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ABSTRACT 

Bioconversion of crude glycerol to biohydrogen is promising because the cost 

for capital investment and operation is cheaper, and it can help in reducing waste thus 

making it a clean process. However, not many microbes can metabolise glycerol 

efficiently under anaerobic or oxygen-limited conditions. This makes the production 

and yield of hydrogen produced to be low. Therefore, this study sought to isolate new 

indigenous bacteria that can consume crude glycerol (85%) and convert it into 

biohydrogen without the need for pretreatment or acclimatization. Dark fermentation 

approach was employed since this approach offers much advantages in terms of 

substrates and microbe producers used. The aim of study was achieved through 

isolation and screening for potential hydrogen producers followed by identification 

using 16S rRNA technique. Next, optimisation of medium composition and 

optimisation of operating parameters to obtain the optimum production and yield of 

hydrogen and ethanol including glycerol uptake. The study was finalised by a kinetic 

study for growth and substrate utilisation by kinetic model and potential hydrogen 

production by modified Gompertz model. The best hydrogen producer had been 

successfully isolated, screened and identified as Klebsiella pneumoniae strain 

HS11286. The 2-level fractional factorial design (28–3) for medium composition 

optimisation and response surface methodology study employing Box-Behnken design 

for operating parameters were employed to evaluate the interactive effects of several 

respective factors. The fermentation was conducted in 2 L reactor with a working 

volume of 1.8 L. Medium optimisation study gave the composition of 30 g/L glycerol, 

3.5 g/L K2HPO4, 3.98g/L KH2PO4, 2.69 g/L (NH4)2SO4, 0.03 g/L CaCl2.2H20, 0.054 

g/L FESO4.7H2O, 3.0 g/L yeast extract, and 0.54 g/L MgSO4.7H2O as the optimised 

medium composition. This optimised composition yielded 588.68±0.04 mmol H2/mol 

glycerolconsumed, 9345±63.64 mL of hydrogen, 97±1.41% glycerol uptake and 

0.024±0.001 mmol ethanol/mol glycerolconsumed. Meanwhile, the optimum operating 

condition was found best at pH 6.0, temperature 32.5°C and 25% headspace with 82% 

desirability. This yielded 601.07±10.69 mmol H2/mol glycerolconsumed of hydrogen 

yield, 9935±176 mL of hydrogen, 97±1.4% of glycerol uptake and 0.045±0.002 mmol 

ethanol/mol glycerolconsumed. Finally, kinetic parameters for specific growth rate (µ) 

was at 0.106 h−1, glycerol consumption rate (Qgly) at 1.572 g/L/h, and yield coefficient 

Yp/x, Yp/s and Yx/s at 30758.51 mL/g cell, 479.26 mL/g substrate and 0.016 g cell/g 

substrate, respectively. Meanwhile, the modified Gompertz model gave a prediction 

of 10155 mL of hydrogen at 620 mL/h. In conclusion, Klebsiella pneumonia strain 

HS11286 has the potential to produce almost 10 litre of hydrogen in a short period 

(less than 48 h) without the need to pretreat the glycerol or to acclimatize the bacteria 

in crude glycerol.   
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ABSTRAK 

Biopenukaran gliserol mentah kepada biohidrogen sangat berpotensi kerana 

kos untuk pelaburan modal dan operasi adalah lebih murah dan ia mampu 

mengurangkan sisa lalu menjadikannya satu proses bersih. Walau bagaimanapun, 

tidak banyak mikrob yang boleh menggunakan gliserol dengan cekap di bawah 

keadaan anaerobik atau oksigen terhad. Keadaan ini menyebabkan pengeluaran dan 

hasil hidrogen yang dikeluarkan rendah. Oleh itu, kajian ini bertujuan untuk 

mengasingkan bakteria asal yang mampu menggunakan gliserol mentah (85%) dan 

menukarkannya menjadi biohidrogen tanpa keperluan terhadap prarawatan atau 

penyesuaian. Pendekatan fermentasi gelap telah digunakan memandangkan ia 

menawarkan banyak kelebihan dari segi penggunaan substrat dan mikrob pengeluar. 

Matlamat kajian dicapai melalui pemencilan dan penyaringan mikrob pengeluar 

biohidrogen berpotensi diikuti dengan pengenalpastian bakteria menggunakan teknik 

16S rRNA. Seterusnya, pengoptimuman komposisi media dan pengoptimuman 

parameter pengoperasian untuk mendapatkan pengeluaran dan hasil hidrogen serta 

etanol termasuk pengambilan gliserol yang optimum. Kajian ini dimuktamadkan 

dengan kajian kinetik untuk pertumbuhan dan penggunaan substrat melalui model 

kinetik dan potensi pengeluaran hidrogen menggunakan model Gompertz diubahsuai. 

