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ABSTRACT 

The world is facing global warming due to the burning of fossil fuels to 

generate electricity. Therefore, Renewable Energy Sources (RES) such as wind 

turbines are integrated into the power system to reduce global warming. But the large-

scale integration of the wind turbines into the power system can cause instability in the 

system due to intermittency in their outputs. Therefore, the wind turbine Proportional 

Integral (PI) based pitch controls are typically applied to enhance the generated power 

and the dynamic stability of the outputs. But, the PI controller’s gains in the pitch 

controls have to be tuned to further enhance the generated power and dynamic stability 

of the outputs. In this study, the Grey Wolf Optimizer (GWO) is proposed to tune the 

PI gains of the pitch controls as a better tuning technique than the Particle Swarm 

Optimization (PSO) which has slow convergence speed, the Genetic Algorithm (GA) 

which has premature convergence and the Zeigler Nichols (ZN) tuning technique 

which has high overshoot. Also, the modification of the updating mechanism of the 

GWO is proposed to improve the GWO convergence speed and provide better PI gains 

of the pitch controls. The implementation of the PI gains of pitch controls obtained 

using the GWO in the pitch controls of the fixed speed and DFIG wind turbines is to 

show the GWO can enhance the generated power and the dynamic stability of the wind 

turbines. The tuning model for the PI pitch control was developed based on the Integral 

Time multiplied Square Error (ITSE) objective function with the PI gains as 

constraints. The tuning of the PI gains of the pitch control was conducted by 

minimizing the objective function using the GWO, the modified GWO, the PSO and 

the GA. The proposed modified GWO was validated through a comparison of its 

tuning result with the tuning results of the GWO, PSO and GA. The GWO and the 

modified GWO provided the least value of the objective function than the PSO and the 

GA. Additionally, the modified GWO exhibited faster convergence speed and 

provided better PI pitch control gains than the GWO, PSO and GA. Furthermore, the 

GWO, PSO, GA and ZN tuned gains were implemented in the PI pitch controls of 

fixed speed and DFIG wind turbines connected to the distribution system in four case 

studies. In the first case study, a 3MW fixed speed wind turbine connected to a 22.9 

kV distribution line, and a 12.5 m/s average wind speed was used to run the wind 

turbine aimed to test the tuned PI controllers in the pitch control. In the second case 

study, a unit step increase above rated wind speed was applied to test the tuned PI pitch 

controllers in the 8x3MW fixed speed wind turbines connected as a wind farm with a 

9 Bus IEEE stability test feeder.  For the third and fourth case studies, a unit-step 

decrease in the pitch control nominal power and consecutive unit-step increases above 

rated wind speed respectively were applied, to test the tuned PI pitch controllers of 

DFIG wind turbines connected to a 9 Bus IEEE stability test feeder. The result from 

the first case study shows the GWO tuning of pitch control enhanced the generated 

power generation of the 3MW fixed speed wind turbine by 3.04 % compared to PSO, 

GA and ZN tuning techniques. For case studies, two to four, the GWO tuning of pitch 

controls enhanced the dynamic stability of fixed speed and the DFIG wind turbine 

outputs compared to the PSO, GA and ZN tuning techniques. The dynamic stability of 

the wind turbine outputs provided by the GWO tuning of PI pitch controls can reduce 

the stress on the pitch systems of the wind turbines. 
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ABSTRAK 

Dunia menghadapi pemanasan global kerana pembakaran bahan bakar fosil untuk 

menjana elektrik. Oleh itu, Sumber Tenaga Boleh Diperbaharui (RES) seperti turbin angin 

disepadukan ke dalam sistem kuasa untuk mengurangkan pemanasan global. Tetapi 

penyepaduan turbin angin secara besar-besaran ke dalam sistem kuasa boleh 

menyebabkan ketidakstabilan di dalam sistem disebabkan oleh kuasa keluaran yang tidak 

menentu. Oleh itu, turbin angin kamiran (PI) berkadar berasaskan kawalan pic biasanya 

digunakan untuk meningkatkan kuasa yang dijana dan kestabilan dinamik keluaran. 

