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ABSTRACT

Thermal decomposition of waste via pyrolysis is capable of producing 
pyrolysis oil. However, the produced oil tends to be unstable due to its poor physio- 
chemical properties such as high sulphur content, high acidic pH and high moisture 
content, and hence limiting its potential implementation as a fuel. Therefore, a 
microwave-induced in-situ catalytic fast co-pyrolysis study was proposed, serving to 
upgrade the pyrolysis oil to possess fuel-like properties. In the present study, co
pyrolysis of empty fruit bunch (EFB) with waste truck-tire (TT) were utilised with TT 
being selected because of its high volatile carbon content level and high heating value. 
Carbonaceous susceptor was also used to elevate the pyrolysis temperature. Firstly, 
pyrolysis temperature of microwave-induced fast pyrolysis of TT and EFB was 
optimised individually for increased pyrolysis oil yield and energy recovery. It was 
found that temperature of 500°C produced highest TT and EFB pyrolysis oil yields, 
which were approximately 38.12 and 38.26 wt%, respectively. TT pyrolysis oil was 
observed to consist of high calorific value (42.39 MJkg-1) and high energy yield (40.55 
wt%) but with high sulphur content. EFB was found to produce phenolic-rich pyrolysis 
oil with lower flash point, consisting of highly oxygenated compounds (90%) and 
high-water content (30 wt%). To overcome the lack of fuel-like properties, pyrolysis 
oil yield and energy recovery optimisation of co-pyrolysis between TT and EFB were 
conducted using responses surface methodology (RSM). Three parameters were 
examined, namely: 1) EFB to TT ratio, 2) pyrolysis temperature and 3) carbonaceous 
susceptor loading. It was observed that optimum conditions of 505°C pyrolysis 
temperature, 65% of EFB to TT ratio and 60g of susceptor loading produces highest 
pyrolysis oil yield (39.87 wt%) and energy recovery (60%). Such a co-pyrolysis 
configuration produced olefin correlate rich pyrolysis oil (39%) with high selectivity 
of D-limonene (28.6%) and 20% higher energy recovery as compared to TT pyrolysis 
oil. However, the liquid-oil still has a significant number of sulphur (0.05%) and acidic 
compounds (0.83%), mainly originating from TT and EFB. Thus, a microwave- 
induced in-situ catalytic fast co-pyrolysis of TT with EFB, using catalysts, was been 
carried out. Two parameters were studied: 1) catalyst types, namely activated carbon 
(AC), clay (CL) and calcium oxide (CaO), and 2) catalyst loading (ranging from 20 to 
60%). It was shown that catalytic cracking decreases acidity of pyrolysis oil from 4.70 
(un-catalytic) to 5.12 (AC20), 4.98 (CL20) and 5.65 (CaO20). As compared to CL and 
CaO, catalytic cracking using AC increased desirable hydrocarbon fractions (olefinic 
and monoaromatic) with highest selectivity of benzene, toluene, ethylbenzene and 
xylene (BTEX) hydrocarbons, indicating that such a catalytic cracking favours 
production of pyrolysis oil with fuel-like properties. It is, thus, parametrically 
determined that at 500°C pyrolysis temperature with 65:35 ratios (EFB/TT), 60g of 
susceptor, 20% of catalyst loading using AC at reaction time of 30 minutes, pyrolysis 
oil with highest yield of 38.92 wt% as well as highest energy recovery of 60.77% can 
be produced. The physiochemical properties of the pyrolysis oil were also determined 
to be similar to that of petroleum diesel but with a slightly lower flashpoint (<30oC). 
Thus, this work successfully demonstrated that microwave-induced catalytic co
pyrolysis of TT/EFB, using AC as catalyst, is a promising technique to recover diesel
like fuel from waste feedstocks, carrying great potential for use as supplemental 
alternative fuel or for value-added petrochemical products recovery.
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ABSTRAK