Mikrob pengeluar hidrogen terbaik berjaya dipencilkan, disaring dan dikenal pasti 

sebagai Klebsiella pneumoniae strain HS11286. Reka bentuk faktoran 2 peringkat (28–

3) untuk pengoptimuman komposisi media dan kajian kaedah sambutan permukaan 

menggunakan reka bentuk Box-Behnken bagi parameter pengoperasian digunakan 

untuk menilai kesan-kesan interaktif beberapa faktor berkaitan. Fermentasi telah 

dijalankan di dalam reaktor 2 L dengan isipadu kerja sebanyak 1.8 L. Kajian 

pengoptimuman media memberikan komposisi 30 g/L gliserol, 3.5 g/L K2HPO4, 3.98 

g/L KH2PO4, 2.69 g/L (NH4)2SO4, 0.03 g/L CaCl2.2H20, 0.054 g/L FESO4.7H2O, 3.0 

g/L ekstrak yis, dan 0.54 g/L MgSO4.7H2O sebagai komposisi medium yang optimum. 

Komposisi optimum ini menghasilkan 588.68±0.04 mmol H2/mol gliseroldiguna, 

9345±63.64 mL hidrogen, 97±1.41% pengambilan gliserol, dan 0.024±0.001 mmol 

ethanol/mol gliseroldiguna. Sementara itu, parameter pengoperasian optimum didapati 

terbaik pada pH 6.0, suhu 32.5 C dan 25% ruang kosong dengan 82% keberertian. 

Keadaan ini memberikan hasil 601.07±10.69 mmol H2/mol gliseroldiguna bagi hasil 

hidrogen, 9935±176 mL hidrogen, 97±1.4% pengambilan gliserol dan 0.045±0.002 

mmol ethanol/mol gliseroldiguna. Akhir sekali, parameter kinetik masing-masing bagi 

kadar pertumbuhan spesifik (µ) adalah pada 0.061 h−1, kadar penggunaan gliserol 

(Qgly) pada 1.572 g/L/h, dan pekali hasil Yp/x, Yp/s dan Yx/s pada 30758 mL/g sel, 491 

mL/g substrat dan 0.016 g sel/g substrat. Manakala model Gompertz diubahsuai 

memberikan ramalan sebanyak 10,115 mL hidrogen pada 620 mL/h. Kesimpulannya, 

Klebsiella pneumonia strain HS11286 berpotensi menghasilkan hampir 10 liter 

hidrogen dalam masa yang singkat (kurang 48 j) tanpa perlu prarawat gliserol atau 

penyesuaian bakteria dalam gliserol mentah. 
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INTRODUCTION 

1.1 Research Background 

The world’s fuel consumption has risen intensely due to urbanisation and 

globalisation. Transportation and industrial sectors are among the key sectors in which 

fuel usage is high. The fuel used is normally petroleum/fossil based, and this has in 

turn led to several adverse effects, such as depletion of fossil fuel from the extensive 

exploitation of the present oil and gas reservoirs (Chuah et al., 2017), and 

anthropogenic CO2 emission (Lee et al., 2017).  Furthermore, fossil fuel has several 

downsides for humans such as greenhouse gas emission to the atmosphere, climate 

change, and air pollution; and the limitation of fossil fuel may cause a great increase 

in oil prices (Omi, 2009). 

In 2003, the European Union enforced Directive 2003/30/EC to blend 

renewable fuel (biofuels) with fossil fuels to control the vast usage of petroleum-based 

fuel. The enforcement had drastically increased the production of biodiesel from 

200,000 tonnes in 2003 to more than 2 million tonnes in 2012 (Ciriminna et al., 2014).  

Globally, the United States (US) and Europe are the two main producers of biodiesel 

(United Nations Conference on Trade and Development, 2009). Germany alone had 

produced approximately 775 million gallons of biodiesel in 2006 (Carriquiry, 2007). 

