from tannery wastewater (Fabiani et al., 1996; 

Shaalan et al., 2001), to remove colour from tannery wastewater (Alves & De Pinho, 

2000), to reduce organic polluting compounds in olive-mill wastewater (Turano et al., 

2002) and even in artificial kidney mechanisms (Serra et al., 1998). The great usage of 

UF in industrial operations generates the need for a useful tool for the determination 
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of membrane performance and the minimization of operating costs. The loss of 

membrane permeability during UF of particles (which is attributed to the adsorption 

or deposition of particles on the membrane) depends primarily on the interaction of 

the membrane with the components of the wastewater solution, as well as on the 

properties of the material of which the membrane has been made. In addition, there are 

another two contributing factors that should be monitored which are the conditions of 

the process and the properties of the solution. Therefore, fouling control strategies and 

sustainable development are very important missions for the community research and 

technology evaluation programme because water is an important resource for human 

life. Fouling control strategies are able to decrease energy demand, increase membrane 

lifetime and reduce other operational costs. Nowadays, modern fouling control 

approaches focus on changing filtration process variables including alteration of feed 

water quality (Peiris et al., 2012; Seidel et al., 2002; Busch et al., 2009). Hence, the 

purpose of this study is to identify any factors that can help reduce the fouling of 

hollow fiber UF membranes during the separation of wastewater. 

1.2 Problem Statement 

Research on UF membranes water treatment is hot in the field. With the 

decrease in material prices, a growing number of membranes used in domestic water 

treatment provide good results, but membrane fouling is an important obstacle that 

blocks the promotion of this technology. 

For more efficient membrane use, membrane fouling, which can be defined as 

impurities that require reagents are essential to be treated accordingly. Nevertheless, 

biological, chemical, and physical treatments cannot fully separate oil molecules from 

the water and these processes require large areas to be used (El-Naas et al., 2009). 

Membrane fouling is a major problem that needs to be addressed for the efficiency of 

membrane filter wastewater treatment systems (Fabris et al., 2007). 

Fouling happens when the components are filtered near the membrane or fluid 

interface. The earliest stages of the fouling process are characterized by concentration 
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polarization (CP) associated with the boundary layer, in which the gradient of the 

excluded product is formed near the membrane surface (Bader & Veenstra, 1996; Chen 

et al., 2016). In some cases, excluded products can be made with membrane surfaces 

or membrane pores, forming what is commonly known as a fouling layer. Some types 

of fouling layer can be divided into reversible and irreversible fouling based on the 

strength of the particle connection to the membrane surface.  

Membrane fouling is the process where substances or particles dissolve on the 

surface of the membrane or into the pores of the membrane which indicates membrane 

performance. This is a main problem that blocks this technology to expand. Membrane 

fouling will lead to a very poor water quality produced and reduce permeate flux. 

Dreadful fouling should be cleaned using chemical reaction or membrane replacement. 

Somehow, this process will increase the cost of treatment process. Loss of membrane 

permeability during UF (due to deposition or adsorption of particles on the membrane) 

differs in the interaction of the membrane with the residual components of the 

wastewater solution, as well as the nature of the membrane material that has been 

formed. In addition, there are two other contributing factors that must be monitored, 

which are the properties of the solution and the conditions of the process. 

There are limited studies on membrane fouling based on membrane system 

parameter during filtration process. The related studies of membrane fouling focused 

on the formulation of membrane fabrication change especially during spinning process 

parameters (Chung et al., 2000; Chung et al., 2002; Chung et al., 1998; Ismail et al., 

2006; Qin et al., 2000; Xu & Qusay, 2004). Besides, Madaeni and Koocheki (2006) 

explored the parameters of temperature, transmembrane pressure and concentration 

which affect the flux and rejection in the RO treatment of wastewater containing 

nitrate, sulfite and phosphate. Meanwhile, Gönder et al., (2010) studied about the 

effect of pH and temperature during NF process. During the filtration process, there 

are many parameters that will influence the occurrence of fouling. It must be pointed 

out that from previous studies in solving these filtration condition optimization 

problems, they were handled mostly by using an experimentation that involved 

changing one of the filtration conditions while maintaining the others at fixed levels. 

