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ABSTRACT

The abuse of recreational drones has caused security issues, crimes, and 
privacy problems. Thus, drone detection is needed as evidence for law enforcement 
or support countermeasures such as radio jamming, and remote control override. One 
way to detect drones is by monitoring the radio frequency (RF) link between the 
remote control and drone. The challenge is that recreational drones operate at the
2.4 GHz and 5.8 GHz industrial, scientific and medical (ISM) bands, which have 
wide bandwidth of 100 MHz and 150 MHz respectively make the analysis costly. 
Furthermore, the drone signals like frequency-hopping spread spectrum (FHSS) and 
hybrid spread spectrum (HSS) are time-varying and require a time-frequency 
analysis (TFA). Also, the choice of window size is crucial for a TFA due to the 
uncertainty principle in time-frequency representation (TFR). Moreover, other 
wireless technologies in the environment, such as direct sequence spread spectrum 
(DSSS) and orthogonal frequency-division multiplexing (OFDM), which is Wi-Fi 
operates in the same ISM band could interfere with the drone signal detection 
activity. In this thesis, an adaptive stepped frequency scan spectrogram 
(Adaptive-SFSS) was developed to analyse a large bandwidth at a lower sampling 
rate, including an adaptive window size estimation. In the Adaptive-SFSS, the 
received signal is divided into multiple sub-bands and scan through the large analysis 
bandwidth, the window size is estimated by balancing time and frequency resolution, 
the channel frequency and hop duration are estimated from TFR and used to derive 
the instantaneous frequency (IF). Three types of drone signals, the fast FHSS, slow 
FHSS, and HSS, together with two types of background signal, the DSSS and Wi-Fi 
were simulated. Then, the simulated received signal was analysed by the 
Adaptive-SFSS and compared with the adaptive wideband spectrogram 
(Adaptive-WS), the non-adaptive SFSS and WS. The performance of the 
Adaptive-SFSS was verified by Monte-Carlo simulation with 20 realizations at a 
signal-to-noise ratio (SNR) range from -16  dB to 12 dB. In the presence of additive 
white Gaussian noise (AWGN), the Adaptive-SFSS obtained a detection cut-off 
point of -12  dB for fast and slow FHSS and -5  dB for HSS. Additional background 
signals such as DSSS and Wi-Fi increased the cut-off point to 5 dB for fast-FHSS, 
7 dB for slow-FHSS, and 8 dB for HSS. The Adaptive-SFSS is better because it has 
a similar cut-off point as the WS even the sampling rate is 4 times lower and capable 
of choosing the right window size automatically, rather than trial-and-error which is 
the conventional way.
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ABSTRAK

Penyalahgunaan dron rekreasi telah menyebabkan berlakunya kes-kes 
jenayah, keselamatan dan ancaman privasi. Oleh itu, pengesanan dron diperlukan 
sebagai bukti untuk penguatkuasaan undang-undang atau menyokong langkah 
pencegahan dron, seperti gangguan radio, dan ambil alih kawalan radio. Satu cara 
untuk mengesan dron ialah memantau isyarat frekuensi radio (RF) antara alat 
kawalan jauh dengan dron. Cabarannya ialah dron rekreasi ini berfungsi dalam jalur 
industri, saintifik dan perubatan (ISM) 2.4 GHz dan 5.8 GHz, merupakan jalur yang 
lebar iaitu 100 MHz dan 150 MHz masing-masing meningkatkan kos analisis. Selain 
itu, isyarat dron seperti spektrum tersebar lompatan frekuensi (FHSS) dan spektrum 
tersebar hibrid (HSS) adalah bersifat isyarat masa selanjar dan memerlukan analisis 
masa-frekuensi (TFA). Pilihan saiz jendela adalah penting untuk TFA disebabkan 
prinsip ketidakpastian dalam perwakilan masa-frekuensi (TFR). Selanjutnya, 
kewujudan teknologi tanpa wayar lain di persekitaran, seperti spektrum tersebar 
langsung (DSSS) dan pemultipleksan pembahagian frekuensi ortogonal (OFDM) 
iaitu Wi-Fi juga berfungsi dalam jalur ISM yang sama mengganggu aktiviti 
pengesanan isyarat dron. Dalam tesis ini, spektrogram imbasan frekuensi berlangkah 
adaptif (Adaptif-SFSS) diperkenalkan untuk menganalisis jalur yang lebar pada 
kadar persampelan yang lebih rendah berserta dengan anggaran saiz jendela adaptif. 
Dengan Adaptif-SFSS ini, isyarat diterima itu dibahagikan kepada beberapa jalur 
separa dan imbas setiap jalur separa, saiz jendela dianggar dengan mengimbangkan 
resolusi masa dan frekuensi, saluran frekuensi dan jangka masa lompatan 
dianggarkan dari TFR dan digunakan untuk menghasilkan frekuensi seketika (IF). 
Tiga jenis isyarat dron iaitu FHSS pantas, FHSS perlahan, dan HSS, bersama dua 
jenis isyarat latar iaitu DSSS dan Wi-Fi telah disimulasikan. Selepas itu, isyarat 
simulasi itu dianalisis oleh Adaptif-SFSS dan berbanding dengan spektrogram jalur 
lebar adaptif (Adaptif-WS), serta WS dan SFSS yang bukan adaptif. Prestasi 
Adaptif-SFSS telah dinilai oleh simulasi Monte-Carlo dengan 20 realisasi pada 
nisbah isyarat-hingar (SNR) antara -16  dB hingga 12 dB. Dengan kewujudan 
tambahan hingar putih Gaussian (AWGN), Adaptif-SFSS memperoleh titik 
pemotong pengesanan adalah -12  dB untuk FHSS pantas dan perlahan, dan -5  dB 
untuk HSS. Selain itu, kewujudan isyarat latar seperti DSSS dan Wi-Fi 
meningkatkan titik pemotong kepada 5 dB untuk FHSS pantas, 7 dB untuk FHSS 
perlahan, dan 8 dB untuk HSS. Adaptif-SFSS adalah lebih baik kerana mempunyai 
titik pemotong yang sama dengan WS walaupun kadar persampelan itu 4 kali lebih 
rendah, dan dapat memilih saiz jendela yang betul secara automatik, bukannya 
dengan percubaan dan kesilapan yang merupakan cara konvensional.
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CHAPTER 1