Accordingly, the International Energy Agency (IEA) predicted that by the year 2050, 

biofuels will completely replace the use of petroleum-based fuels as transportation fuel 

(Hashim et al., 2017). Deloitte (2015) predicted that the production of biodiesel will 

increase up to 1900 barrels in 2020.  This massive generation of biodiesel has led to a 

huge increase of crude glycerol (CG) (Chookaew, Prasertsan, and Ren, 2014).   
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In general, biodiesel is produced via transesterification (Figure 1.1) of 

triglyceride with alcohol in the presence of a catalyst. This process generates 10%–

20% of glycerol as its by-product, which is regarded as the main waste produced (Nda-

Umar et al., 2019). As a waste, CG contains impurities (Boga et al., 2016), which are 

mostly salts (e.g. carboxylate salts), catalyst, residual methanol, and water (Tu, Lu, 

and Knothe, 2017).  

 

Figure 1.1 Transesterification process producing glycerol as the main by-product 

via base catalytic reaction with methanol (Ciriminna et al., 2014)  

Impurities in CG makes it lack commercial value and harmful to the 

environment.  Therefore, CG can neither be used directly in industry nor disposed to 

the environment without purification or proper treatment.  Eventually, CG is either 

valorised or regarded as industrial waste.  This leads to a drop in glycerol price from 

$1.15 to $0.66 per kilogram for refined glycerol and from $0.44 to $0.11 per kilogram 

for CG (Li, Lesnik, and Liu, 2013).  Presently, the common practice to destroy CG is 

by incineration, but Gholami, Abdullah, and Lee (2014) claimed that this method leads 

to the production of primary greenhouse gases like nitrogen oxide (NOx) and carbon 

dioxide (CO2).  Thus, the need for sustainable management of the waste along with the 

availability of CG has generated interest on glycerol-based cultures.   

Amid the green technologies adopted or that have taken interest among 

researchers and some industry players is to convert CG into hydrogen via biological 

approach.  Hydrogen is said to play an important role in the world's future as a good 

alternative renewable fuel in replacing petroleum-based fuel. Hydrogen offers a clean 

energy since it produces only water during its combustion. Until recently, production 
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of hydrogen from glycerol is mostly from chemical conversion technologies such as 

steam reforming (Tamošiunas et al., 2016), partial oxidation (Wang, 2010), dry 

reforming (Zakaria et al., 2015), autothermal reforming (Wang et al., 2016), aqueous 

reforming (Subramanian et al., 2016), pyrolysis (Ng et al., 2017), and photocatalysis 

reforming (Lucchetti et al., 2017). Despite the stability of some processes, the 

mentioned approaches require high temperatures, and higher reaction temperature 

promotes the formation of encapsulated carbon which negatively reflects on catalyst 

stability (Chiodo et al., 2010).  

Cheaper, simpler compound as a good carbon source for microbial growth, 

greater degree of reduction to enable higher yield of fuels and reduced chemicals, as 

well as high energy contents make CG the best substrate in biological conversion, 

especially hydrogen. Previously, hydrogen was produced using short-chain organic 

acids (acetate, lactate, malate, acetate, and butyrate) (Barbosa et al., 2001; Asada et 

al., 2008), glucose (Fang, Zhu, and Zhang, 2006; Chaudary, 2010; Jame et al., 2011), 

starch (Yokoi et al., 2002; Afsar et al., 2011), lignocellulosic materials (Chong et al., 

2009a; Liu, 2008; Noparat, Prasertsan, and O-thong, 2011), and algae (Lam and Lee, 

2013) as substrate—which is expensive.  Then slowly, the use of those substrates was 

replaced with cheaper and more abundant substrates such as waste (i.e., lignocellulosic 

waste, livestock manure, and industrial waste like glycerol).  Despite the ability to be 

converted into hydrogen, lignocellulosic materials require higher temperature to give 

a higher hydrogen yield (Ghimire et al., 2015). This again causes CG to be a viable 

and promising substrate for hydrogen production. 

Fermentation is one of the biological ways to produce hydrogen from CG. 