For instance, Khan et al. (2016), Ivnitsky et al. (2010), Hesampour et al. (2008a) and 
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Goosen et al. (2005) varied the transmembrane pressure factor only and fixed other 

factors in filtration process of hollow fiber membranes. Besides, Lee et al. (2009), 

Kimura et al. (2004) and Hesampour et al. (2008b) varied the temperature only and 

fixed other factors during filtration process. Nevertheless, there have been previous 

studies that used the parameter-by-parameter optimization method to optimize the 

fouling index (FI) of hollow fiber membranes and it was based on trial and error 

investigations. This is a very complex process and it requires long time to measure all 

the parameters for each problem. Furthermore, the complexity of filtration condition 

problems, as numerous parameters are involved, is one of the main reasons why very 

little work has been done to vary all these filtration parameters simultaneously. To 

avoid the time constraints, the parameters that are significant for the fouling occurred 

must be measured simultaneously. Therefore, there are needs of mathematical 

modelling to find optimum conditions based on each problem. Even though traditional 

optimization techniques have the ability of considering several parameters at the same 

time, they still fail to acquire the relationship equation that links the varied parameters 

and the outcomes, and besides, it is not easy to discover the optimal parameters 

combination and optimal response value in the entire area. Taguchi method was 

applied by Gönder et al. (2010) in order to design the experiments and optimize the 

experimental results of filtration conditions for cleaning-in-place (CIP) wastewater 

treatment by NF process while Gönder et al. (2010) used the Taguchi method to get 

the optimal conditions of pulp and paper mill wastewater treatment using UF process. 

Besides, Madaeni and Koocheki (2006) also used the Taguchi method in the 

optimization of wastewater treatment using spiral-wound RO element in their study. 

However, the Taguchi method still does not provide optimal conditions. 

The response surface methodology (RSM), can be used to solve the weaknesses 

of this traditional approach. By using a set of experimental trials, all parameters are 

varied simultaneously. Khayet et al. (2012) mentioned that, by applying RSM the 

number of the experimental trials can be minimized even though many UF condition 

parameters have been investigated at the same time compared to the trial and error 

optimization technique. Therefore, RSM is better compared to the familiar 

conventional optimization method. Some of the benefits of using RSM are the 

experiment becomes faster and flexible with just a small number of experiments that 

reduce time and related costs.  
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Modelling methods with a direct analysis of experimental data is an excellent 

option to the techniques that use phenomenological hypotheses such as knowledge-

based models. In particular, particle swarm optimization (PSO) has been introduced in 

various fields such as environmental studies. PSO is an effective predictive method in 

the modeling for the behavior of nonlinear dynamic systems such as UF processes. In 

general, PSO refers to a class of distributed algorithms that have properties similar to 

self-structured interactions between several simple agents.  

Hence, in this study, the optimization of FI conditions of PES UF hollow fiber 

membranes is required in two stages: (i) modeling of FI parameter relationship during 

UF process, and (ii) determine the optimal condition of FI. The factors that affect the 

FI during UF conditions are pH and temperature of wastewater solution, 

transmembrane pressure, and time during UF process. Design of experiments (DOE) 

integrated with the PSO methodology are used for this study. The DOE including 

central composite design (CCD) and RSM are used to develop the regression model of 

the FI condition. The regression model is used as an objective function in PSO in order 

to maximize the FI performance. Then, a PSO algorithm is developed to determine the 

optimum process parameters and system configurations. The PSO will determine the 

optimum settings for the parameters of FI during UF process. Hence, this research is 

needed to cover the gap of previous researches. 