Tetapi, gandaan pengawal PI di dalam kawalan pic perlu ditala untuk meningkatkan lagi 

kuasa yang dihasilkan dan kestabilan dinamik keluaran. Dalam kajian ini, Pengoptimum 

Grey Wolf dicadangkan untuk menala gandaan PI bagi kawalan pic sebagai teknik 

penalaan yang lebih baik daripada Pengoptimum Kerumunan Zarah yang mempunyai 

kelajuan penumpuan yang perlahan, Algoritma Genetik (GA) yang mempunyai teknik 

penumpuan pramatang dan penalaan Zeigler Nichols (ZN) yang mempunyai terlajak yang 

tinggi. Juga, pengubahsuaian mekanisme pengemaskinian GWO dicadangkan untuk 

meningkatkan kelajuan penumpuan GWO dan memberikan gandaan PI yang lebih baik 

bagi kawalan pic. Pelaksanaan kawalan pic gandaan PI yang diperoleh menggunakan 

GWO dalam kawalan pic bagi turbin angin kelajuan tetap dan DFIG adalah untuk 

menunjukkan GWO dapat meningkatkan kuasa keluaran yang dihasikan dan kestabilan 

dinamik turbin angin. Model penalaan untuk kawalan pic PI telah dibina berdasarkan 

fungsi objektif Kamiran Masa Berganda Ralat Kuasa Dua (ITSE) dengan gandaan PI 

sebagai kekangan. Penalaan gandaan PI dari kawalan pic dilakukan dengan 

meminimumkan fungsi objektif menggunakan GWO, GWO yang diubahsuai, PSO dan 

GA. GWO yang diubah suai yang telah dicadangkan, telah pun disahkan melalui 

perbandingan hasil penalaannya dengan hasil penalaan GWO, PSO dan GA. GWO dan 

GWO yang diubahsuai memberikan nilai fungsi objektif yang paling sedikit berbanding 

PSO dan GA. Tambahan itu, GWO yang diubahsuai memperlihatkan kelajuan penumpuan 

yang lebih cepat dan memberikan gandaan kawalan pic PI yang lebih baik daripada GWO, 

PSO dan GA. Tambahan pula, gandaan-gandaan yang ditala bagi GWO, PSO, GA dan ZN 

telah dilaksanakan dalam kawalan pic PI bagi turbin angin yang kelajuan tetap dan DFIG 

yang disambungkan ke sistem pengagihan dalam empat kajian kes. Dalam kajian kes 

pertama, turbin angin berkelajuan tetap 3MW disambungkan ke talian pengagihan 22.9 

kV, dan purata kelajuan angin 12.5 m/s telah digunakan untuk menjalankan turbin angin 

yang bertujuan untuk menguji pengawal PI yang diselaraskan dalam kawalan pic. Dalam 

kajian kes kedua, peningkatan unit langkah yang melebihi kelajuan angin terkadar telah 

digunakan untuk menguji pengawal pic PI yang ditala dalam turbin angin berkelajuan tetap 

8x3MW yang disambungkan sebagai ladang angin dengan penyuap ujian kestabilan 9 Bas 

IEEE. Untuk kajian kes ketiga dan keempat, penurunan langkah-unit di dalam kawalan 

pic kuasa nominal dan kenaikan langkah-unit secara berturut-turut melebihi kelajuan 

angin terkadar masing-masing telah dilaksana untuk menguji pengawal pic PI yang 

diselaraskan dari turbin angin DFIG yang disambungkan ke 9 IEEE Bas penyuap ujian 

kestabilan. Hasil kajian kes pertama menunjukkan penalaan kawalan pic GWO telah 

meningkatkan penjanaan kuasa turbin angin berkelajuan tetap 3MW sebanyak 3.04% 

berbanding teknik penalaan PSO, GA dan ZN.  Untuk kajian kes, dua hingga empat, 

penalaan kawalan pic GWO telah meningkatkan kestabilan dinamik bagi turbin angin 

berkelajuan dan DFIG berbanding teknik penalaan PSO, GA dan ZN. Kestabilan dinamik 

bagi keluaran turbin angin yang disediakan oleh penalaan GWO kawalan pic PI dapat 

mengurangkan tekanan pada sistem pic turbin angin.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Introduction 

The world is facing environmental degradation such as green gas and radiation 

emissions, oil spills due to the widespread burning of fossil fuels [1] and nuclear 

radioactive materials to generate electricity. The high electricity demand [1] causes the 

depletion of fossil fuel reserves and their high costs [2] and these forced the 

stakeholders in the power industry to encourage the integration of Renewable Energy 

