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ABSTRACT

New types of strontium magnesium borate glasses namely Dy3+-  and Sm3+-  
singly activated and D y + Sm3+-  co-doped with the nominal compositions of 20SrO
-  lOMgO -  (70 -  x) B2O3 -  JtDy20 3 (0.1 < jc < 0.8 mol%); 20SrO -  lOMgO -  (70 -  
y) B2O3 -  jSm203 (0.5 < y < 2.5 mol%) and 20SrO -  lOMgO -  (70 -  z) B2O3 -  
0.7Dy203 -  ZS1T12O3 (0.2 < z < 1.0 mol%) were prepared by the melt-quenching 
method. The structural properties of the quenched glass samples were investigated 
using X-Ray diffraction (XRD), Fourier Transform Infrared (FTIR), Energy 
Dispersive X-ray (EDX) analyses and Field Emission Scanning Electron Microscope 
(FESEM) respectively. The Ultraviolet-Visible-near-IR Spectroscopy (UV-Vis-NIR) 
spectra of the glasses exhibited characteristic absorption transitions of Dy3+ and Sm3+ 
respectively. The nephelauxetic effect on the absorption transitions has been used to 
elucidate the bonding nature of the doping ions with the surrounding ligands revealing 
the predominant ionic nature. The photoluminescence (PL) emission spectra analysis 
of the Dy3+-doped glasses revealed three peaks including blue at 483 nm, yellow at 
575 nm and red at 664 nm attributed to 4f-4f transitions. The glass made with Dy203 
content of 0.7 mol% revealed optimum PL intensity and this composition was chosen 
for co-doping with various S1T12O3 contents. The PL spectra for Dy3+ / Sm3+ co-doped 
glass system exhibited five emission bands due to the 4F9/2—»6Hi5/2 (Dy3+), 4F9/2—>6Hi3/2 
(Dy3+), 4G5/2—>6H7/2 (Sm3+), 4G5/2—»6H9/2 (Sm3+) and 4Gs/2—>6Hi 1/2 (Sm3+) transitions in 
Dy3+ and Sm3+, respectively. The luminescence spectra of Dy3+ / Sm3+ co-doped 
glasses revealed that the successive addition of Sm3+ to Dy3+-doped strontium 
magnesium borate glasses has enhanced the emission intensity of Dy3+ with decreased 
emission intensity of Sm3+ at 0.4 mol% in Dy3+ + Sm3+ co-doped glasses due to strong 
migration of Sm3+ excitation energy to Dy,+. From the optical absorption 
measurements and based on Judd-Ofelt theory (J-O), the influence of Dy3+ and Sm3+ 
on the three J-O  intensity parameters (Q2, Qa, Q6) were evaluated. The achieved 
values of intensity parameters were used to calculate the J-O  radiative properties 
including the branching ratio, stimulated emission cross-section, optical bandwidth 
and optical gain. The achieved high values of the branching ratio (> 60% and 74%) 
and stimulated emission cross-section (> 10 x 10-22 cm2) recorded at 4F9/2-> 6Hi3/2 and 
4G5/2 —> 6H7/2 electronic transitions showed an excellent lasing and optical energy 
harnessing potentials of the proposed glass compositions. The observed increase in 
optical gain envisages an effective lasing efficiency and optical amplification power 
of the glass samples for low threshold amplifier design and solid-state laser 
development.



