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ABSTRACT 

A boundary layer problem is a study of motion of fluid at a very thin layer. It 

is a single perturbation problem derived from the Navier-Stokes equations which are 

known as equations of motions for fluid in which the solution need to be solved. The 

Blasius equation is one of the basic equations in fluid dynamics that describes the 

steady flow of incompressible fluids over a semi-infinite flat plate. The aim of this 

study is to solve Blasius problem for two different boundary conditions. The first 

approach is to transform the Blasius boundary value problem into an initial value 

problem that introduces 𝑓′′(0) = 𝜎 as a new initial condition. The method proposed 

to solve this problem for the two cases is by combining the Adomian Decomposition 

Method (ADM) with two integral transforms which are the Laplace and Elzaki 

transforms. Padè approximation is applied to determine the value of 𝑓′′(0) = 𝜎. The 

values obtained are substituted into the respective Blasius series solutions and the 

behaviour of the solutions are studied. It is found that the Blasius solution of 𝑓(𝜂) and 

𝑓′(𝜂) for both cases agree well with solutions from previous studies. 
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ABSTRAK 

Masalah lapisan sempadan adalah kajian pergerakan bendalir pada lapisan yang sangat 

nipis. Ia merupakan masalah usikan tunggal yang diperolehi daripada persamaan 

Navier-Stokes yang dikenali sebagai persamaan gerakan cairan yang perlu 

diselesaikan. Persamaan Blasius adalah salah satu persamaan asas dalam dinamik 

bendalir yang menggambarkan aliran mantap cairan tidak dapat dimampatkan di atas 

plat rata separa tak terbatas. Tujuan kajian ini adalah untuk menyelesaikan masalah 

Blasius untuk dua syarat sempadan yang berlainan. Pendekatan pertama adalah untuk 

mengubah masalah nilai sempadan Blasius ke masalah nilai awal yang 

memperkenalkan 𝑓 ′′ (0)  =  𝜎 sebagai keadaan awal baru. Kaedah yang dicadangkan 

untuk menyelesaikan masalah ini untuk kedua-dua kes adalah dengan menggabungkan 

‘Adomian Decomposition Method’ (ADM) dan penjelmaan kamiran seperti Laplace 

dan Elzaki. Anggaran Padè digunakan untuk menentukan nilai 𝑓 ′′ (0)  =  𝜎. Nilai-

nilai yang diperoleh digantikan ke dalam penyelesaian siri Blasius dan tingkah laku 

penyelesaiannya dikaji. Didapati bahawa penyelesaian Blasius bagi 𝑓(𝜂) dan 𝑓′(𝜂) 

sangat tepat dengan penyelesaian yang diperoleh sebelum ini.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background of the Study 

Fluid dynamics has a wide range of applications in engineering problems and 

the one most important advance in fluid dynamics is the deduction of the boundary 

layer equations. The fluid flow analysis in a boundary layer adjacent adjoining the 

wedge is an essential part in the area of fluid dynamics. Many problems in the field of 

mathematical physics and also in fluid mechanics can be modelled by different 

boundary value problems. Blasius equation arises in the study of laminar boundary 

layer exhibiting similarity properties [1]. The equation has been the subject of 

considerable research nowadays due to its importance in boundary layer theory.  

 

A boundary layer problem is the study of motion of fluid at a very thin layer 

referred as boundary layer close to the surface body. The primary application of the 

boundary layer theory is in finding the skin-friction drag which acts on a body as it is 

travelled through a fluid; for instance the drag of a turbine blade, of an airplane wing 

or a complete ship [2]. The concept of the boundary layer, hence, infers that the flows 

at high Reynolds numbers can be distributed up into two unequally large regions. The 

two different flow forms can both happen within the boundary layer which is the flow 

can be either laminar or turbulent [3]. Boundary layer problem is a single perturbation 

problem derived from Navier-Stokes equations which are known as equations of 

motions for fluid in which the solution need to be solved [1,3]. 

 

Blasius equation is one of the fundamental equations in fluid dynamics that 

defines the steady flow of incompressible fluids over a semi-infinite flat plate. 

Engineers, physicists and mathematicians have special interest in studying this 

equation as a result of the application of Blasius equation in fluid flow [4].  
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There are two types of Blasius equation that show up in the fluid mechanics 

theory where both forms are represented by the same differential equation but with 

different boundary conditions where each is subjected to special physical conditions 

[4-8]. Consider the Blasius equation of two-dimensional laminar viscous flow past a 

semi-infinite plate represented by a nonlinear ordinary differential equation 

          𝑓′′′(𝜂) +
1

2
𝑓(𝜂)𝑓′′(𝜂) = 0,           

where the boundary conditions are given as  

 𝑓(0) = 0, 𝑓′(0) = 0, 𝑓′(∞) = 1                                     

or 

                                       𝑓(0) = 0, 𝑓′(0) = 1, 𝑓′(∞) = 0.           

 

This differential equation is well known as the mother of all boundary-layer 

equations in fluid mechanics. In 1908, Blasius provides a power series solution. It was 

noted that the solution is not given closed-form because the value of  𝜎 = 𝑓"(0) is not 

known. Howarth in 1938 gained a more accurate value of 𝜎 by means of numerical 

technique [9]. In order to improve this value, many studies have been conducted 

throughout the years. 