Sources (RES) in the power system [2]. The environmental degradation propelled the 

global campaign to reduce dependency on fossil fuels and focus on RES as the best 

electricity generation source, free from green gas emission for the sustainable 

environment [3, 4]. The campaign is encouraging the conduct of research for Hydro, 

Wind, Photovoltaic, Geothermal and Bio-energy sources to replace fossil fuels for 

generating electricity [4]. From another perspective, the disadvantages of constructing 

the long transmission system to supply power to remote communities in the traditional 

power system, such as the high cost of construction the long transmission lines with 

high copper losses, also are encouraging the integration of RES in the sub-transmission 

and the distribution networks, close to the load centres. Furthermore, the deregulation 

of the electricity market and the power industry is another factor pushing the 

integration of RES in the power system [5]. Moreover, the government incentives for 

using alternatives to fossil fuels encourage RES integration in the power system [6].  

1.1.1 Stochastic Wind Turbine Outputs 

Wind speed is a random process, and its cubic relationship with the Wind 

Turbines’ aerodynamic power can causes instability in the wind power generation. 

Therefore, a power system with integrated Wind Turbines can experience instability 
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due to the integration [7]. Besides the intermittent nature of the Wind Turbine outputs, 

the introduction of power electronic control devices in Wind Turbines; the vibration 

of the supporting frame of the Wind Turbine and blade shedding affects the power 

system’s integrated power system with Wind Turbines. The vibration problems in the 

wind turbine system’s supporting structure cause harmonics, while blade shedding 

cause flickers. The Wind Turbine output’s intermittency causes stochastic reactive 

power consumption by Squirrel Cage Induction Generator, Doubly-Fed Induction 

Generator, and rotor wound Induction Generator [8]. The stochastic reactive power 

consumption of Induction Generators in the Wind Turbine creates voltage and 

frequency instability in the generator’s outputs.  

1.1.2 Solutions to the instability in the outputs of Wind Turbines   

In the literature, different researchers proposed different methods of solving 

the fluctuations in the Wind Turbine outputs. Considering the Wind Turbine’s 

aerodynamic power, the Radial Basis Neural network and PSO tuned collective pitch 

control were applied in [9] to reduce the Wind Turbine output fluctuations. In [10] the 

Intelligent Genetic Algorithm (IGA) tuned PID controller was implemented in the 

blade pitch control to reduce fluctuations in the Wind Turbine output.  The Firefly 

Algorithm tuned pitch angle controller was applied in [11] to control the Wind 

Turbine’s mechanical power. While in [12], the Wind Turbine’s dynamic stability was 

enhanced using a metaheuristic optimizer tuned blade pitch controller.  

1.2 Problem Statement 

i. The ZN, GA and PSO tuning techniques applied by the Researchers for tuning the 

PI(D) controller in the pitch controls of Wind Turbines for power limitation and 

dynamic stability are the well-established methods in the literature, but they have 

the following limitations:   
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a. The ZN tuned PID controller implemented in the pitch control of Wind 

Turbine in [13] does not produce the optimal control performance because 

the ZN tuning technique has high overshoot, oscillation and settling time.  

b. The PSO  applied in [14], [15], [159] and [160] to tune the PID controller in 

the pitch control of Wind Turbines has inadequate convergence speed. Also, 

the PSO can be trapped into a local optimum as the best solution when 

solving complex problems like tuning the PI controller in the pitch control 

of the Wind Turbine.  

c. The GA is popular for PID controller tuning because of its accuracy and can 

solve tuning problems that are not well formulated. But it can be stuck in a 

local optimum.  

ii. In the standard GWO the best positions of Alpha (λ), Beta (β) and Delta (δ) wolves 

are used to update the positions of the ω wolves have equal influences. The equal 

influences of Alpha (λ), Beta (β) and Delta (δ) wolves in updating the positions of 

ω wolves have violated the hierarchy class of the wolves which have the possibility 

not to provide optimal tuning results. 

iii. The PSO, GA and ZN tuned PI controllers implemented in the pitch control of 

fixed speed Wind Turbines have the possibility of not providing optimal pitch 

control performance leading to low conversion of wind kinetic energy to 

aerodynamic power in the Wind Turbine because of the limitations in the PSO, GA 

and ZN tuning techniques mentioned in problem statement one.  

iv. The PSO, GA and ZN tuned PI controllers implemented in the pitch control of 

SCIG and DFIG Wind Turbines have the possibility not providing optimal pitch 

control performance leading to dynamic instability in the aerodynamic power and 

torque of the Wind Turbines because of the limitations in the PSO, GA and ZN 

tuning techniques mentioned in problem statement one.  
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1.2.1 Motivations 

The pitch control of the Wind Turbine is complex and nonlinear. A GWO is a 

suitable Algorithm for solving complex and nonlinear optimization problems [19] and 

it can provide an optimal solution to the PI controller tuning problem of pitch control.  