ABSTRAK

Kaca strontium magnesium borat baharu iaitu Dy3+ -  dan Sm3+ -  teraktif 
tunggal dan ko-dop Dy3++ Sm3+ -  dengan komposisi nominal 20SrC) -  lOMgO -  (70
-  x) B2O3 -  xDy203 (0.1 < jc < 0.8 mol%); 20SrO -  lOMgO -  (70 -  y) B2O3 -ySm203 
(0.5 < y < 2.5 mol%) dan 20SrO -  lOMgO -  (70 -  z) B2O3 -  0.7Dy2C>3 -  zSm203 (0.2 
< z < 1.0 mol%) telah disediakan dengan kaedah pelindap-kejutan leburan. Sifat 
struktur sampel kaca yang dilindap kejut masing-masing disiasat menggunakan 
Pembelauan Sinar-X (XRD), Transformasi Fourier Inframerah (FTIR), Tenaga Sinar- 
X Terserak (EDX) dan Mikroskop Pengimbas Elektron Pancaran Medan (FESEM). 
Spektrum Spektroskopi Ultralembayung-Cahaya Nampak-Hampir-Inframerah (UV- 
Vis-NIR) kaca masing-masing menunjukkan ciri peralihan penyerapan Dy3+ dan Sm3+. 
Kesan nefelauksetik pada peralihan penyerapan telah digunakan untuk menjelaskan 
sifat ikatan ion doping dengan ligan sekitarnya yang mendedahkan sifat ionik yang 
predominan. Analisis spektrum pancaran kefotopendarcahayaan (PL) dari kaca Dy3+ 
menunjukkan tiga puncak termasuk biru pada 483 nm, kuning pada 575 nm dan merah 
pada 664 nm yang dikaitkan dengan peralihan 4f-4f. Kaca yang dibuat dengan 
kandungan 0.7 mol% Dy2C>3 menunjukkan keamatan PL yang optimum dan komposisi 
ini dipilih untuk ko-doping dengan kandungan S1T12O3 yang berbeza. Spektrum PL 
untuk sistem kaca ko-dop menunjukkan lima jalur pancaran disebabkan oleh peralihan 
4F9/2-»6Hi5/2 (Dy3+), 4F9/2—»6Hi3/2 (Dy3+), 4G5/2->6H7/2 (Sm3+), 4G5/2->6H9/2 (Sm3+) dan 
4G5/2->6H 11/2 (Sm3+) yang masing-masing dalam Dy3+ dan Sm3+. Spektrum PL kaca 
ko-dop Dy3+ / Sm3' mendedahkan bahawa penambahan Sm1+ secara berturutan pada 
kaca strontium magnesium borat terdop-Dy3+ telah meningkatkan keamatan pancaran 
Dy3+ dengan penurunan keamatan pancaran Sm3+ pada 0.4 mol% kaca ko-dop Dy3+ + 
Sm3+ disebabkan oleh migrasi tenaga pengujaan Sm3+ ke Dy3+. Dari pengukuran 
penyerapan optik dan berdasarkan teori Judd-Ofelt (J-O), pengaruh ion Dy3+ dan Sm3+ 
pada tiga parameter keamatan J-O  (Q2, ^ 4, CJ6) dinilai. Nilai parameter keamatan yang 
dicapai digunakan untuk mengira sifat menyinar J-O  termasuk nisbah mencabang, 
keratan rentas pancaran dirangsang, lebar jalur optik dan gandaan optik. Nisbah 
mencabang (> 60% dan 74%) dan keratan rentas pancaran dirangsang (> 10 x 10~22 
cm2) yang tinggi dicatatkan pada peralihan elektronik 4F9/2 —> 6Hi3/2 dan 4Gs/2 —» 6H7/2 
menunjukkan keupayaan mengabah tenaga las dan optik bagi komposisi kaca yang 
dicadangkan. Peningkatan gandaan optik yang dicerap membayangkan kecekapan las 
dan kuasa penguat optik sampel kaca yang berkesan untuk reka bentuk penguat 
ambang rendah dan pengembangan laser keadaan pepejal.
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CHAPTER 1