 

Many numerical, analytical and semi-analytical methods have been 

investigated for solving this equation. Some of these methods are finite difference, 

Adomian Decomposition, perturbation methods, differential transform and variational 

iteration methods. These methods are used to obtain the series solution that converges 

to the exact solution. Meanwhile, combination and modifications of approximate 

methods with integral transforms have also been introduced in order to accelerate the 

convergence of the solution and enlarge the convergence radius [4,10]. 

 

This study focuses on solving Blasius problem by using the combination of 

Adomian Decomposition Method (ADM) with two integral transforms such as 

Laplace Transform and Elzaki Transform for two different boundary conditions. Padè 

approximation is also studied in this research to handle the complex boundary 

conditions at infinity. 
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1.2 Problem Statement 

In the past few decades, nonlinear problems have been derived from various 

problems found in science and engineering for which their solutions are important in 

determining the properties and behaviour of the physical system. However, the exact 

solution of a nonlinear problem is sometimes difficult to determine since the problem 

is usually complex as presented by Blasius problem. This study is conducted to 

investigate a two-dimensional viscous laminar flow over a flat plate which is described 

by the Blasius problem. The focus of this research is solving Blasius problem with one 

of the boundary condition is at infinity for two different types of boundary conditions. 

There are several combined methods that have been proposed to solve this equation. 

In this research, new method will be introduced to solve Blasius initial value problem 

for two different boundary conditions which is the Adomian Decomposition Method 

and its combination with two integral transforms which are Laplace transform and 

Elzaki transform. 

 

1.3 Objectives of the Study 

The objectives of the study are: 

i. To transform the Blasius boundary value problem into initial value 

problem. 

ii. To solve Blasius problem by using ADM-Laplace transform and 

ADM-Elzaki transform. 

iii. To apply Padè approximant to the Blasius solution. 

iv. To study the performance of the combined method. 

 

1.4 Scope of the Study 

This study focuses on solving Blasius problem by using the combination of 

Adomian Decomposition Method (ADM) with two integral transforms namely the 

Laplace transform and Elzaki transform. Two different boundary conditions are 

considered. Then, the performance of Blasius solutions with the application of Padè 

approximation will be analyzed. 



4 

 

 

1.5 Significance of the Study 

The Blasius problems are among the most generally used problems in scientific 

studies which need to be solved as accurate as possible. By taking the advantage of 

combining the two powerful methods for finding exact solutions for nonlinear 

equations, it is very likely to improve the effectiveness of the Blasius solution. It is 

also to study and prove the applicability of this combined method on both types of 

boundary conditions. Hence, the understanding of this method is useful so that the 

combined methods can be applied to solve other nonlinear problems arising from 

another physical phenomena. 

 

1.6 Operational Framework 

The operational framework is illustrated in Figure 1.1 to get a clear picture of 

how this research is carried out. 
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Figure 1.1 Summary of the study of ADM-Integral transforms for Blasius problem 

Start 

Derivation of Blasius equation 
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Analysis of Results 

Conclusion 

End 
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1.7 Summary of the Chapter 

This chapter begins by studying the background of this research where many 

problems in the field of fluid mechanics and also in mathematical physics can be 

modelled by different boundary value problems. A boundary value problem is the 

study of motion of fluid at a very thin layer close to the surface body. The focus of this 

research is solving Blasius problem with one of the boundary condition is at infinity 

for two different types of boundary conditions by using the combination of Adomian 

Decomposition Method and integral transforms. This objectives of this research are to 

transform the Blasius boundary value problem into initial value problem, to transform 

Blasius problem by using combination of ADM and integral transforms, applying Padè 

approximant to the Blasius solution and to study the performance of the combined 

method. The operational framework also is shown in this chapter to know how this 

research is carried out. 
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Stokes equations for steady, two dimensional, incompressible flows where the density 

is kept to be constant. Navier formulated the equations in Cartesian coordinate system 

(𝑥, 𝑦), which are horizontal and vertical coordinates together with velocity 

components (𝑢, 𝑣) where 𝑢 and 𝑣 are respectively the horizontal and vertical fluid 

velocities. 

 

So, for a two-dimensional steady state Navier-Stokes equations, the basic 

equations governing incompressible fluid are the following: 

             Continuity:                     
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0, (2.1) 

 

             Momentum:            𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= −

1

𝜌

𝜕𝑝

𝜕𝑥
+ 𝜈 (

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2), (2.2) 

                                            𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
= −

1

𝜌

𝜕𝑝

𝜕𝑦
+ 𝜈 (

𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
). 

(2.3) 

where 𝜌 is the density, 𝑝 is the pressure and 𝜈 is the kinematic viscosity at a point of 

the fluid. In this study, we will consider the flat plate and assume that the plate is 

oriented along the 𝑥-axis, the pressure gradient may be neglected. 

 

It is classified by Xavier et. al that the Navier-Stokes equation can be reduced 

to the boundary layer approximations [12]. He showed that the continuity and 

momentum equations for laminar flow that are derived from the boundary layer 

approximation becomes an ordinary differential equation in 𝑢 and 𝑣 as the number of 

independent variables is reduced from two (𝑥 and 𝑦) to one (say 𝜂). 

 

2.2.1 Boundary Layer over a Semi-Infinite Flat Plate 

A steady and stationary flow is considered as shown in Figure 2.2 to impose 

tangentially on a vertical flat plate of semi-infinite length. In addition, if the fluid flows 

in the 𝑥-direction in the half-space 𝑥 < 0 at the constant velocity 𝑈 and the plate is 

positioned along the half-plane 𝑦 = 0, 𝑥 > 0 associated with the earlier flow. Based 

on the solution for an impulsive flow over an infinite plate, it can be assumed that the 
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