INTRODUCTION

1.1 Background

Drone applications for civilian and commercial have grown for the past 

decade. Drones are referred to as radio-controlled unmanned aircraft systems that 

provide beneficial visual service in the sky. Examples of the legal use of drones are 

industrial and building safety inspection, geographic mapping, aerial monitoring, 

photography and videography, delivery, and agriculture research [1]. Nevertheless, 

this emerging technology and mass penetration to the market had been classified as 

one of the issues in electromagnetic spectrum monitoring [2].

In addition, the widespread use of recreational drones, such as miniature, 

multi or single rotor drones has caused security issues, crime, terrorism, and privacy 

problem. For example:

a) On 20th Jun 2020, 4 Singaporeans have been arrested after the authorities

seized a drone carrying drugs at Kranji Reservoir Park, Singapore. They were 

suspected to have operated the drone to import drugs from Johor Bahru, 

Johor, Malaysia [3].

b) On 9th Jun 2020, a man is accused of flying a drone over a protected Ministry

of Defence base in Singapore seven times and taking pictures [4].

c) On 14th Jan 2019, 8 reports of illegal drones flying near Changi Airport over

the past 3 years [5].

d) On 21st Dec 2018, 120,000 passengers had their flights delayed and cancelled

at Gatwick Airport in London because a drone was detected near the airfield 

[6].



e) On 12th Aug 2017, UK Navy carrier security was under review after an 

amateur landed a drone on deck undetected [7].

Thus, drone detection is needed as evidence for law enforcement or support 

countermeasures such as radio jamming, and remote control override.

In drone signal detections, it includes monitoring the radio frequency (RF) 

link between the remote control and drone and estimating drone signal parameters. 

Besides, the recreational drone uses the same 2.4 GHz and 5.8 GHz industrial, 

scientific and medical (ISM) band as other wireless technologies, such as Wi-Fi and 

Bluetooth could interfere with the drone signal detection in this multi-signal 

environment.

1.2 Problem Statement

Usually, drones are flying in public and noisy environments. To protect 

against interference, drones adopt spread spectrum technologies such as frequency 

hopping spread spectrum (FHSS), direct sequence spread spectrum (DSSS), hybrid 

spread spectrum (HSS), and orthogonal frequency division multiplexing (OFDM) 

which is Wi-Fi operate in 2.4 GHz ISM band [8]. These are time-varying signals 

with parameters such as hop duration, hop rate, and channel frequency are useful to 

detect the presence of drones. Thus, representing the signal information in the time 

and frequency domain is important in drone signal analysis.

Besides, the 2.4 GHz ISM band is reserved internationally for unlicensed RF 

application and have a large bandwidth of 100 MHz. The Shannon-Nyquist theorem 

stated that to perfectly represent an analogue signal, the sampling frequency must 

higher than twice the signal’s bandwidth [9]. Since a recreational drone that uses the 

FHSS signal can hop across the 100 MHz frequency band, monitoring the entire 

bandwidth requires a very high sampling rate [10]. In addition, the higher the 

sampling rate, the larger the signal samples and eventually contributes to higher 

computational complexity (CC). As the drone signal is hopping across the large

2



frequency band makes it difficult to detect while maintaining a low sampling rate at 

the same time.

In time-frequency representation (TFR), there is a trade-off between the 

resolution of time and frequency due to the uncertainty principle [11]. It is 

impossible to get a high resolution TFR in both time and frequency simultaneously. 

However, this is crucial if precision is required to estimate the time and frequency 

parameters of a signal. This is best illustrated by a modulated Gaussian pulse [12]. It 

is shown that this is the only signal where the product of effective time, t ef f  and 

effective frequency, f ef f  is constant at 1/4n, and other signals should conform to this 

equality tef f f ef f >  1 /4 n  . The result of this inequality is also known as the 

uncertainty principle similar to the Heisenberg uncertainty principle in quantum 

physics. Since the product is a constant, a short duration pulse will have a broad 

bandwidth and vice versa. Similarly, an increase in time resolution will cause a 

decrease in frequency resolution and vice versa. Since each drone has different signal 

bandwidth and hop duration needs an analysis window size adapting to signal 

characteristics by balancing between time and frequency resolution.

