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ABSTRACT 

The nonlinear Schrödinger equations (NLS) are used in modeling several 

physical phenomena such as Bose-Einstein condensation, laser beam transmissions, 

deep water turbulence, and solitary wave propagation in optical fibers. Solving NLS 

equation resulting in a wave function that makes it easier to examine the behavior and 

performance of physical systems or chemical reactions. There are several methods that 

can be used to solve the nonlinear Schrödinger equation. In this study, one dimensional 

nonlinear Schrödinger equation was solved by Crank-Nicolson method with Dirichlet 

boundary condition and symmetric cyclic tridiagonal matrix using MATLAB. The 

Crank-Nicolson scheme is used as it is one of the adaptable, fast, and robust techniques 

for integrating the time-dependent Schrödinger equation. In addition, the operational 

framework for finite difference scheme and stability analysis for this technique are 

presented. Lastly, the performance of the Crank-Nicolson scheme is analyzed by 

computing the error between the estimated and the exact solution. It is shown that both 

results from numerical scheme and exact solution have good agreement. 

 

  



vii 

 

ABSTRAK 

Persamaan Schrödinger talc linear (NLS) digunakan dalam pemodelan 

fenomena fizikal seperti pemeluwapan Bose-Einstein, transmisi pancaran laser, 

pergolakan air dalam, penyebaran gelombang tunggal dalamda gentian optik. 

Penyelesaian kepada persamaan NLS membolehkan kajian terhadap kelakuan dan 

prestasi sistem fizikal atau tindak balas kimia dapat dilakukan dengan lebih mudah. 

Terdapat banyak kaedah yang boleh digunakan untuk menyelesaikan persamaan 

Schrödinger talc linear. Dalam kajian ini, teknik Crank-Nicolson dengan nilai 

sempadan Dirichlet dan matrik tiga pepenjuru dengan kitaran simetri digunakan untuk 

menyelesaikan persamaan Schrödinger tidak linear satu dimensi dangan MATLAB. 

Skim Crank-Nicolson digunakan kerana ia merupakan salah satu teknik yang boleh-

suai, pantas, dan mantap untuk mengintegrasikan persamaan Schrödinger yang 

bergantung kepada masa. Di samping itu, derivasi rangka kerja bagi skim pembezaan 

terhingga dan analisis kestabilan untuk teknik ini telah dibentangkan. Akhir sekali, 

prestasi skim Crank-Nicolson dianalisa dengan mengira ralat di antara penyelesaian 

anggaran dan penyelesaian tepat. Didapati bahawa penyelesaian daripada kaedah 

berangka adalah dan menyamai penyelesaian tepat. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Introduction 

Partial differential equations (PDE) are very common in mathematics, physics, 

and chemistry fields. These equations are pertinent to model and describe a wide range 

of physical systems or chemical reactions, which depict real-world problems. One of 

the most prevalent and widely used PDE in the abovementioned fields is the nonlinear 

Schrödinger equation (NLS). Solving NLS equation gives a wave function that makes 

it easier to examine the behaviour or performance of a physical system or chemical 

reaction. Numerous methods are suitable to solve the Schrödinger equation. This 

research focuses on one of these methods – the Crank-Nicolson method. Therefore, 

the primary purpose of this research is to determine a numerical solution for the 

Schrödinger equation using Crank-Nicolson method. 

 

 

 

1.2 Research Background 

Nonlinear Schrödinger equation is one of the essential mathematical equations 

used in mathematics, physics, and chemistry fields. The equation is a second order 

nonlinear differential equation or a partial differential equation. When it is solved, the 

solution gives a wave function with information about the behaviour of a particle in 

time and space. In other words, NLS is applied to describe the behaviour of physical 

phenomena (Okock and Burns, 2015). 

 

Understanding the behaviour of such systems is very important in different 

aspects of life. This knowledge can be utilized to design systems that are safe and 

prone to events that are likely to happen in the future and affect the system. For 
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example, the knowledge can be used by engineers to find the best designs and materials 

for constructing pipelines to be used in areas with high-temperature variations. In such 

a case, Schrödinger equation can simulate the behaviour of the pipelines when exposed 

to different changes and establish appropriate measures that should be put into place 

to enhance the functionality, safety, and durability of the pipelines.    