Penguraian haba bagi sisa bahan terbuang melalui pirolisis mampu 
menghasilkan minyak pirolisis. Walau bagaimanapun, minyak yang terhasil tidak 
stabil kerana mempunyai sifat fisiokimia yang rendah seperti kandungan sulfur tinggi, 
pH berasid dan kandungan lembapan tinggi, menghadkan potensinya sebagai bahan 
bakar. Oleh itu, kajian ko-pirolisis cepat bermangkin menggunakan gelombang-mikro 
telah dicadangkan untuk meningkatkan kualiti minyak pirolisis bersifat bahan bakar. 
Dalam kajian ini, ko-pirolisis tandan buah kosong (EFB) dengan trak tayar terpakai 
(TT) digunakan kerana TT mempunyai kandungan karbon terurai dan nilai pemanasan 
yang tinggi. Penyerap karbon juga digunakan bagi meningkatkan suhu pirolisis. Pada 
awalnya, suhu pirolisis cepat gelombang-mikro TT dan EFB dioptimumkan secara 
individu bagi meningkatkan hasil minyak pirolisis dan tenaga dipulihkan. Didapati 
suhu 500oC menghasilkan minyak pirolisis TT dan EFB yang tinggi iaitu 38.12 dan 
38.26 wt%. Minyak pirolisis TT diperhatikan mempunyai kalori (42.39 MJkg-1) dan 
tenaga (40.55 wt%) yang tinggi tetapi mengandungi sulfur yang tinggi. Minyak 
pirolisis EFB juga didapati dapat menghasilkan minyak pirolisis kaya-fenolik dengan 
takat kilat yang rendah, mengandungi sebatian beroksigen (90%) dan kandungan air 
(30 wt%) yang tinggi. Bagi mengatasi kelemahan sifat bahan bakar yang rendah, 
pengoptimuman hasil minyak dan tenaga terpulih ko-pirolisis antara TT dan EFB 
dilakukan dengan menggunakan responses surface methodology (RSM). Tiga 
parameter dikaji iaitu: 1) nisbah EFB ke TT, 2) suhu pirolisis dan 3) muatan karbon 
penjerap. Didapati keadaan optimum pada suhu ko-pirolisis 505oC, nisbah 65% EFB 
ke TT dan 60g muatan bahan penjerap menghasilkan minyak pirolisis (39.87 wt%) dan 
tenaga terpulih (60%) yang tinggi. Konfigurasi ko-pirolisis ini menghasilkan minyak 
pirolisis kaya olefin (39%) dengan keterpilihan tinggi D-limonene (28.6%) dan 
pemulihan tenaga 20% lebih tinggi berbanding minyak pirolisis TT. Walau 
bagaimanapun, minyak masih mempunyai kandungan sulfur (0.05%) dan sebatian 
berasid (0.83%), yang berasal dari TT dan EFB. Oleh itu, ko-pirolisis bermangkin TT 
dengan EFB menggunakan gelombang-mikro telah dilakukan. Dua parameter dikaji 
iaitu: 1) jenis mangkin iaitu karbon teraktif (AC), lempung (CL), kalsium oksida 
(CaO), dan 2) muatan mangkin (20 hingga 60%). Hasil kajian menunjukkan proses 
pemangkinan dapat menurunkan pH minyak pirolisis dari 4.70 (un-Cat) kepada 5.12 
(AC20), 4.98 (CL20) dan 5.65 (CaO20). Berbanding dengan CL dan CaO, proses 
pemangkinan menggunakan AC meningkatkan pecahan hidrokarbon yang 
dikehendaki (olefinik dan monoaromatik) dengan keterpilihan tinggi hidrokarbon 
benzena, toluena, etilbenzena dan xilena (BTEX), menunjukkan proses pemangkinan 
menghasilkan minyak pirolisis bersifat bahan bakar baik. Oleh itu, parameter suhu 
pirolisis 500oC dengan nisbah 65:35 (EFB/TT), 60g muatan bahan penjerap dan 20% 
muatan mangkin AC pada masa tindakbalas 30 minit, mampu menghasilkan minyak 
pirolisis yang tinggi 38.92% serta tenaga terpulih yang tinggi 60.77%. Sifat fisiokimia 
minyak juga didapati setanding dengan petroleum diesel tetapi titik kilat rendah sedikit 
(<30oC). Oleh itu, kajian ini berjaya menunjukkan bahawa ko-pirolisis bermangkin 
TT/EFB dengan gelombang-mikro menggunakan AC sebagai mangkin adalah kaedah 
yang berpotensi dalam penghasilan semula bahan bakar mirip diesel dari bahan 
buangan sisa untuk digunakan sebagai bahan bakar alternatif tambahan atau untuk 
penghasilan semula produk petrokimia bernilai tambah.
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CHAPTER 1

INTRODUCTION

1.1 Research Background

The increasing energy demand in the transportation sector along with the need 

to reduce CO2 emission have prompted the search for innovative technology and 

renewable energy sources. Although there are numerous alternative energy sources 

that could potentially substitute fossil fuels, critical factors, such as availability of the 

fuel source, economic viability and environmental impacts remain the biggest 

challenges when considering fuel candidates. For transportation purposes, liquid fuel 

still appears as the most attractive and feasible form of fuel when taking into account 

energy density, stability and existing infrastructure (Liu et al., 2014). In recent 

decades, much research has been devoted to produce alternative liquid fuel from solid 

municipal, industrial and agricultural wastes (Suriapparao et al., 2018; Li et al., 2019; 

Wang et al., 2020). Aside from contributing towards value-added chemicals 

production, waste recycling also presents itself as a viable form of renewable energy, 

potentially leading to direct benefits to the environment and the economy (Ding et al., 

2019; Wang et al., 2019).