INTRODUCTION

1.1 Research Background

Since ancient times, different kinds of light sources ranging from burnfire, 
touch, candle, incandescent and fluorescent lamps, lasers and light-emitting diodes 
(LEDs) have been used for different purposes. Among all the existing light sources 
offered for human comfort, lasers remain attractive due to their high emission intensity 
and precise light beam (Kaewnuam et al., 2017). The ease of fabricating glasses into a 
variety of shapes and sizes, low cost of production, high optical transparency and 
ability to accommodate high concentration of dopants without destroying their 
network structures are the reasons for the choice of glass-based materials over the 
expensive crystalline materials for laser development (Pye et al., 1972; 
Rajaramakrishna et al., 2014). By definition, the glass may be defined as an amorphous 
substance (structureless solid or without long-range order). According to the American 
Society for Testing and Materials (ASTM), this lustrous, transparent and vitreous 
substance (Glass) can be defined as an inorganic product of fusion that is cooled to a 
rigid condition without crystallization. Meanwhile, Shelby defines glass as a non­
crystalline, non-equilibrium and condensed state of matter that exhibits glass 
transition. Glass is also considered as an amorphous solid completely lacking in long 
range order, periodic atomic structure and exhibiting a region of glass transformation 
behaviour (Shelby, 2005). Glass can be developed from different materials. The 
formation of any glass system from either polymer, alloys of metals, aqueous solution, 
molecular liquids and ionic melts required the appropriate composition of different 
components to attract specific features (Sokolov et al., 2009). The glass network 
former; a system of the highly cross-linked chemical bond, network modifier; that 
distorts the structural network and intermediate are the major constituents in glass 
formation. Glass formers are regarded as the backbone of glass because altering the 
element or compound will automatically change the properties of the final materials
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while modifiers and intermediate are added to give special property like stability to the 
glass. Among the various techniques available for synthesizing glass, the cheapest, 
time-saving and most convenient means of producing glass is the melt quenching 
technique (Bansal & Doremus, 2013; Uhlmann & Yinnon, 1983). This method 
involves rapid cooling of the melt to a low temperature in the order of 107 degrees per 
second (fast cooling) to avoid crystallization and is used in this work.

Glass forming materials are increasing in number. Among the various glass 
formers (Borate, Silicate, Tellurite, Phosphate, Germanium) studied so far, borate- 
based glasses are well known to possess excellent properties such as low melting point, 
dominant thermal and mechanical strengths, chemical durability, higher bond 
strengths and solubility to many rare-earth ions (Pawar et al., 2016). Doping ions either 
rare-earth or transition metal ions are added to the glass matrix primarily to enhance 
its luminescence efficiency for technological applications (Elliot, 1984). But the 
technical know-how in the improvement of optical and luminescence properties of 
dopants activated inorganic glasses is a daunting task currently confronting the 
material science research community. The enhancements in the absorption, emission 
or luminescence properties of rare earth (RE) doped glasses may be achieved through 
variation of glass composition alongside their selected modifiers and doping ions. In 
glass technology, low phonon energy-based glasses are of great importance for 
infrared to visible up-conversion lasers. The minimization of non-radiative losses in 
glasses is critical to enhancing the glass luminescence efficiency. Consequently, the 
selection of the host matrix where low phonon energy is maximized is a necessary pre­
condition for improving the luminescence quality of the glass network for maximum 
output. The existence of energy losses due to non-radiative relaxation (multi-phonon 
energies) differ from one glass host to another, in phosphate glass network (P-O) 
1200-1350 cm-1 , borate matrix (B-O) 1340-1480 cm-1, germanium host (Ge-O) 
800-975 cm"1, silicate glass (Si-O) 1000-1200 cm-1 and tellurite lattice (Te-O) 
600-750 cm-1 (Abdel-Baki & El-Diasty, 2016; Lakshminarayana et al., 2017; Pal et 
al., 2013; Shen et al., 2015; Zmojda et al., 2014). The choice of borate as the network 
former in this research is owed to their intriguing optical and basic properties that are 
relevant for cutting edge innovations. Generally, the network structure of pure glass 
formers is so tight due to the existence of bridging oxygens (BOs) which makes the
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incorporation of a small quantity of doping ions into the glass composition very 
difficult. However, the inclusion modifier cations such as BaO, CaO, SrO, K2O, U 2O, 
MgO, and Bi20 are intended to disrupt the glass structural networks through the 
formation of non-bridging oxygens (NBOs) to reduce the hygroscopic effect of the 
glass host and accommodate rare-earth ions. The modifiers are expected to suppress 
the phonon energy of borate via systemic transformation of trigonal sp2 to a more 
optically stable tetrahedra sp3 and increase the energy-releasing potency which is 
optically beneficial to the radiative energy transfer mechanism. It is equally anticipated 
that the incorporated modifiers will improve the glass preparation conditions, creates 
non-bridging oxygen, weakens the bond strength, lowers the glass viscosity level and 
increases their mechanical stability (Alajerami et al., 2013). Interestingly, borate 
based-glasses have demonstrated their potentials for lasing and nonlinear optical 
applications due to their variety of compositional possibilities and a large amount of 
REIs solubilities in the host matrix (Krishnaiah et al., 2013). The B2O3 glasses 
comprised of symmetric stretching vibration of sp2 planar BO3 trigonal, sp" tetrahedra 
BO4 units and B -O -B  bonds (Maheshvaran & Marimuthu, 2011) which is required 
for the enhancement of the glass rigidity. The high emission efficiency of REs in borate 
glasses is key to the development of more environmentally friendly, long lifetime, low 
energy consumption, high brightness and low-temperature performance solid-state 
based lighting materials which could serve as a possible replacement for conventional 
incandescent lamps (Arunkumar et al., 2015; Dutta et al., 2013; Krishnaiah et al., 2013; 
Murthy et al., 2010; Pawar et al., 2016). Again borate glasses possess an exceptional 
quality of producing interesting structures of the form BxOy where the BO3 and BO4 