Mir Jalili, Seedily reported that the GWO has better search performance compare to 

Fast Evolutionary Programme (FEP), Gravitational Search Algorithm (GSA), Particle 

Swarm Optimization (PSO) and Differential Evolutionary (DE), because it is simple 

in principle, fast and accurate in searching [20]. Based on the good convergence 

characteristics of the GWO, it is proposed in this study to tune the PI controller in the 

pitch control of the Turbine driving the SCIG and DFIG Wind Turbines separately. 

This study proposed the GWO-based tuning method for PI controller in the pitch angle 

control of Wind Turbine as a better alternative to PSO, GA and Zeigler Nichols tuning 

techniques because of the following: 

a. GWO has better convergence characteristics than PSO and GA [21] because of 

its exceptional ability to adapt the value of the optimization parameter “a” [22]. 

b. It can also avoid local optimum because it has a balanced exploration and 

exploitation ability [23].  

c. Furthermore, it is simple [24], robust and applied to complex optimization 

tasks [25].  

To further harness the application of SCIG Wind Turbine for wind power 

generation, this study considered the optimal tuning of the PI controller in pitch control 

of SCIG Wind Turbine. It is cheap in unit cost; simple in design and construction; 

brushless; robust; low cost of installation and fewer maintenance requirements [7], 

[26], [27] compared to variable speed Wind Turbines. Furthermore, it possessed better 

regulation in heat, good regulation in speed, small size and light in weight compared 

to DFIG and PMSG Wind Turbines [28]. 
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1.3 Research Objectives 

To find solutions to the research problems the following research objectives 

are set:  

i. To develop the mathematical model for tuning the PI controller in the pitch 

control of Wind Turbine using the GWO, which overcome the slow 

convergence associated with PSO and trapping into local optimum associated 

with GA.  

ii. To modify the GWO updating mechanism for faster convergence and tuning 

results of PI controller in the pitch control of the Wind Turbine. 

iii. To reduce the aerodynamic power error in SCIG Wind Turbine operating under 

stochastic wind speed, through the GWO tuned PI controller’s implementation 

in the Wind Turbine’s pitch control connected to a 22.9kV double circuit 

distribution system.  

iv. To enhance the dynamic stability of the aerodynamic power and torque of the 

SCIG Wind Turbines and DFIG Wind Turbines, through the GWO tuned PI 

controllers' implementation in the pitch controls the Wind Turbines connected 

to a WCSS 9 Bus 3 Machine test Feeder.  

1.4 Scope of the Study  

The following are the scope of the study: 

i. This study is on enhancing the power efficiency of the SCIG Wind Turbine 

connected to the 22.9 kV distribution system by implementing a GWO tuned 

PI controller in the pitch control of the Wind Turbine. Also, it is on smoothing 

the SCIG Wind Turbine output by implementing a GWO tuned PI controller in 



6 

the pitch control of the Wind Turbine. Furthermore, the study considered the 

GWO tuned controller’s implementation in the 8x3MW SCIG Wind Farm and 

the 8x3MW DFIG Wind Farms’ pitch control for dynamic stability 

enhancement in the Wind Turbines outputs. The SCIG Wind Turbine model 

considered in this study is specified in IEC 61400-27-1 standards for power 

system stability analysis [29]. 

ii. This study considered the PI controller's optimal tuning in pitch control of 

DFIG and SCIG Wind Turbines for aerodynamic power limitation and 

dynamic stability of their outputs.   

iii. This study considered the small perturbation of rated wind speed, step-change 

in the generator’s nominal power in testing the impact of tuning the PI 

controller in pitch control on Wind Turbine outputs' dynamic stability.    

iv. The impact of optimal tuning of PI controller in pitch control on the mechanical 

and electrical parameters of DFIG and SCIG Wind Turbines are studied. 

v. This study is on the SCIG and DFIG Wind Turbines operation in region III of 

their power-speed characteristics.  

vi. This study is on the PI controller's optimal tuning in pitch control of Wind 

Turbines at the mechanical subsystem of Turbines.  

