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ABSTRACT 

Widespread use of pharmaceuticals and herbicides leads to accumulation of 

their residues in surface water with detrimental effects and they have been 

recognized as emerging environmental pollutants. Therefore, it is important to 

develop a suitable sample pre-treatment method for the determination of these 

compounds in water. In this study, the fabrication of a mixed matrix membrane 

(MMM) using carbonaceous material immobilized in cellulose triacetate polymer 

matrix for microextraction is reported. The applicability and reliability of utilizing 

carbonaceous-based MMM in two different miniaturised microextraction designs, 

namely dynamic MMM tip extraction and automated flow-through MMM 

microextraction, are comprehensively demonstrated. To evaluate the performance of 

dynamic MMM tip extraction, the developed approach was applied for determination 

of five selected nonsteroidal anti-inflammatory drugs (NSAIDs) namely indoprofen, 

sulindac, naproxen, diclofenac, and ibuprofen in sewage water samples prior to ultra-

performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) 

analysis. The established method showed good linear responses in the concentration 

range of 0.25–500 pg/mL with correlation coefficients (r) from 0.9988 to 0.9992. 

The limits of detections (LODs) were 0.08–0.40 pg/mL. The relative recoveries of 

NSAIDs from spiked water samples were in the range of 92–99% and exhibited 

excellent precision (relative standard deviations, RSDs ≤ 4.9%). The proposed 

analytical methodology allowed pre-concentration factors up to 250. Automated 

flow-through MMM microextraction approach was developed for the analysis of six 

chlorophenoxy acid herbicides, namely 2-(4-chlorophenoxy)acetic acid, 2-(3,4-

dichlorophenoxy)acetic acid, 2-(2,4-dichlorophenoxy)acetic acid, 2-(4-chloro-2-

methylphenoxy)acetic acid, 2-(2,4,5-trichlorophenoxy)acetic acid, and 4-(2,4-

dichlorophenoxy)butanoic acid in the spiked sewage water sample prior to high 

performance liquid chromatography-ultraviolet detection (HPLC-UV) analysis. 

Under optimum conditions, the linearity of this method ranged from 50 - 1000 

ng/mL with correlation coefficients (r) ≥ 0.9939, while LODs ranged from 15 - 20 

ng/mL. The recoveries of the compounds in spiked sewage water samples were from 

95% to 99% with RSDs ≤7.5% and enrichment factors of 19 to 55. The developed 

analytical methodology has the advantage of requiring less adsorbent (only 62.5 μg) 

and less organic reagent (60 µL of desorption solvent). 
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ABSTRAK 

Penggunaan farmaseutikal dan herbisida secara meluas membawa kepada 

pengumpulan residu di dalam air yang membawa kesan memudaratkan dan ia 

dikenali sebagai bahan pencemar alam sekitar muncul. Oleh itu, pembangunan 

kaedah pra-rawatan sampel yang sesuai adalah penting untuk penentuan sebatian ini 

di dalam air. Dalam kajian ini, fabrikasi membran matriks bercampur (MMM) 

menggunakan bahan berkarbon yang tidak bergerak di dalam matrik polimer selulosa 

triasetat untuk pengekstrakan mikro dilaporkan. Kebolehlaksanaan dan 

kebolehpercayaan penggunaan MMM berasaskan karbon dalam dua reka bentuk 

pengekstrakan miniatur yang berbeza iaitu pengekstrakan muncung MMM dinamik 

dan pengekstrakan mikro MMM mengalir-lalu automatik diperlihatkan secara 

komprehensif. Untuk menilai prestasi pengekstrakan muncung MMM dinamik, 

pendekatan yang dibangunkan telah digunakan bagi penentuan lima jenis ubat anti-

radang bukan steroid (NSAIDs) terpilih iaitu indoprofen, sulindac, naproxen, 

diclofenac, dan ibuprofen di dalam sampel air kumbahan sebelum analisis 

kromatografi cecair berprestasi ultra-spektromertri jisim seiring (UPLC-MS/MS). 

Kaedah yang dibangunkan telah menunjukkan gerak balas linear yang baik dalam 

julat kepekatan 0.25-500 pg/mL dengan pekali korelasi (r) dari 0.9988 hingga 

0.9992. Had pengesanan (LOD) adalah 0.08 -0.40 pg/mL. Perolehan semula relatif 

NSAIDs daripada sampel air terpaku adalah dalam julat 92-99% dan menunjukkan 

kepersisan yang cemerlang (sisihan piawaian relatif, RSDs ≤ 4.9%). Kaedah analisis 

yang dicadangkan membolehkan faktor pra-pemekatan sehingga 250. Pendekatan 

pengekstrakan mikro MMM aliran automatik telah dibangunkan untuk menganalisis 

enam racun rumpai asid klorofenoksi, iaitu asid 2-4(-klorofenoksi)asetik, asid 2-(3,4-

diklorofenoksi)asetik, asid 2-(2,4-diklorofenoksi)asetik, asid 2-(4-kloro-2-

metilfenoksi)asetik, asid 2-(2,4,5-triklorofenoksi)asetik, dan asid 4-(2,4-

diklorofenoksi)butanoik di dalam sampel air kumbahan terpaku sebelum analisis 

kromatografi cecair berprestasi tinggi dengan pengesanan ultra ungu (HPLC-UV). 