When considering waste-to-energy recycling, waste tire presents itself as one 

of the potential sources of solid waste. The growing number of vehicles on the road 

worldwide generates millions of used tires annually. Improper management of waste 

tires has thus far created a huge environmental problem. For example, due to the 

artificial and non-biodegradable polymer used in the production of these tires, waste 

tires become difficult to decompose under natural environment. Alternatively, this led 

to improper incinerations, which further release hazardous pollutants (including 

polycyclic aromatic hydrocarbons (PAHs), benzene, styrene, phenols, and butadiene) 

to the atmosphere that could severely affect human health (Hita et al., 2016; Idris et 

al., 2019). Aside from this, landfilling of waste tire could also pose as a serious fire
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hazard. The uncontrolled combustion of such waste tires results in the release of black 

smoke in an enormous volume. The released sulphur content and additives from this 

combustion could pollute the environment (Pilusa, 2017; Dai et al., 2018).

In order to overcome the potential environmental harm done due to improper 

management, waste tires have been often considered to be recycled for energy 

recovery (Ismail et al., 2017; Gamboa et al., 2020). However, to date, drawbacks of 

processing waste tire and high operating cost remain issues that have to be properly 

tackled. Recently, the urgent need to dispose waste tire efficiently in the context of 

circular economy has further provided the impetus for researchers to further explore 

thermal conversion process, via pyrolysis, on waste tire (Idris et al., 2019; Mkhize et 

al., 2016; Rodriguez et al., 2020). Generally, pyrolysis involves thermal 

decomposition of materials at elevated temperatures (300 to 700 °C), in an oxygen- 

free environment, to decompose solid wastes into biochar, pyrolysis oil and syngas. 

Quality and yields of the pyrolysis oil are often strongly dependent on the operating 

conditions, such as particle size, temperature, heating rate, reaction atmosphere and 

type of reactor as well as the properties of the feedstock (Kabir and Hameed, 2017; 

Zhang et al., 2017; Uzoejinwa et al., 2018). The low heat transfer and high residence 

times parameters are significantly influence the biochar quality (Brassard et al., 2017; 

Li et al., 2019). While, the type of reactor, catalyst, reaction temperature, carrier gas 

and residence time plays an important role in producing high quality syngas (Policella 

et al., 2019; Lin et al., 2020). In this study the upgrading of pyrolysis oil properties 

nearly similar to transport-grade diesel or gasoline has been investigated due to the 

waste tire pyrolysis oil has high calorific value thus, potential use as a drop-in fuel in 

existing engine (Gamboa et al., 2020).

The waste tire is a polymeric compound (consisting of natural and synthetic 

rubber) and is expected to play a major role in affecting the pyrolysis oil composition. 

The composition of the pyrolysis oil depends on the type of tire, i.e. personal car tire 

(PCT) or truck-tire (TT). As an example, TT has been known to have larger natural 

rubber content when compared with PCT. On the other hand, synthetic rubbers, such 

as butadiene and styrene butadiene, represent a third of the rubber in TT and two-thirds 

in PCT, respectively. Sienkiewicz et al. (2012) reported that, based on US and EU
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standards, natural rubber content in PCT and TT accounts for 14 to 22 wt% and 27 to 

30 wt%, respectively. The synthetic rubber in PCT is found to be 27 to 30 wt% while 

for TT, it is approximately 14 to 15 wt% (Sienkiewicz et al., 2012; Efika et al., 2018). 

Therefore, it is expected that the difference in polymeric composition in waste tire 

results in different thermal degradation characteristics. Subsequently, the quality of 

pyrolysis oil produced also vary (Ozcan et al., 2016; Kan et al., 2017; Han et al., 2018).