can form unique structural units such as di-borate, tri-borate, tetra-borate, Penta- 
borate, boroxyl ring (Pawar et al., 2017; Yao et al., 2016). Despite the aforementioned 
numerous advantages of borate glasses, the practical applications of these glasses are 
limited due to hygroscopic effects, luminescence attenuation and high phonon energy 
that inhibits the glass emission efficiency (Rao et al., 2017).

Glasses doped with lanthanide ions (Ln3+) are often considered potential 
luminescent materials not only because of the occurrence of sharp fluorescence in 
ultraviolet, visible and infrared regions but as a result of shielding effects of the outer 
5s and 5p orbitals on the 4f electrons. The emission efficiencies of rare-earth-doped
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glasses of 4f-4f and 4f-5d electron transitions portray the glass as good candidates for 
various technological applications such as optoelectronics, solid-state lasers, solar 
concentrators, optical fibre for fluorescent colour displays and communications (Liang 
et al., 2007; Nishiura et al., 2011). The current research focuses on Ln3+ embedded 
glasses that are not just constrained to infrared optical devices alone but as a result of 
increasing curiosity in visible optical systems (Rtiter & Bauhofer, 1996; Tsuboi, 2004; 
Turnbull et al., 1996). The rare earth energy levels are the deciding factors in the lasing 
power of lanthanide ions in solid-state materials and are greatly affected by the host 
lattice. The radiative characteristics of RE ions-doped glasses are equally remarkably 
dependent on the glass host. Therefore, the modification of the host matrix through an 
appropriate choice of glass formers, network modifiers or dopants has potential effects 
on the radiative properties of the glass system (Murugesan & Bergman, 2007).

Among the existing rare-earth ions, Dy3+ and Sm3+ have continuously 
demonstrated their potential relevance in advanced technology due to their strong 
emission intensities in the visible region. Dy3+ can easily be excited because of the 
effective shielding of the 4f-4f electrons by the 5p and 5s shells. The emission 
spectrum of Dy,+ containing two strong bands attributed to the 4F9/2 —» Hi5/2 (blue) and 
4F9/2 —> H 13/2 (yellow) transitions and another weak band located at 4Fs>/2 —> Hi 1/2 (red). 
Hence, the study of Dy3+ activated glasses is essential for white light generation via an 
appropriate combination of these band intensities and primary-coloured luminescent 
materials. Sm3+ ion, on the other hand, has shown its usefulness as a structural probe 
emitting orange emissions for colour displays, optical devices, data storage systems 
(Ramteke et al., 2016) due to strong orange colour in the visible region emanating from 
the 4G5/2 —> 6H7/2 and 4Gs/2 —> 6H9/2 (Ramteke et al., 2016). Also, when Sm" is used as 
a co-dopant together with other rare earth (Eu3+, Er3+, Pr3+ etc) it serves as a donor 
(Sensitizer) by transferring its energy to other activators called acceptors thereby 
improving their luminescence qualities (Naresh et al., 2015). Given this, more 
scientific research is required for exploring the reddish-orange luminescence of Sm3+ 
ions to potentially utilized them for the advancement of LEDs' invisible lasers and 
fluorescent devices. According to (Basavapoornima & Jayasankar, 2014), the complex 
energy structure of Sm3+ where many energy levels are closely packed to each other is 
responsible for the limited studies on Sm3+ doped glasses. The existence of
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complicated energy levels makes the interpretation of absorption spectra tricky and 
problematic for the determination of essential intensity parameters required for the 
calculation of radiative properties in Judd-Ofelt theory.