1.5 Significance of the Study 

Presently the DFIG Wind Turbines are dominant in the Wind Turbine industry 

while the SCIG Wind Turbines dominated the same industry before the year 2000 [13], 

but they are still found in the Wind Farms [30] [31]. A brief survey of existing SCIG 

Wind Turbine installations is conducted to show the significance of conducting the PI 

controller’s optimal tuning in SCIG Wind Turbines’ pitch control. There are 105 
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Nordex N43-600 kW-three blades and 117 numbers of VESTAS 660kW stall 

regulation Wind Turbines located in  Zafarana, Egypt [32]. Also, fixed-speed Wind 

Turbines are found in Nysted Offshore Wind Farm in Denmark. Moreover, the fixed-

speed Wind Turbines contribute to a sizeable 20% of the Wind Energy Conversion 

Systems in Europe because of their simplicity in design and low maintenance cost [33] 

[34], [35]. The medium and the large scales fixed-speed Wind Turbines, both 

horizontal and vertical axes, are located in New York, on the coast of long island USA 

[36]. Table 1.13 shows some Wind Turbines with the Asynchronous generator concept 

found in the market [37]. There are different researches on the constant speed 

Asynchronous Wind Turbine concept are reported as in [38], [39], [40] and [41] et 

cetera. The power generation at the Wind Turbine outputs stochastic due to its cubic 

relationship with wind speed, and at high wind speed, the pitch angle control is applied 

to limit the output power to nominal power. In this study, the optimal tuning of Wind 

Turbines' pitch angle control is to enhance the pitch control performance. The 

significant of optimal tuning of pitch controls of the Wind Turbines are limit the output 

power to nominal power to reduced power error and output fluctuations and provide a 

better dynamic response at the Wind Turbine outputs.     

Table 1.1 List of fixed speed Wind Turbines found in the market 

S/N Speed 

control 

Gear-box Generator Capacity Manufacturer Ref. 

1 Constant Multistage Asynchronous 1.5 MW 

2.1 MW 

Suzlon [42] 

2 Constant Multistage Asynchronous 2.3 MW 

3.6 MW 

Siemen wind [43] 

3 Constant Multistage Asynchronous 3.0 MW Acciona [30] 

4 Constant Multistage Asynchronous 3.0 MW Creative Wind 

Energy 

[30] 

5 Constant Multistage Asynchronous 3.0 MW Guodian United 

Power 

[31] 

6 Constant Multistate Asynchronous 0.75 MW Wind World  [44] 

7 Constant Multistage Asynchronous 1.0 MW Fuhrlande [33] 

8 Constant Multistage Asynchronous 2.5 MW Nordex SE [34] 
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S/N Speed 

control 

Gear-box Generator Capacity Manufacturer Ref. 

9 Constant Single-

stage 

Asynchronous 2.05 MW 

2.5MW 

Eviag [45] 

10 Constant Multistage Asynchronous 0.75 MW 

0.90 MW 

NEG Micon  [46] 

11 Constant Multistage Asynchronous 0.10 MW 

0.12 MW 

Danish Wind 

Turbines ltd 

[39] 

12 Constant Multistage Asynchronous 0.30 MW Nordtank [40] 

13 Constant Multistage Asynchronous 2.3 MW Danish Wind 

Turbines ltd 

[41] 

The significance of the study is itemized as follows:  

i. The implementation of GWO tuned PI controller in the pitch control of fixed 

speed SCIG Wind Turbine connected to a 22.9kV distribution system can 

reduce the mean power error at the output power of the SCIG Wind Turbine 

compared to PSO tuned PI controller, GA tuned controller, Fuzzy controller 

and Hybrid controller. The GWO tuned PI controller’s implementation in the 

SCIG Wind Turbine's pitch control has smoothed out the fluctuation in the 

Wind Turbine output compared with the output fluctuation provided by the 

PSO tuned PI controller, GA tuned controller, Fuzzy controller and Hybrid 

controller. Therefore, this study is significant because of the enhancement of 

the fixed speed SCIG Wind Turbine’s output power and reduction of 

fluctuation in its output which can increase the utilization of SCIG Wind 

Turbine in wind power generation.  