In exploring thermal conversion of different polymeric compounds, Seidelt et 

al. (2006) examined the thermal properties of natural and synthetic rubber, which are 

derived from styrene-butadiene-rubber and polybutadiene rubber, respectively. Their 

results revealed that there exists a relationship between the polymeric composition and 

thermal degradation of three different rubbers, thus, giving different pyrolysis oil 

compositions (Bockhorn et al., 2006). Pyrolysis of waste tire also allows for the 

degradation of polymeric compounds into lower molecular weight oil that could be 

used as alternative fuels or chemicals feedstock (Undri et al., 2013; Alvarez, et al., 

2017). The pyrolysis oil has been reported in literature to have high calorific values 

(40 to 45 MJkg-1), which typically consists of a mixture of aliphatic, olefinic and 

aromatic hydrocarbons, depending on the process conditions and tire composition 

(Alvarez, et al., 2017; Idris et al., 2019). However, many studies also reported that the 

pyrolysis oil contains a significant amount of nitrogen and sulphur compounds, making 

this oil inferior as compared to fossil fuel. Consequently, this prohibits direct usage of 

such oil in an engine.

Additionally, the produced pyrolysis oil has also been characterized to have 

poor physical properties, such as high viscosity, low flash point and low density that 

affects the spray injection system (Song et al., 2018; Suntivarakorn et al., 2018). Das 

et al. (2018) reported that high viscosity and low volatility of liquid fuel tend to result 

in inferior atomization and reduced fuel vaporization, whereas high fuel density leads 

to the increase in spray penetration that results in the increase in emissions of unburnt 

hydrocarbon and carbon monoxide, CO (Das et al., 2018). High water content in the 

oil also affects the energy content (Das et al., 2018) while high sulphur content could 

corrode the internal components of the engine, such as piston ring, valves and cylinder 

liners (Suntivarakorn et al., 2018).
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Thus, it is imperative that the pyrolysis oil quality be improved before being 

considered for direct application in existing engines. Recently, co-pyrolysis and 

catalytic co-pyrolysis processes have been much adopted in the process to improve the 

quality and the quantity of pyrolysis oils. Several studies have reported improved 

pyrolysis oil properties and yield through co-pyrolysis and catalytic co-pyrolysis, 

suggesting that the synergistic effects between two different materials during the 

pyrolysis process could lead to positive effects (Shah et al., 2019; Fakayode et al.,

2020). Previous literature shows that catalytic co-pyrolysis studies have been 

performed mostly by using a fixed-bed reactor, aiming to improve liquid oil properties 

and yield. As an example, Zeeshan et al. (2018) conducted a study on co-pyrolysis of 

the waste tire (WT) and sugarcane bagasse (SCB) under a fixed-bed reactor. From 

their study, it revealed the optimised ratio of WT/SCB at 1:3 produced the highest 

yield of pyrolysis oil (49.7 wt%) as compared to SCB single feedstock (42.1 wt%). 

Adding WT to SCB have been observed to significantly increase the calorific value of 

oil from 19.1 MJkg-1 (SCB) to 41.0 MJkg-1 (WT/SCB; 1:3) (Ahmed et al,  2018). Shah 

et al. (2019) also studied the co-pyrolysis of the cotton stalk (CS) with waste tire (WT) 

also under a fixed bed reactor. It showns that adding WT to the CS pyrolysis feedstock 

resulted in improved oil yield and quality. The optimised ratio of CS/WT achieved at 

2:3 resulted in maximum oil yield of 48.0 wt% and a high organic phase of 78.0 wt%. 

The research showed that adding WT to CS resulted in a significant increase in carbon 

content and a decrease in the oxygen content of the pyrolysis oil, while the calorific 

value improved from 23.6 MJkg-1 (pure CS) to 41.3 MJkg-1 (CS/WT ratio, 2:3) (Shah 

et al., 2019).

Likewise, microwave heating pyrolysis has also recently been shown as a 

promising route for waste feedstock recycling into renewable fuel and value-added 

materials (Ali and Idris, 2016; Beneroso et al., 2017; Suriapparao et al., 2018). The 

use of microwave heating is reported to provide various advantages with respect to 

rapid heating, volumetric heating, selective heating and short processing time as 

compared to conventional heating (Bhattacharya and Basak, 2016; Antunes et al., 

2018; Fan et al., 2019). Dai et al. (2017) conducted a study of microwave-assisted 

catalytic fast co-pyrolysis of soapstock (SPT) with waste tire (WT) using HZSM-5 

catalyst. The optimal co-pyrolysis condition, at 550 oC with the catalyst-to-feedstock 

ratio of 1:5, showns to result in the highest yield of hydrocarbons fraction. The use of

4



catalyst was also observed to have enhanced the total amount of olefins and aromatics 

produced between 82.1 to 89.4 % but with reduced the yield of pyrolysis oil from 42.0 

wt% (catalyst-free) to 38.9 wt% (with-catalyst) (Dai et al., 2017). From their study, it 

revealed that WT demonstrated a significant synergistic effect with SPT in facilitating 

the production of hydrocarbon and aromatics compounds in the pyrolysis oil (Dai et 

al., 2018).