According to the literature, many scientific works have been carried out and 
reported on borate glasses. But these extensive studies by several authors centres 
primarily on the physical and optical properties of different dopants activated in 
glasses but without co-doping technique. Dawaud et al. (2014) studied the optical and 
structural properties of lithium sodium borate doped-Sm3+. Mhareb et al. (2014) 
investigated the physical and optical properties of Li20-Mg0-B203 doped-Dy3+- 
Mhareb et al. (2014) reported the impact of Nd3+on physical and optical properties of 
lithium magnesium borate glass. Maheshvaran et al. (2013) carried out “structural and 
optical studies on Eu3+-doped boro-tellurite glasses”. Azizan et al. (2014) investigated 
the physical and optical properties of Li20-K20-B203 glasses. Alajerami et al. (2012) 
investigated the optical properties of Li20-Mg0-B203-d0ped dysprosium and 
samarium ions. “Optical absorption and photoluminescence of Dy3+-doped zinc 
alumino bismuth borate glass for lasing materials and white LEDs” has been studied 
by (Swapna et al., 2013). Sreedhar et al. (2013) investigated the optical properties of 
zinc fluorophosphate glass doped-Dy1+. Kumar et al. (2017) studied structural optical 
and thermoluminescence properties of Dy3+-doped sodium strontium borate glasses. 
Balakrishna et al. (2012) studied “structural and photoluminescence properties of 
Dy3+-doped different modifier oxide-based lithium borate” glass. Ali (2009) 
investigated the optical properties of Sm3+ doped CaF2 bismuth borate glasses. 
Meanwhile, the Judd-Ofelt investigation of the radiative properties of the current glass 
composition via the co-doping method is grossly lacking. Luminescence quenching 
has had a significant impact on the luminescence properties of materials and this has 
aroused the desire for vigorous scientific activities on the quenching effect of oxide- 
based glasses to enhance the commercialization of improved optical materials for 
technological applications. According to the literature, this drawback can be addressed 
through the combination of two dopants of different identities (co-doping method) or 
the introduction of nanoparticles for enhancement of their optical and luminescence 
values (Reza Dousti et al., 2013).
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1.2 Problem Statement

The present era of technological revolution demands the synthesis of new 
optical materials through probably a simple technique but with remarkable features 
and versatile applications. Previous studies of rare-earth-doped glass have been 
focussed majorly on the characterization of singly activated rare-earth ions in various 
host glass systems. To pursue this area, a well-designed new glass composition should 
be developed and their physical, structural, optical and luminescence properties 
investigated.