ii. The study has enhanced the dynamic stability of the outputs of SCIG and DFIG 

Wind Turbines due to optimal tuning of pitch control of the Turbines using 

GWO. The enhancement in the dynamic stability in the pitch angle trajectory 

is significant because can lead to less stress on the pitch actuator which can 

increase its life span. Also, this can reduce maintenance costs of pitch actuators 

in Wind Turbines. 
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iii. The dynamically enhanced SCIG and DFIG Wind Turbine output due to the 

optimal tuning of PI-based pitch control using GWO and coupled to the 

distribution system can enhance the dynamic stability of the system. 

1.6 Thesis   Outline 

This thesis contains five chapters. The introduction is Chapter One, where the 

research background was presented. It also includes the problem statements, research 

gap, motivation, research objectives, the study’s scope, and the significance of the 

research and the thesis outline. Chapter two contains the Wind Turbine operation, 

classification of Wind Turbines, dynamic stability of Wind Turbine outputs, Wind 

Turbine output dynamic stability index, Wind Turbine pitch controls, and their 

classification. The previous works on the PID controller’s optimal tuning based on 

optimizations for general applications were reviewed. Then the general approaches of 

tuning the PID controllers using GWO were presented. In the same Chapter Two, the 

GWO tuning of PID controllers in the control loops of power electronics converters 

for MPPT in the Wind Turbines and grid synchronization was reviewed. And finally, 

the previous works on the optimal tuning of PI(D) controllers in pitch controls of Wind 

Turbines were also reviewed.   

Chapter three contains a two-stage research methodology. In the first stage, the 

proposed GWO-based tuning technique for PI controller in Wind Turbine's pitch 

control was described using a block diagram. The transfer function of the closed-loop 

pitch control of the Wind Turbine was formulated. And the Integral Time multiplied 

Square Error (ITSE) objection function for optimal tuning of the PI controller in Wind 

Turbine's pitch control was developed. The objective function is based on the power 

error between the generator’s nominal power and the Turbine’s aerodynamic power. 

The mathematical modelling of tuning the PI controller in the Wind Turbine’s pitch 

control sequentially using the GWO, PSO and GA were presented in chapter three. 

The performance metrics for comparing the GWO, PSO and GA performances in 

tuning the PI controller in pitch control were provided. A description of how the best 

tuning results from the four search spaces were implemented in the PI controller in 
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pitch control of the Wind Turbine is provided.  Four case studies were conducted to 

validate the proposed GWO-based tuning method for PI controller in Wind Turbine's 

pitch control by comparing it with PSO, GA-based methods, and ZN tuning method.  

In chapter three, the interconnected Wind Turbine and its component models 

were presented. Furthermore, the mathematical models of the wind turbine output 

energy efficiency and output power smoothing index line were presented. The results 

of the PI controller's optimal tuning in Wind Turbine’s pitch control based on GWO, 

PSO and GA for four search spaces were presented in chapter four. In the same chapter, 

the results of the implementation of selected tuning results of PI controller in the pitch 

control of the Wind Turbine for four case studies were presented. In the first case study, 

the SCIG Wind Turbine connected to a distribution line was tested with variable wind 

speed. The SCIG Wind Turbine operated in constant speed mode without reactive 

control at the generator’s stator terminals. In the second case study, the SCIG Wind 

Turbines in the Wind Farm connected to bus 2 of the WSCC 9 Bus 3 Machines test 

feeder were tested with unit-step above rated wind turbines’ wind speed. For the third 

case study, the DFIG Wind Turbines in a Wind Farm connected to WCSS 9 Bus 3 

Machine test feeder was tested with consecutive unit-step above rated wind speed of 

the Wind Turbine. And for the fourth case study, the DFIG Wind Turbines located in 

the Wind Farm was connected to bus 2 of WSCC 9 Bus 3 Machine test feeder, were 

tested with a 10% decrease in the nominal power of their pitch controls. All the results 

from mechanical, electrical parameters of the Wind Turbines and the PCC’s electrical 

results were presented and discussed in chapter four. Finally, chapter five contains the 

research outcomes, contribution to knowledge and future works. 
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