Wang et al. (2018) also studied the microwave-assisted catalytic co-pyrolysis 

of soybean straw (SS) and soapstock (SPT) using SiC ceramic as a catalyst. It was 

reported that the pyrolysis oil yield decreased from 49.8 wt% (catalyst-free) to 41.3 

wt% (with-catalyst). However, the ratio of oxygen-containing compounds decreased 

from 34.0% (catalyst-free) to 23.0%. From that point of view, the catalytic co

pyrolysis process showed a synergistic reaction catalysed by SiC to promote 

deoxygenation of oxygenated compounds. Moreover, microwave heating system has 

been observes to enhance the reaction rates while improving the pyrolysis oil 

properties (Beneroso et al., 2015; Mutsengerere et al., 2019).

From the literature, microwave heating has been demonstrated to be able to 

provide a slow but high heating rate due to the fact that microwave energy is delivered 

directly into the material through molecular interaction via the electromagnetic field 

with little wastage to the surrounding area. Significant savings of time and energy were 

achieved in the microwave-induced co-pyrolysis work conducted by Dai et al. (2018) 

and Wang et al. (2018). Higher heating rate improves the devolatilization of the 

feedstock by reducing the conversion time. Furthermore, the heating rate influences 

the residence time of volatiles that flows from the internal heating zones towards the 

external cold regions of the sample. The higher heating rate, shorter residence time and 

high volatilization rate reduce the activity of secondary reactions of vapor phase 

products. Consequently, this results in high yields of liquid and reduces the deposition 

of refractory condensable material on the char’s internal surface (Asomaning et al., 

2018; State et al., 2019).

Therefore, in this study, microwave-induced in-situ catalytic fast co-pyrolysis 

of waste truck tire with empty fruit bunch (EFB), involving three types of catalysts,
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namely activated carbon, clay and calcium oxide, were used to upgrade the quality of 

liquid oil as well as increased the energy recovery. The waste tire and empty fruit 

bunch (EFB) are considered as a suitable candidates for co-pyrolysis due to its high 

carbon content and heating value (Antoniou and Zabaniotou, 2015; Akkouche et al., 

2017). In view of the abundance of EFB and waste truck-tire, pyrolysing the materials 

present a viable route for energy recovery and waste reduction. Previous co-pyrolysis 

research on biomass with waste tire was mainly focused on the use of personal car tire 

(PCT) (Farooq et al., 2017; Wang et al., 2018; Alvarez et al., 2019). However, the 

study of co-pyrolysis of EFB with waste truck-tire (TT), to the best of the authors' 

knowledge, has never been reported in literature. In this work, the microwave heating 

technique with the aid of carbonaceous susceptor is utilised to provide the heating 

source for pyrolysis.

Firstly, the optimisation temperature of microwave-induced fast pyrolysis TT 

and EFB individually. The effect of reaction temperature is studied to determine the 

liquid oil yield, chemicals composition, hydrocarbon fractions and higher heating 

value (HHV) as well as the energy yield of the liquid oil. Secondly, the optimisation 

of co-pyrolysis TT and EFB using responses surface methodology (RSM) is to be 

conducted. The central composite design (CCD) of RSM is utilised to optimise the 

experimental conditions of microwave-induced co-pyrolysis of TT/EFB. Three 

parameters are examined (EFB to TT ratio, reaction temperature and carbonaceous 

susceptor loading) to optimise the production of liquid oil and energy yield. The 

optimised results from the RSM study are conducted for the catalytic fast co-pyrolysis 

of waste truck tire with empty fruit bunch (EFB) using sustainable catalyst to further 

upgrade the pyrolysis oil properties. Two parameters are studied, which are the effect 

of catalyst (AC-activated carbon, CL-clay, CaO-calcium oxide) and the effect of 

catalyst loading (20 to 60%) to upgrade the quality of pyrolysis oil.

In conclusion, this work is expected to contribute to the database of waste truck 

tire and empty fruit bunch co-pyrolysis. Based on the concept of waste-to-energy 

approach, the findings of the present study are also expected to significantly contribute 

to the understanding of upgrading pyrolysis oil properties, increasing the liquid oil and
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energy yield as well as valuable chemicals recovery, such as phenolic, BTEX and 

limonene.