The use of a higher concentration of REIs in glasses to increase luminescence 
efficacy is yet to yield any positive outcome. This is because emission intensity easily 
gets quenched at higher concentrations owed to losses which are stimulated by the de­
excitation of different energy levels. Meanwhile, the co-activation mechanism where 
two non-identical rare-earth ions (REIs) are doped in the host glass matrix has been 
reported to be one of the successful ways to improving the absorption cross-section or 
luminescence intensity of the glass network due to energy migration from the sensitizer 
doping ion to the acceptor ions and local field effects. The enhancement of the 
luminescence intensity and the avoidance of the luminescence quenching effect of 
optical glasses with sufficiently high luminescent yield is still a great concern. The 
development and successful use of rare earth compounds as solid-state laser materials 
and their effectiveness in modern technology as optical devices have stimulated 
interest in rare-earth optical spectroscopy. Because of this, several investigations are 
ongoing to optimize new glasses matrices containing different dopant ions. 
Optimization of new or improved optical glass qualities of rare-earth ions has been 
characterized by absorption and emission transition probabilities which are influenced 
by the ligand field of the surrounding rare-earth ions. To identify new optical devices 
for specific functions or devices with enhanced performance, active work is being 
carried out by selecting appropriate new hosts doped with different rare-earth ions. At 
the moment, the most study is centred on the individual doping of Dy3+, Er3+, Tm3+, 
Pr1+, Sm3+, Nd3t and Eu3t with various glass hosts. However, the co-doping 
mechanism of Dy3+ and Sm3' on strontium magnesium borate to study their influence 
on PL intensity, absorption features, structural and radiative properties is grossly
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inadequate. In sequence, the co-doping of Dy3+ with optimum concentration into 
borate glass host containing individual rare earth especially Sm3+ should be critically 
emphasized.

Furthermore, the Judd-Ofelt intensity parameters and radiative properties of 
Dy3+/S m 3+ co-doped strontium magnesium borate glasses are rarely investigated since 
there is little literature available on Dy3+ /' Sm3+ co-doped glass systems. The 
investigation on these glass systems would provide vital information on the influence 
of the REIs on the physical, structural, optical properties as well as the radiative 
characteristics of the studied glass compositions to assessing the lasing potential of the 
materials for advanced technological applications.

1.3 Objectives of the Research

The general objective of this study is to develop new glass materials called 
strontium magnesium borate glasses and probing their physical, optical, structural and 
luminescence characteristics dependence on rare-earth ions. But, the specific 
objectives of the research include:

(i) To synthesis three series of glass samples containing Dy,+, Sm3+ and Dy3+ 
/ Sm3 ions with the following chemical formula by using melt quenching 
technique;

(a) Series I: 20SrO -  lOMgO -  (70 -  x) B2O3 -  xDy203 (0.1 < jc < 0.8 mol%);
(b) Series II: 20SrO -  lOMgO -  (70 -  y) B 2O 3 -  ySmi03  (0.5 < y < 2.5 mol%)
(c) Series III: 20SrO -  lOMgO -  (70 -  z) B 2O 3 -  0.7Dy20 3 -  zSm20 3 (0.2 < z  

<1.0 mol%)

(ii) To characterize the physical, structural and optical features of dysprosium 
(Dy3+), samarium (Sm3+) and dysprosium/samarium (Dy3+ / Sm3+) co­
doped strontium magnesium borate glasses
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(iii) To calculate the Judd-Ofelt intensity and radiative parameters of the prepared 
glasses as a function of individually doped Dy3+-, Sm3+ and Dy34 + Sm3+ co­
doping contents to assessing the lasing potency of the as-prepared glass samples.

1.4 Scope of the Research

In this research, three series of various concentrations of rare earth ions 
activated strontium magnesium borate glass networks with chemical compositions 
20SrC> -  lOMgO -  (70 -  jc)B20 3 -  JcDy20 3 (0.1 < jc < 0.8 mol%); 20SrO -  lOMgO -  
(70 -  y)B20 3 -  ySm20 3 (0.5 < y < 2.5 mol%) and 20SrO -  lOMgO -  (70 -  z)B20 3 -  
0.7Dy20 3 -  zSm20 3 (0.2 < z < 1.0 mol%) were fabricated using standard melt- 
quenching method and characterized by means of different analytical techniques.