Hydrogen, 1,3-propanediol, carotenoids, citric acid, succinic acid, 

polyhydroxyalkanoates, polyunsaturated fatty acids, and rhamnolipids are the main 

products of CG fermentation (Abad and Turon, 2012). Production of hydrogen is more 

favourable because glycerol has a higher content of hydrogen (8 numbers) and thus 

can give high energy content of hydrogen (up to 142.9 kJ/g) (Sarma et al., 2012).  
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The production of hydrogen from CG by using microorganisms as the producer 

has been reported by many researchers. Ito et al. (2005) evaluated the production of 

hydrogen and ethanol using pure and crude glycerol by Enterobacter aerogenes HU-

101 strain. The strain cannot tolerate the impurities in the crude glycerol, thus giving 

low hydrogen yield compared to pure glycerol. Ngo, Kim, and Sim (2011) used 

hyperthermophilic eubacterium Thermotoga neapolitana DSM 4359 to produce 

hydrogen from CG. Due to impurities in the CG, CG was pretreated first by heating at 

45 °C to remove methanol or ethanol, and solids from CG were removed by 

centrifugation. The hydrogen yield from Thermotoga neapolitana DSM 4359 at 1.97 

± 0.09 mol H2/mol glycerol was observed after 56 h of cultivation.  

Chookaew, O-Thong, and Prasertsan (2012) also reported the use of pure 

culture to produce hydrogen. The reported hydrogen yield was at 0.25 mol H2/mol 

glycerol by a newly isolated thermotolerant Klebsiella pneumoniae TR17. The 

fermentation experiment was conducted at 45 °C. Since the bacteria used was isolated 

from glycerol contaminated soils, the enrichment was conducted three times prior to 

isolation. However, Mangayil, Karp, and Santala (2012) used mixed cultures to 

convert CG to hydrogen. Prior to experiment, the cultures were enriched to acclimatise 

the microbes. The glycerol yield was obtained at 1.1 ± 0.1 mol H2/mol with 

Clostridium as the dominant species in the mixed culture used. Besides, Marone et al. 

(2015) co-fermented CG with cheese whey to produce hydrogen by using a mixed 

culture. Dounavis, Ntaikou, and Lyberatos (2015) then investigated the production of 

hydrogen from CG by using continuous anaerobic upflow column bioreactor (UFCB) 

packed with cylindrical ceramic beads as support matrix for bacterial cells. The study 

was run for nine months continuously using a mixed culture as the producer.  

The latest bioconversion of CG to hydrogen was reported by Sarma et al. 

(2019) using an engineered strain of Clostridium pasteurianum. The hydA gene was 

overexpressed encodes for hydrogenase and combined dhaD1 and dhaK genes, which 

encode for glycerol dehydrogenase and dihydroxyacetone kinase, respectively. The 

engineered hydA-overexpressed strain produced 1.1 mol H2/mol glycerol, and 0.93 

mol H2/mol glycerol was produced by the dhaD1K-overexpressed strain. Although the 

yields are high comparable to the wild type, the strains must be engineered first. 
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Until now, either dark fermentation or photo fermentation or combination of 

the two systems, most literature reported were conducted in batch mode. The choice 

to use either pure or mixed cultures is dependent on the use of substrates. Reports so 

far show that the use of mixed culture is more common compared to pure culture. 

However, the presence of different types of microorganisms in a mixed culture makes 

it difficult to be optimised.  

Pure culture, on the other hand, is much easier to understand, especially when 

describing the pathway. Enterobacter sp., Clostridium sp., Bacillus sp., and Klebsiella 

sp. are commonly used bacteria in dark- or anaerobic fermentation of glycerol. A non-

hydrogen-producer, Escherichia coli, is genetically modified to transform it into a 

hydrogen producer (Gonzalez et al., 2008; Maru et al, 2016; Karen Trchounian & 

Trchounian, 2014). However, the yield reported is still very low unless it is co-cultured 

with other microbes (Maru et al., 2016). In terms of fermentation condition, the 

reported temperature ranged from 37 (mesophilic) to 80 °C (thermophilic) with a pH 

range of 5.5 to 8.0. The highest yield reported was 2.84 mol H2/mol glycerol in batch 

by a hyperthermophilic bacteria. Although the yield is high, the process needed a 

higher temperature which may be unsuitable for industrial applications. 

1.2 Problem Statement 

Crude glycerol (CG) is classified as Scheduled Waste S181 of the 

Environmental Regulations in Malaysia (Ardi, Aroua, and Hashim, 2015; Ooi et al., 

2001); therefore, it cannot be disposed freely. However, the development of processes 

that can utilise crude glycerol directly to produce value-added chemicals or energy 

carriers, e.g. hydrogen, would be very advantageous.  