1.2 Problem Statement

Growing number of vehicles on the road worldwide has led to the generation 

of millions of end-life tires (ELTs) annually (Presti, 2013; ETRma, 2014). It was 

reported that about 1.4 billion of new tires are sold worldwide yearly and subsequently 

just as many falls into the category of end of life tires (ETRma, 2014). The 

Environmental Protection Agency reported that million tonnes of waste tires are 

generated yearly all over the world. These waste tires are among the most problematic 

sources of waste due to their nature of being non-decomposed and non-biodegradable. 

Waste tire accumulation pose a threat to public health, safety and the environment 

worldwide. The improper management of waste tires is creating a burden and 

environmental impact. Thus, several alternatives have been developed to manage 

waste tire via recycling and energy recovery. However, there are still drawbacks, such 

as high costs and high sulphur content of oil. Due to these drawbacks, many studies 

have been conducted on the waste tire co-pyrolysis with other materials, such as waste 

plastic, coal and sewage. Yet, little has been reported in literature in which the focus 

is on the co-pyrolysis of lignocellulosic biomass/waste tire, particularly with EFB 

biomass.

Likewise, the palm oil industry has brought a great economic benefit to 

Malaysia. However, abundance of waste biomass generated from the palm oil mills is 

significantly increasing annually (Loh et al., 2017). The waste biomass includes 

trunks, fronds, empty fruit bunches and other biomass fractions. Malaysia Palm Oil 

Board, MPOB, (Board, 2017) reported that the total production of crude palm oil 

(CPO) in Malaysia was 3.4 million tonnes in 2016. Consequently, it is also reported 

that about 25.5 million tonnes of oil palm waste (OPW) were generated since 75 wt% 

of the solid wastes were produced from 10 wt% of CPO. Part of these OPW biomass 

flow is already being used for energy production, such as palm kernel shell (PKS) and 

empty fruit bunch (EFB) are utilised for palm mill boiler and remote local electric
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generator (MPOB, 2018). Additionally, EFB, OPF and OPT have also been utilised as 

mulching and fertilizer agent for the production of packaging and building materials. 

However, there are still a significant amount of waste biomass from the palm oil 

industry that have been left behind. These wastes can still be mobilized for improving 

waste biomass utilization efficiency in order to meet the current energy demand and 

to also sustain the palm oil industry (Liew et al., 2018; Ahmad et al., 2019)

Despite the fact that pyrolysis-oil is environmentally friendly, fuel 

characteristic of this oil remains undesirable as compared to fossil fuel, especially with 

regards to its combustion efficiency. Direct use of pyrolysis-oil is difficult due to its 

complex compositions, which contains acids and high level of oxygenated compounds. 

This characteristics have led to poor liquid fuel characteristic, such as high viscosity, 

corrosiveness, low heat value and instability of oil (Umeki et al., 2016; Mutsengerere 

et al., 2019). Several researchers have reported that oil from the pyrolysis process of 

waste tire and biomass alone generally consists of high sulphur, nitrogen oxygen in 

form of phenolic compounds with high water content (Chang, 2014; Guo et al., 2017; 

Kim et al., 2019) . Thus, it is necessary to improve the pyrolysis oil quality in order to 

overcome the challenges for it to be directly used for fuel-related applications.

It is clear that since pyrolysis process produces long chain hydrocarbon as a 

main product, the process requires breaking of carbon-carbon bonds to produce light 

hydrocarbon and aromatic compounds. This process can be catalysed by solid acid 

catalysts, such as zeolites, which are used in conventional petroleum oil refineries for 

the same purpose (Xie et al., 2018; Wang et al., 2019). In general, zeolite catalyst has 

been used as the main catalyst for pyrolysis of many different feedstocks to upgrade 

the pyrolysis oil properties. Previous studies showed that the utilization of zeolite 

catalyst in the biomass pyrolysis has dramatically changed the composition of 

pyrolysis oils by reducing the amounts of oxygenated compounds in pyrolysis oil via 

deoxygenation reactions. Simultaneously, this also resulted in the increase in aromatic 

compounds, producing a lighter fraction (gasoline-type fuel). A decrease in the 

pyrolysis oil molecular weight is hence obtained. However, zeolite is considered as an 

expensive catalyst (Zhao et al., 2018; Sun et al., 2019). This is due to the coke 

formation during the process that requires replacing of a fresh catalyst for every new
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cycle reaction. Thus, replacing zeolite catalyst with a more economised catalyst, such 

as activated carbon, calcium oxide and kaolin clay, are expected to lead to a more cost- 

effective catalytic pyrolysis process.