For the determination of physical properties of the as-quenched glasses, firstly, 
Archimedes’ principle was employed to evaluate the physical properties such as 
density, molar volume, ion concentration, molar refractivity, refractive index, optical 
dielectric constant, polaron radius, reflection loss, dielectric constant, inter-nuclear 
distance, metallization and molar polarizability of glass samples. The elemental 
composition of the glass network was established by using Energy Dispersive X-ray 
(EDX) spectroscopy. The glass surface morphological structure was analysed by Field 
Emission Scanning Electron Microscopy (FESEM). But, for the characterization of the 
as-prepared glass samples, different kinds of analytical techniques were performed. X- 
ray diffraction (XRD) technique was used to check the non-crystalline nature of the 
as-prepared glasses used in this research. Photoluminescence (PL) analysis was carried 
out on glass samples using a photoluminescence spectrophotometer to determine the 
glass luminescence features. The optical absorption of the prepared samples was 
investigated using a UV-Vis-NIR spectrophotometer. Fourier transform infrared 
(FTIR) was used as a structural probe to determine glass local structures. Energy level 
diagrams and cross-relaxation channels were provided to observe the luminescence 
enhancement of the glass system. To improve the optical properties of our glass 
structures for higher luminescence efficiency, the co-doping technique was used to 
assess the influence of co-dopants on luminescence quenching and lasing potency of
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the glasses. Furthermore, based on the Foster-Dexter theory, the possibility of energy 
transfer is strongly dependent on the overlap of absorption spectra and emission 
spectra owed to acceptor and donor ions relations and the separating distance between 
them. Therefore, the occurrence of migration of excitation energy in REs doped glass 
is only made possible due to narrowed and well shielded electronic structure of the 4f- 
4f configuration by 5s and 5p electronic orbitals which helps in the enhancement of 
the optical quality of the glass systems which guaranteed their participation in solid- 
state laser applications.

Finally, the theoretical calculations of Judd-Ofelt theory were explored to 
determine the J-O  intensity parameters (Q2, ^ 4, C>6), radiative properties and lasing 
potential of the glass samples.

1.5 Significance of the Research

The development of glassy materials is receiving great attention now at both 
commercial and technological levels due to their potential applications in various 
fields such as solid-state lasers, optical fibres, telecommunication, modern lightening 
technology, and photovoltaics. Glass incorporated with different rare-earth ions (REIs) 
exhibits huge advantages like standardized light-emitting capacity, modest 
manufacturing measures, low cost of production and good mechanical strength. REIs 
doped in various host matrices (borate) have demonstrated some interesting properties 
considered advantageous for advanced technology. The enclosure of modifiers in the 
present glass composition is expected to minimize the hygroscopic nature of borate 
and increase the mechanical resistivity of the glass against atmospheric hydrolysis via 
the formation of metal cation networks. The reddish-orange colour exhibited by Sm3+ 
ion originated from 4Gs/2 -> 6H7/2, and 4Gs/2 -» 6H9/2 emission transitions could be a 
good source of colour display. The high values of branching ratio and stimulated 
emission cross-section of Sm3+ emission transitions are useful conditions for low 
threshold, high gain optical fibres, and amplifiers development. Dy3+-doped borate 
glass former is also characterized by two remarkable emission spectral 4F9/2 —> 6His/2 

(blue) and 4F9/2 —» 6Hi3/2 (yellow) in the visible region. These prominent emission
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transitions can be used for the development of photonic devices like white light- 
emitting diodes (W-LEDs) and light amplification by stimulated emission radiation 
(LASER) which could serve as a replacement for fluorescent lamps and incandescent 
bulbs.

The W-LEDs are commonly known for high brightness, good reliability, small 
size, safety, low power consumption, and environmentally friendly. These 
luminescence features can improve benefits with regards to the environment and 
reducing the consumption of global energy. This study will equally provide 
fundamental knowledge and basic information required on optical features of the 
studied glass for potential applications in advanced technology. The information 
obtained from this research can be used for further studies and the development of 
enhanced luminescence host materials for solid-state lasers. The results from 
Judd-Ofelt analysis using emission and absorption data will provide basic but vital 
information regarding the radiative transition parameters, radiative branching ratio, 
and radiative lifetime of luminescence characteristics that portray the glass system as 
a potential candidate for advanced technological applications.