Many reports have been published to prove the best biological approaches 

exploiting CG as a cheap feedstock. Ghosh, Tourigny, and Hallenbeck (2012), Ghosh, 

Sobro, and Hallenbeck (2012), Pott, Howe, and Dennis (2013), and Ghosh et al. (2017) 

used photosynthetic bacteria to produce hydrogen from CG. However, using this 

photo-approach (biophotolysis or photofermentation) has drawbacks because of its 
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complexity in light management and limitation in scale up (Chookaew, Prasertsan, et 

al., 2014). Therefore, dark fermentation has been claimed by many to have many 

advantages over other approaches. It is simple and can be carried out using many types 

of microorganisms, especially enterobacterial species, which are easy to grow and 

maintain (Abdeshahian et al., 2014; Argun & Dao, 2017; Fuess, Zaiat, & do 

Nascimento, 2019; Rajhi et al., 2016). 

Until recently, most dark fermentation productions of hydrogen from CG use 

a mixed culture (Faber and Ferreira-Leitão, 2016; Gallardo et al., 2014; Mangayil et 

al., 2015; Marone et al., 2015; Pachapur et al., 2015; Rodrigues et al., 2019), 

engineered pure culture (Sanchez-Torres et al., 2013), or a combination of engineered 

pure culture and another single or mixed culture (Maru et al., 2016; Veeramalini et al., 

2019). The use of mixed culture is claimed to be easier but may limit the hydrogen 

production or yield, besides the need to first adapt the culture before the real 

experiment can be started. Meanwhile, engineered culture (single or mixed) may offer 

higher hydrogen yield, but its modification steps are tedious. Moreover, genetic 

engineering is not always fruitful, as undesirable effects are often encountered in the 

engineered organisms (Valle, Cantero, and Bolívar, 2019). Therefore, using 

indigenous pure culture is preferable, especially in understanding the mechanism of 

the conversion process. In addition, a pure culture is easy to manage. 

So, having an isolate that can metabolise CG without the need for pretreatment 

of CG or extra time to acclimatise the bacteria and produce hydrogen large volume of 

hydrogen at higher yield would be a great success. In this study, CG was used as a sole 

carbon source for the locally isolated bacteria via dark fermentation. The best isolate 

was then identified and further investigated for its capability to produce hydrogen 

under optimised medium and condition. The kinetics of its growth and substrate 

consumption, together with hydrogen yield and production were also determined. 
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1.3 Research Objectives 

The aim of this work is to produce hydrogen from CG using microorganisms 

isolated from biodiesel wastewater treatment plant.  The following are the objectives 

of this study: 

1. To identify a potential hydrogen-producing microorganism isolated from 

biodiesel wastewater treatment plant. 

2. To optimise the fermentation media composition of hydrogen production using 

crude glycerol and other nutrients by the best pure culture of hydrogen-

producing microorganism isolated from biodiesel wastewater treatment plant.  

3. To optimise the operating parameters of hydrogen production from crude 

glycerol. 

4. To evaluate the kinetic coefficients of hydrogen production from crude 

glycerol under optimized conditions. 

1.4 Research Scopes 

This study involves four stages, in which the scopes for each stage are as 

follows:  

1. Isolation, screening, and identification of potential hydrogen producer. 

In this stage, the isolation was performed using anaerobic pour plate 

method (serial dilution for enriched and direct plating) to choose the 

potential producer(s). Prior to isolation, sampling of crude glycerol and 

wastewater was conducted. Crude glycerol was collected from Carotino 

Sdn. Bhd. and biodiesel wastewater were obtained from Vance Sdn. Bhd. 

Both plants are located in Pasir Gudang, Johor. Once the best potential 

microbe had been isolated, screened and chosen, identification of the 

microbe was conducted using 16S rRNA method.  
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2. Optimisation of the media composition and determination of the effect of 

each factor on hydrogen production by the best hydrogen producing 

microorganisms isolated from biodiesel wastewater treatment plant. 

The optimisation of fermentation media was performed using two-level 

fractional factorial design (28−3) designed by Design–Expert version 6.0.4 

software. Eight factors were involved: glycerol (30–60 g), dipotassium 

phosphate (3.5–5 g), potassium phosphate (2–4 g), ammonium sulphate (2–

5 g), calcium chloride (30–55 g), ferrous sulphate (0.5–1 g), yeast extract 

(1.5–3 g), and magnesium sulphate (0.3–0.6 g). All factors were analysed 

to determine their effect on hydrogen production, hydrogen yield, and 

metabolite production. The collected gas was analysed using gas 

chromatography–thermal conductivity detector (GC–TCD) and liquid 

samples were analysed using high performance liquid chromatography 

(HPLC). Results from HPLC gave information on substrate utilisation and 

metabolites produced. Growth pattern was determined through optical 

density (OD) and cell dry weight. The performance of each run was 

monitored based on the hydrogen produced and bacterial growth.  