1.3 Motivation of the Study

Co-pyrolysis presents a viable method to upgrade the pyrolysis oil properties 

using the microwave-assisted heating method. This process involves two or more 

different materials being used as a feedstock. Many studies showed that co-pyrolysis 

using two different feedstocks, such as synthetic polymer and biomass, exhibited a 

synergistic effect during the pyrolysis process. It has also been observed that the co

pyrolysis also facilitates the production of light aromatics hydrocarbon, such as 

benzene, toluene, ethylbenzene and xylene (BTEX). The produced aromatic 

hydrocarbon is found to be a gasoline-type fuel hydrocarbon. Thus, the selection of 

feedstock presents itself as one of the crucial factors to improve the oil quality and 

quantity during the co-pyrolysis (Hassan et al., 2016; Zhu et al., 2018; Gu et al., 2020). 

Abnisa and Daud (2015) reported that the synergetic effect of co-pyrolysis depends on 

the type and the contact of different materials, pyrolysis duration, temperature and 

heating rate, removal or equilibrium of volatiles formed and addition of solvents, 

catalysts along with hydrogen-donors (Abnisa and Daud, 2015).

The type of blending feedstock also has a significant influence as compared to 

the abovementioned other factors. Thus, synergistic effects on co-pyrolysis can be 

complicatedly varied based on the feedstock (Abnisa and Daud, 2015). In this study, 

adding waste truck tire (TT) into the empty fruit bunch (EFB) feedstock is expected to 

exhibit good synergetic effect, which is attributed to the higher fixed carbon and lower 

volatile matter of TT as compared to EFB (through proximate analysis study). 

Moreover, TT is considered as a good microwave absorber due to the content of carbon 

black, which complements the poor dielectric property of EFB. Thus, the addition of 

TT acts as the microwave absorber in enhancing the heating of EFB through heat 

conduction in facilitating the microwave heating process (Mushtaq et al., 2015; Lam et 

al., 2019). Generally, mixing of feedstock, under a co-pyrolysis process, is expected to
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result in different physicochemical properties that will invariably lead to a synergetic 

effect between the two materials, giving rise to end products of different quality and 

yield.

The utilisation of microwave heating pyrolysis has also been reported to 

provide various advantages with respect to rapid heating, volumetric heating, selective 

heating and short processing time as compared to conventional heating (Bhattacharya 

and Basak, 2016; Antunes et al., 2018; Fan et al., 2019). Numerous studies have been 

published on the efficiency of microwave pyrolysis using different materials (Song et 

al., 2017; Asomaning et al., 2018; Guedes et al., 2018). The microwave can heat 

objects uniformly in a shorter heating time as compared to the conventional heating 

(Zhang et al., 2018; Haeldermans et al., 2019). In addition to this, activated carbon 

will also act as a good microwave susceptor to absorb microwave energy and 

converting into heat to be transferred to nearby particles of the feedstock through 

convection, conduction and radiation process (Bhattacharya and Basak, 2016; Antunes 

et al., 2017). This significantly decreases the residence time of volatiles vapor in the 

hot zone of reactor vessel. Thus, the increasing of liquid oil yield as well as upgrading 

of the pyrolysis oil quality is to be expected. This is because rapid microwave pyrolysis 

heating reduces the probability of secondary cracking of volatile vapour during the 

pyrolysis process. As a result of this, the pyrolysis oil produced consists of relatively 

high proportion of olefins hydrocarbons, monoaromatics hydrocarbon, mainly from 

BTEX hydrocarbons (benzene, toluene, ethylbenzene and xylene) as well as high 

proportion of valuable chemicals, such as ethylene, propylene, butene and limonene 

(Uzoejinwa et al., 2018; Martinez et al., 2019; Idris et al., 2020). The shorter 

processing time also contributes to the reduction in operating cost. Moreover, the pre

treatment of the feedstock, such as drying, grinding into a small particle size, acid or 

base treatment are the requirement in a microwave pyrolysis as compared to the 

conventional heating. Thus, the pre-processing cost of pyrolysis process can be 

significantly reduced from the economic point of view.