Due to quenching effects, the need to co-dope different uncommon REIs or 
transition metals in any glass network structure emerges when REIs or transition 
metals ions in the glass compositions display weak emission because of its incapacity 
in absorbing excitation energy or reduction in emission intensity due to concentration 
quenching arising from multi-phonon relaxation or cross-relaxations. In this way to 
defeat such circumstances, the co-doping mechanism where dissimilar REIs or 
transition metals are dually added to already existing fluorescence REs for improving 
its luminescence process through a process of sensitization is a welcome development. 
The achieved optimization mechanism for an effective co-doping process in the under­
investigated glass samples is optically beneficial for advanced technological 
applications and the determination of the lasing potential of the studied materials.
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1.6 Thesis Outline

This thesis is shared into five chapters with each chapter containing the 
following description. Chapter 1 contains the research background alongside the 
problem statement, objectives of the research, scope, and significance of the research.

Chapter 2 provides a review of relevant literature. This is segmented into five 
different parts. The first part includes scientific insights into the glass mechanism such 
as Glass formation theory and Dynamical features of borate-based glasses. The second 
part is dedicated to modifiers (Strontium and Magnesium) inclusion in borate 
containing glasses and dopants (Dysprosium and Samarium) effects on borate and 
borate related glasses. The third part is allocated to structural (X-ray diffraction and 
Fourier transform Infrared) and physical properties (Density, Molar volume, Ion 
concentration, Polaron radius, Inter-nuclear distance, and Field strengths). The 
Ultraviolet Near-Infrared Region (Glass optical properties, Absorption spectra 
characteristics, Direct and Indirect allowed optical band gaps), Urbach energy and 
Judd-Ofelt theory are discussed in part four while in part five the discussion is 
cantered on photoluminescence (Emission and Excitation) analysis of the glass 
samples as well as luminescence theory in non-crystalline solids.

Chapter 3 presents the various experimental procedures employed in the 
present study. This category of demonstration includes the method of sample 
preparation and spectroscopic techniques used in the current work. The spectroscopic 
instrument characterizations are X-ray Diffraction (XRD), Fourier transforms infrared 
(FTIR) techniques, Energy Dispersive X-ray (EDX) and Field Emission Scanning 
Electron Microscope (FESEM). Optical absorption, as well as information on emission 
and excitation, were provided via UV-Vis-NIR and Photoluminescence (PL) 
spectroscopy respectively.

Chapter 4 contains the results and discussions of the experimental procedure 
described in chapter 3 as well as tables and figures as used in the present study. These 
include outputs from physical and optical measurements and characterization 
techniques, EDX and FESEM outputs, luminescence properties, optical analysis,

11



Judd-Ofelt evaluation of radiative parameters of separately doped Dy3+, Sm3+’ and 
Dy3+ + Sm3+ co-doped strontium magnesium borate glasses.

Chapter 5 is dedicated to conclusions and recommendations for future works.
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The sample calculation for 20SrC) - lOMgO -  (70 y) B2O3 JS 1112O3; for 0.5 < y<  
2.5 mol%

Appendix A Batch calculation of the compound used in the glass matrix

SrO MgO (70 - y )  B2O3 jSm203
20 10 69.5 0.5
20 10 69.0 1.0
20 10 68.5 1.5
20 10 68.0 2.0
20 10 67.5 2.5

The molecular weight of the compound used
Molar mass of SrO = 103.62 g mol-1
Molar mass of MgO = 40.3044 g mol-1
Molar mass of B2O3 = 69.63 g mol-1
Molar mass of S1T12O3 = 348.72 g mol-1
Weight system of 2QSrO -  lOMgO -  (70 -  j )  B2O3 -  ;ySm203
( 20 

100 xl03.62 + (  \0_ 
100

x 40.3044 + 69.5
100

x 69.63 +
J

0.5
100 x 348.72

= 20.724+4.030+48.393+1.744 

= 74.891 g
To produce 25g of 20SrO -  lOMgO -(70 -  _y) B2O3 -  0.5Sm203

20.724SrO = -------- x25g74.891
SrO -  6.92 g
To produce 25g of MgO

^  4.030MgO = ---------x25 g74.891
MgO=135g
To produce 25g of B 2O 3

48 393 B^O,=  x25 g2 3 74.891
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