Additionally, the 2.4 GHz and 5.8 GHz ISM bands used by the recreational 

drone are also used by other wireless technologies such as Wi-Fi, and Bluetooth. In 

this multi-signal environment, the other wireless technology signals are mixed with 

drone signals, and difficult to distinguish them [13]. Unlike the white noise, 

background signals like Wi-Fi have a dedicated transmission channel and only affect 

drone signals at certain frequency range. Hence, the threshold for drone signal 

detection could be adapted to the change of frequency spectrum.

3



1.3 Objectives of the Study

This thesis embarks on the following objectives:

a) To develop a time-frequency analysis (TFA) method that minimises sampling

rate by splitting a large frequency band into sub-bands and perform scanning.

b) To develop an adaptive window size algorithm that automatically chooses an

analysis window size by balancing the time and frequency resolution 

according to the drone signal characteristic.

c) To separate drone signal from background signal with a threshold derived

from baseline spectrum and detect drone signal based on the estimated signal 

parameters such as hop duration, channel frequency, and hop sequence.

1.4 Scope of Study

The scopes of work in this study are:

a) Target only on frequency-agile drone signals like FHSS and HSS signals and 

operate in 2.4 GHz to 2.5 GHz (2.4 GHz ISM band).

b) Non-frequency-agile drone signal like DSSS is excluded because the channel 

frequency is static and not occupy the entire frequency band.

c) Bluetooth wireless technology is excluded from environment signal because 

it is for short-range communication, low data rate transmission, and usually 

use in an enclosed space.

d) In signal analysis, the RF signal would be down-converted to an intermediate 

frequency signal as the received signal to the drone signal detection system.

e) The Sampling frequency is set at the Nyquist rate, which is 200 MHz for the 

wideband spectrogram (WS), and 50 MHz for the proposed method.

4



f) For the non-adaptive spectrogram method that chooses a window size 

manually, the choice of window size is a power progression from 64 to 4096 

samples, equivalent to 64, 128, 256, 512, 1024, 2048, 4096 samples [14].

g) For sub-bands scanning for the proposed method, the settling time of 

switching from one sub-band to the next sub-band considered is zero.

h) In a typical multi-signal environment, the background signals contain white 

noise, Wi-Fi, DSSS, and free from any drone signals. This is a baseline signal 

that being sample ahead of time before separating the drone signal from the 

background signal.

i) Multipath fading effect is not considered in this study because the 

recreational drones normally fly in an open area and above the ground with 

the maximum allowable altitude of 400 feet stated in the Federal Aviation 

Administration (FAA) fact sheet [15].

j) During the development, testing, and benchmarking of the algorithm,

MATLAB software will be used as the simulation tool.

1.5 Contribution of Work

This study proposed an adaptive stepped frequency scan spectrogram 

(Adaptive-SFSS) method to represent a signal in TFR and estimate signal 

parameters. The Adaptive-SFSS can analyse large bandwidth at a lower sampling 

rate compared to the WS. This is done by dividing the large analysis bandwidth into 

multiple small sub-bands and scan through. Even though the Adaptive-SFSS might 

miss some of the signals that appear in certain sub-band that are not actively in the 

scan, it is not an issue when the scanning speed is faster than the signal hopping 

speed. Furthermore, the Adaptive-SFSS has a lower sampling rate and a smaller 

number of samples for signal representation that eventually lower down the 

computational cost.
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Secondly, this study proposed an adaptive window size algorithm based on 

the balance between time and frequency resolution. The algorithm can optimize the 

analysis window size by adapting the time and frequency resolution to the signal 

characteristic. Plus, this algorithm enables automatic window size selection, provides 

an accurate TFR, and improves the signal parameter estimation. Since the algorithm 

is adaptable, it allows easy-to-deploy in measurement setup which is one of the 

suggested strategies for next generation spectrum monitoring [2].

Additionally, the drone signal parameters such as hop duration, channel 

frequency, and instantaneous frequency (IF) are estimated by analysing the 

instantaneous power and power spectrum derived from the TFR. In signal 

classification, these signal parameters and IF are useful in identifying a wireless 

technology and hopping sequence used by drones, and eventually trace back to the 

drone manufacturer and buyer.

1.6 Thesis Organization

There are five chapters in this thesis, it begins with Chapter 1 as an 

introduction. Chapter 2 is a literature review that consists of the discussion of drone 

signals and detection technologies, signal representation, and analysis. Chapter 3 

would focus on the methodology of the WS and SFSS spectrogram, threshold setting, 

adaptive window size algorithm, and signal parameters estimation. After that, 

Chapter 4 would present the result and discussion about the adaptive window size 

algorithm, signal representation, and analysis. A Monte Carlo simulation is carried 

out to verify the spectrogram performance in different multi-signal environments at a 

various signal-to-noise ratio (SNR). Conclusion and future work are described in 

Chapter 5.
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