1.3 Research Questions 

This research is done to give explanation to the three main questions which are: 

i. What are the parameters and factors that influence the PES UF process 

performance? 

ii. Which parameters or factors affect fouling index performance during UF 

process? 

iii. What are the optimal fouling index conditions of UF PES hollow fiber 

membranes? 
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1.4 Research Objectives 

This research consists of three main objectives which are: 

i. To identify the factors and parameters that influence the UF PES process 

performance. 

ii. To determine the significant fouling parameters and their relationship using 

RSM method. 

iii. To optimize fouling conditions and optimize fouling index of PES UF hollow 

fiber membrane using PSO method. 

 

1.5 Scopes of the Research 

To accomplish all the objectives of this research, there are scope been chosen 

in this research. Several key areas of this research have been identified for optimizing 

the performance of PES UF hollow fiber membrane fouling. 

i. A main polymeric material which is PES was chosen as is used in dope 

formulation. 

ii. Fouling index is used to determine membrane performance during UF process. 

iii. Synthesized oily wastewater is used as a main medium for characterizing the 

separation performance. 

iv. Response surface methodology (RSM) is used to construct a regression model 

for identifying the relationship between fouling index performance and UF 

conditions. 
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v. PSO is used to define the optimal fouling conditions. 

vi. MATLAB software version (R2020a) is used to implement the PSO 

optimization process. 

vii. Parameters to investigate are pH, temperature of sample water, time of filtration 

process, surface area of membrane and transmembrane pressure. 

 

1.6 Research Significant 

Since water is a main resource for whole life, development strategies and 

sustainable control in reducing membrane fouling during the water filtration process 

is a very important mission. Based on this research, using the PSO optimization 

method, it demonstrates the success of reducing fouling membranes during the water 

filtration. Fouling control strategies can increase membrane life, energy demand, 

increase the lifespan of the membrane modules and the membrane maintenance 

besides the operation costs for to the membrane cleaning can be reduces. In addition, 

when membrane fouling reduced, membrane water filtration becomes more effective 

and efficient. This also an economic benefits approach which are reducing cost and 

money saving while producing good quality products of UF PES hollow fiber 

membranes with the desire properties. Therefore, this research could help future 

research to reduce membrane fouling, thus improving and contributing more sustain 

to the filtering system. 

The UF process is very helpful in removal oily wastewater especially produced 

by the industry based on the accessibility to sustain the water supply system. The UF 

process is an excellent membrane separation because of the concept of separation 

which is focus on molecular size hence required lower operating costs compared to 

traditional methods. This research uses PES UF hollow fiber membrane because of 

PES is the most suitable type of membrane to treat oily wastewater. The performance 

of the UF process is measured by determining the value of FI. The value of FI is 
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calculated based on the flux evaluated during the process. The impact of this study is 

important because it can reduce the PES UF hollow fiber membranes fouling since it 

offers a prospect of higher productivity and selectivity. Indirectly, this research can 

help to reduce the fouling of membranes, thus contributing to a more sustainable 

filtration system. 

The final results acquired from this research are the optimal FI values during 

the membrane UF process by using the PSO methodology to reduce membrane 

fouling. This study can help engineers or decision makers to determine the appropriate 

way to solve the problem during the water filtration process in a short period of time. 

PSO helps to enhance the higher water flow during separation process, 

environmentally friendly, and requires little investment and energy consumption. 

1.7 Structure of Research 

This research consists of 5 chapters. Chapter 1 is the introduction to this study. 

Review of the topic, problem background, problem statement, study objectives, scope 

of study discussed. This chapter discusses the membrane filtration process in general 

and the membrane contamination process. Chapter 2 contains a literature review on 

PSO techniques and membrane technology. In membrane technology it is focused on 

membrane contamination at the time of filtration process. Chapter 3 discusses the 

proposed method framework for this study. This chapter discussed in detail the steps 

in the experiment that have been implemented. Chapter 4 describes the process to 

develop the regression model based on RSM and statistical regression techniques for 

the Fouling Index (FI). This chapter also discussed the optimization process of the FI 

using PSO and evaluates all of the findings and validates the experiments. Meanwhile, 

Chapter 5 explained the general conclusions of this research and some suggestions for 

the future research. 
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