Dalam keadaan optimum, kelinearan kaedah ini berjulat dari 50 - 1000 ng/mL 

dengan pekali kolerasi (r) ≥ 0.9939, sementara LODs berjulat dari 15 - 20 ng/mL. 

Perolehan semula sebatian daripada sampel air kumbahan terpaku ialah dari 95% 

hingga 99% dengan RSDs ≤ 7.5% dan faktor pengkayaan sebanyak 19 hingga 55. 

Kaedah analisis yang dibangunkan mempunyai kelebihan iaitu memerlukan kurang 

bahan penjerap (62.5 μg sahaja) dan kurang reagen organik (60 µL pelarut 

penyaherapan). 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background Study 

The development of fast and sensitive determination of trace levels of 

contaminants in environmental complex matrices remains challenging in analytical 

method [1]. Sample pre-treatment is a necessary step to quantify analytes in complex 

matrices and enrichment of the target analytes to final acceptor phase. However, 

sample preparation step is regarded time-consuming step and prone to significant 

experimental errors in analysis.  

Liquid-liquid extraction (LLE) and solid phase extraction (SPE) are well-

known classical sample pre-treatment techniques for the extraction of target 

compounds that are generally preferred; however, limitations often stated are             

time-consuming, large organic waste is produced and the need for multistep 

procedures with high risk of analyte loss [2]. Recent developments in sample pre-

treatment have largely been aimed at the need for very small volumes of the 

extracting phase or the possibility to become solventless as well as the ability to 

incorporate several processing steps such as sampling, detection, separation, pre-

concentration, and even derivatization [3].  

Over the past decade, membrane technologies have grown rapidly by 

developing materials that offer improvements in flux and selectivity. Various 

techniques of membrane-based microextraction [4] have been employed in the 

separation and detection of organic pollutants from different environmental matrices. 

For instance, the use of hollow fibre liquid phase microextraction (HF-LPME) [5], 

solid phase membrane tip extraction (SPMTE) [6], micro–solid phase extraction (μ-

SPE) [7] and thin film microextraction (TFME) [8] are proven to be simplified in 

experimental setup and low cost as well as reduce organic solvent consumption. In 



 

2 

these published techniques, membrane-based extraction techniques is based on the 

use of a membrane as a selective thin barrier between miscible fluids for sample pre-

treatment [9].  

A mixed matrix membrane (MMM) is a type of membrane formed by the 

incorporation of inorganic materials in polymeric membranes that has attracted much 

attention recently. Several inorganic nanoparticles such as zeolites [10, 11], silica 

[12], carbon nanotubes (CNTs) [13, 14], metal organic frameworks (MOFs) [15, 16] 

and graphene [17, 18] have been introduced as fillers into various polymeric matrices 

to enhance the performance of MMM. This combination of MMM has resulted in 

high efficiency in extraction of pollutants due to better flexibility, sensitivity, 

selectivity, mechanical, thermal, and chemical stability being achieved. The use of 

MMM has been reported in gas separation applications [19-24] and liquid phase 

separations [25-33].  

Herein, we demonstrated two MMM microextraction methods, namely 

dynamic MMM tip extraction (MMMTE) and automated flow-through MMM 

microextraction. Fabrication of MMM using carbonaceous material immobilized in 

cellulose triacetate polymer matrix for microextraction was developed. The 

applicability and reliability of utilizing carbonaceous-based MMM in two different 

miniaturised microextraction designs were comprehensively investigated, optimised 

and validated by determining the presence of the selected nonsteroidal anti-

inflammatory drugs (NSAIDs) and chlorophenoxy acid herbicides (CPAHs) in real 

environmental water samples.  

1.2 Problem Statement 

The contamination of pharmaceuticals and herbicides in environment has 

now become critical issues due to their continuous release into the environment. 

Diclofenac, together with 17 alpha-ethinylestradiol (EE2) and 17 beta-estradiol (E2) 

is listed as new priority restricted substance to be scrutinized in Europe in surface 

water. Adding to that, several CPAHs have been included in the European list of 
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priority pollutants. Moreover, the U.S. Environmental Protection Agency (USEPA) 

has set a maximum tolerated contaminant level for drinking water of 2,4-

dichlorophenoxyacetic acid (2,4-D) at 70 μg/L. These organic pollutants pose 

significant toxicological risk to humans and marine life. However, direct analysis of 

samples of these pollutants is difficult because they are in complex matrices and in 

very low concentrations [34]. Moreover, sample extraction and clean-up procedures 

greatly influence the accuracy and precision of the analysis. For all these reasons, 

sample preparation technique is crucial for an efficient, reliable, and accurate data 

analysis.  