Catalytic co-pyrolysis also offers a facile method by implementation of catalyst 

into the fast co-pyrolysis process to upgrade the pyrolysis oil properties via cracking 

of heavy hydrocarbon into short chain hydrocarbons. Pattiya (2018) reported that the

10



main reactions involved in the catalytic cracking are carbon-carbon bonds cleavage, 

isomerisation, polymerisation, condensation, alkylation and aromatisation. These 

reactions lead to the production of light hydrocarbons, such as aliphatic, olefins and 

monoaromatic hydrocarbons, BTEX (Pattiya, 2018). Many studies have used zeolite 

catalyst in achieving a more efficient bio-oil upgrading (Hu et al., 2017; Zhao et al., 

2018; Zhou et al., 2019). However, zeolite catalyst suffers from deactivation of coke 

formation and requires replacing of fresh catalyst for every new cycle. This is very 

ineffective from an economic point of view. Previous studies have showed that mirco- 

porous catalysts, such as activated carbon or biochar produced from the pyrolysis 

process, could potentially be used as a catalyst to upgrade liquid oil properties. This is 

due to their physio-co-chemical properties of activated carbon, such as high surface 

area, large pore volume and multiple pore size distribution (Miandad et al., 2016; Dong 

et al., 2018; Zhang et al., 2019). Due to the coke formation and requirement of 

replacing a fresh catalyst for every new cycle during co-pyrolysis, switching from 

zeolite catalyst to a more sustainable catalyst, such as activated carbon or waste- 

derived activated carbon (biochar), can be expected to significantly reduce the 

operation cost for potential fuel production. This is due to the fact that activated carbon 

or waste-derived activated carbon (biochar) catalyst is in abundance and much cheaper 

as compared to zeolite catalyst.

1.4 Research Objectives

The aim of the present study is to upgrade the quality and yield of pyrolysis- 

oil derived from catalytic co-pyrolysis between waste truck tire (TT) and palm-based 

empty fruit bunch (EFB). To achieve the aim, the objectives of these study are 

presented as follow:

(a) To determine the properties of the pyrolysis oil derived from microwave- 

induced pyrolysis of TT.

(b) To determine the properties of pyrolysis oil derived from microwave-induced 

pyrolysis of EFB.
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(c) To optimise the yield and energy recovery of pyrolysis oil derived from 

microwave-induced co-pyrolysis of TT and EFB.

(d) To upgrade the quality of pyrolysis oil derived from microwave-induced 

catalytic co-pyrolysis of TT and EFB using activated carbon, clay and calcium 

oxide catalysts.

By the end of the study, it is aimed that a satisfactory upgradation of the 

pyrolysis oil, derived through catalytic co-pyrolysis between TT and EFB, into 

potentially diesel-like fuel be achieved. The findings of the study are also expected as 

the strong fundamental platform to more effectively valorise wastes, such as TT and 

EFB.

1.5 Scope of the Study

The scopes of this study consist of four main parts, which are: i) materials 

preparation and reactor setup; ii) microwave-induced pyrolysis waste truck tire (TT) 

and empty fruit bunch (EFB) individually; iii) microwave-induced co-pyrolysis of TT 

with EFB using the RSM software; and lastly iv) microwave-induced in-situ catalytic 

fast co-pyrolysis of TT with EFB using catalysts. The stainless steel-free truck tire had 

been supplied from Eco Power Synergy Sdn Bhd, located in Klang, Selangor Malaysia. 

The EFB pellet, on the other hand, had been supplied from FGV Semanchu Palm Oil 

Mill, located in Kota Tinggi, Johor Bahru, Malaysia. The catalysts used in this study 

were commercial grade activated carbon, clay and synthesis calcium oxide. Details of 

the samples and the catalyst preparation are explained in Chapter 3. It is to note that 

the raw material and the catalysts have been characterized using several spectroscopic 

tecneques, such as GCMS, elemental analysis, bomb calorimeter, FTIR, XRD, TGA, 

FESEM and XRF, to evaluate the pyrolysis oil yield along with its chemical properties 

and energy recovery yield.
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1.6 Summary

In this chapter, researched background discussed in brief the potential used of 

waste truck tire (TT) and empty fruit bunch (EFB) of palm-based biomass for the 

producing of pyrolysis oil. Due to low quality of pyrolysis oil produced from TT and 

EFB individually, the upgrading of pyrolysis oil is necessary for the direct application 

in diesel engine. Thus, the utilization of catalyst and microwave also has been 

highlighted for the upgrading of pyrolysis oil via microwave-induced in-situ catalytic 

co-pyrolysis TT with EFB for the potential application of drop-in fuel in engine. Many 

parameters have been investigated such as pyrolysis temperature, ratio of TT to EFB, 

weight loading of microwave susceptor, type of catalyst and catalyst-to-feedstock 

ratio. The quality of pyrolysis oil has been characterized using GCMS, elemental 

analysis, bomb calorimetry and general physiochemical properties such as viscosity, 

density, pH, flash point and moisture content.
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