 

3. Optimisation of operating parameters of hydrogen production from crude 

glycerol. 

This stage was conducted to determine the best condition for the optimal 

production and yield of hydrogen and metabolite production. This study 

contained a few other parameters but only three parameters were chosen. 

Significant operating parameters involved were pH (6–8), temperature 

(30–40 °C), headspace (25%–70%). Design of experimental work was 

done using Box–Behnken design by Design–Expert version 6.0.4 

software. Gas analysis was conducted using GC–TCD and liquid samples 

were analysed using HPLC, and growth pattern was obtained using OD 

and cell dry weight. Substrate utilisation and metabolites production were 

analysed by using HPLC. The performance of each run was monitored 

based on the hydrogen produced and bacterial growth. 
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4. Evaluation of hydrogen kinetics coefficients via dark fermentation from 

crude glycerol under optimised conditions. 

A comprehensive kinetic analysis elucidates the effect of operational 

parameters on substrate utilization, biomass growth, and product 

formation rate. The growth and formation of hydrogen and metabolites 

were monitored periodically over fermentation time until gas production 

ceases. This gave specific growth rate (µ) and other yield coefficients, 

namely growth yield coefficient (Yx/s) and product yield coefficient per 

substrate (Yp/s) and per cell mass (Yp/x). Since the experiments were 

conducted in anaerobic condition, the modified Gompertz model was used 

to was used to obtain the H2 production potential (P), H2 production rate 

(Rm), and lag phase (λ). 

1.5 Research Significance 

This study utilises indigenous bacteria which originate from the biodiesel 

wastewater itself. Thus, the potential microorganism that was chosen can greatly 

reduce the start-up time and give a high volume of hydrogen in a short time. This is 

because the microbe no longer needs to be acclimatised even though the substrate used, 

which is crude glycerol, has impurities. Being able to utilise the substrate directly also 

means that there is no need for substrate pretreatment, which has been reported by 

many in the literature. Thus, by knowing the effect of fermentation medium 

composition and optimising the operating conditions, the production of hydrogen and 

the yield of hydrogen can be enhanced. Furthermore, kinetics study on the bacterial 

growth, substrate consumption and production of products can help in describing the 

process better. 
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The main products—hydrogen and ethanol (the most produced metabolite)—

are biofuel. Hydrogen is a clean energy carrier. It can be converted to electricity with 

efficiencies higher than 80% and energy density of 142 MJ/kg. Research communities 

regard hydrogen as a promising alternative renewable fuel that can replace the use of 

petroleum-based fuel in the future, because hydrogen only produces water as product 

of combustion.  

Ethanol, like hydrogen, is one of the renewable fuels that have gained interest 

in industries and research communities. Apart from its use as a fuel, it is also used in 

biodiesel production. So, it can be reused in biodiesel production and reduce ethanol 

consumption in the process. Another metabolite, 1,3-propanediol, is also well-known 

for its advantages in many applications such as in the medical sector and for production 

of polymers, cosmetics, foods, adhesives, lubricants, laminates, solvents, and 

antifreeze.  

1.6 Thesis Outline 

This thesis consists of five chapters. Chapter 1 focuses on introduction of the 

study and its background. It also emphasises the problem and why the method in this 

study is chosen, including its objectives, scopes, and significance. 

Chapter 2 presents the literature related to this study, from the glycerol to 

biodiesel to hydrogen production and related works. The microorganisms or producers 

used are also elaborated in detail. This chapter is concluded by presenting the factors 

that might influence the yield and production of hydrogen.  

The methodology used is elaborated in detail in Chapter 3. The steps from 

inoculum preparation to experimental runs are presented and explained in this chapter. 

The analyses involved are also presented, including the designs used for media 

composition optimisation, operating condition optimisation, and kinetic study. 
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Chapter 4 presents the results and discussion. All results on the optimisation of 

fermentation media composition and RSM analysis on optimisation of operating 

conditions are discussed in detail in this chapter. Effects of the factors involved in both 

media optimisation and operating condition optimisation on hydrogen production, 

yield, and metabolite production are also discussed. Finally, the kinetics correlated 

with growth and substrate utilisation, as well as the cumulative hydrogen and 

metabolite production are presented and discussed. 

Finally, Chapter 5 concludes the thesis based on the findings and gives 

recommendations for future study. 
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