Although classical extraction methods such as liquid-liquid extraction (LLE) 

and solid phase extraction (SPE) are generally favoured, however these extraction 

techniques are time-consuming and require large amounts of toxic and expensive 

solvents. Nowadays, miniaturized techniques have been utilized to improve 

extraction selectivity, less consumption of organic solvent, low-cost, and minimize 

the sample pre-treatment steps. However, these existing procedures, have several 

disadvantages in terms of cost of analysis, lower enrichment power and possible 

analyte carryover effects. In this present study, new miniaturised sample preparation 

techniques based on MMM are demonstrated for a smaller sample size, less 

consumption of organic solvent and more cost-effective sample pre-treatment 

method. 

1.3 Objectives of Study 

The aim of this research is to develop miniaturised microextraction techniques 

using the MMM microextraction technique for the analysis of NSAIDs and CPAHs 

in environmental water matrices. To achieve this aim, the following objectives have 

been planned: 

 To develop and validate the dynamic MMMTE coupled with ultra-

performance liquid chromatography-tandem mass spectrometry (UPLC-

MS/MS) for the determination of NSAIDs in environmental water matrices. 



 

4 

 To develop and validate the automated flow-through MMM microextraction 

method coupled with high performance liquid chromatography ultraviolet 

detection (HPLC-UV) for the determination of CPAHs in environmental 

water matrices. 

1.4 Scope of Study 

In this study, an advanced method to fabricate MMM in a commercially 

available pipette tip is demonstrated. This new sample preparation method 

designated as dynamic MMMTE was established for the analysis of NSAIDs in 

water samples using polymeric octadecylsilane (C18) particles. Operational 

parameters of MMMTE such as effect of sample pH, salting-out, dynamic extraction 

cycle, type of solvent and desorption time were investigated. The developed dynamic 

MMMTE approach was coupled with UPLC-MS/MS for trace level detection of 

pollutants present in the environmental water samples. 

On the other hand, an automated analyte pre-concentration system was 

developed for the analysis of CPAHs in sewage water samples using a multiwall 

carbon nanotubes (MWCNTs) immobilized mixed matrix membrane. The analyte 

adsorption and desorption processes were performed in a fully automated mode by 

making use of a sequential injection analysis (SIA) manifold based on a reversible 

syringe pump fitted with a selection valve to perform liquid handling. Several 

extraction conditions were comprehensively optimized including sample pH, ionic 

strength, sample volume, extraction time, desorption solvent and desorption time. 

The enriched extracts obtained from the automated approach were subsequently 

analysed by the HPLC-UV technique for separation and quantification. 

  



 

5 

1.5 Significance of Research 

 This research is significant to the development of the sample pre-treatment 

step in the MMM microextraction technique. This procedure has been developed to 

speed up and simplify the microextraction method, smaller initial sample volumes is 

required, high sensitivity and selectivity is achieved. It also minimizes organic 

solvent consumption and improve the efficiency of extraction of organic pollutants. 

This study has focused on the wider range of nanomaterial adsorbents based on 

MMM application in various sizes and shapes to tailor different experimental designs 

and sample size requirements for the analysis of NSAIDs and CPAHs in 

environmental analysis.  Besides that, through this work determination of various 

organic pollutants in complex, matrices can be regarded as green analytical 

chemistry method due to consumption of microliters organic solvent, simplicity of 

the microextraction setup and cost effectiveness.  

1.6 Flowchart/Scheme of the Research 

In Chapter 1, a detailed account of the research background, problem 

statement, objective, scope, and significance of the study. In Chapter 2 provides the 

literature review on conventional extraction and microextraction techniques, mixed 

matrix membrane and model analytes in this study. 

 

In Chapter 3, the experimental methodology and application of the dynamic 

mixed matrix membrane tip extraction for the determination of five selected NSAIDs 

in environmental water samples.  

 

 

 

 

 

 

 

Fabrication of dynamic MMM tip extraction device and elucidate the operational 

parameters for extraction of NSAIDs in environmental water samples 

Validate and apply the dynamic MMM microextraction coupled with UPLC-

MS/MS for monitoring of NSAIDs in environmental water samples 



 

6 

In Chapter 4, the experimental methodology and application of automated 

flow through cell MMM microextraction for the determination of six selected 

CPAHs in environmental water samples.  

 

 

 

 

 

 

 

 

Figure 1.1 Flowchart of research work for MMM microextraction  

 

Fabrication of flow cell device immobilised with MMM and elucidate the 

automated parameters for extraction of CPAHs 

Validate and apply the automated flow-through MMM microextraction coupled 

with HPLC-UV for monitoring of CPAHs in environmental water samples 
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