 

Several experimental studies conducted by different researchers suggested that 

atomic particles exhibited wave-like properties. As a result of this, it was concluded 

that the behaviour of atomic particles could be explained using a wave equation, which 

is a NLS (Barsan, 2015). The first person to write such an equation was Schrödinger. 

This wave equation became a subject of discussion for many years and it was found 

that its eigenvalues were equal to the quantum mechanical system’s energy levels. The 

eigenvalues were formulated from Fourier series, which expresses a mathematical 

function as the sum of infinite sequence of periodic functions(Knyazev and 

Shcherbakova, 2017). After numerous discussion about the wave equation, it also 

became accepted for use in probability distribution. The Schrödinger equation started 

being used to determine acceptable energy levels of quantum mechanical systems and 

its wave function was used to determine the probability of an atomic particle at a 

particular position and at a certain time. 

 

The biggest problem of Schrödinger equation was to find its correct solution 

(the wave function) that had the right amplitudes such that when they were summed 

by superposition, they gave the correct or anticipated solution. For many years, 

researchers struggled to develop methods of solving Schrödinger equation (Popelier, 

2011). In an attempt to simplify the problem, the system’s wave function, which was 

the solution to the Schrödinger equation, was replaced by an infinite series of wave 

functions for individual series. Schrödinger discovered that the individual wave 

functions described the states of individual quantum systems and the amplitudes of 

these wave functions provided very useful information about the state of the entire 

quantum system being examined. At first, the Schrödinger equation appeared to be 

very complex hence the need to find simpler methods of solving it.  

 

Today, there are several analytical and numerical methods that can be applied 

to solve Schrödinger equation. Numerical are the widely used methods because they 
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are accurate and easy to use. These methods are also suitable for use in numerous 

computer programs and applications available today. Some of the numerical methods 

that solve Schrödinger equation include: finite element method, finite difference 

method, Crank-Nicolson method, Rayleigh-Ritz method, matrix method, Monte Carlo 

method, and meshless methods, among others. 

 

 

 

1.3 Problem Statement 

Nonlinear Schrödinger equation is a very essential mathematical equation and 

it is important to have an accurate and reliable method of solving it. There are several 

methods that can be used to find the numerical solution for the Schrödinger equation. 

Each of these methods has a difference accuracy order. If the Schrödinger equation is 

not solved accurately then finding a solution to the problem, it represents becomes 

very difficult. In this research, Crank-Nicolson method will be used to solve the 

Schrödinger equation and results found compared with the exact solutions. This will 

help to establish the suitability, accuracy and reliability of Crank-Nicolson method in 

finding numerical solution for the Schrödinger equation. 

 

 

  

1.4 Research Questions 

The followings are the research questions. 

a) How is Crank-Nicolson method used to solve the Schrödinger equation 

numerically? 

b) Is the solution for the Schrödinger equation obtained using Crank-Nicolson 

method the same as the exact solution? 

c) Is Crank-Nicolson method a simple, accurate and reliable method in 

determining numerical solutions to the Schrödinger equation? 
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1.5 Objectives of the Research  

The followings are the main objectives of this research: 

a) To use Crank-Nicolson method and solve the one dimensional (1D) nonlinear 

Schrödinger equation (NLS) numerically. 

b) To conduct error analysis in solving 1D NLS using Crank-Nicolson method. 

. 

 

1.6 Significance of the Research  

Solving NLS accurately is beneficial in solving NPDE (nonlinear partial 

differential equation). NLS can be utilized to model and represent various real-life 

problems or situations. Understanding how to solve this equation can help find 

solutions to some of the difficulties people experience in their day-to-day activities. 

However, the understanding of how to solve NLS is more critical for mathematicians, 

engineers, scientists, and researchers who are obligated to find solutions to societal 

problems.  

 

The professionals can use the information obtained from the numerical solution 

of NLS to understand the behaviour and performance of various design components 

or systems and design components or systems that are more functional, safe, reliable, 

durable and cost effective. Therefore, the significance of this research is to demonstrate 

the suitability, accuracy and reliability (explained in chapter three section 3.4) of using 

Crank-Nicolson method in finding solution for the NLS. This will ascertain if Crank-

Nicolson method is suitable, accurate and reliable enough for use in simulating and 

solving complex and large real problems. 

 

 It is worth noting that most of the problems or systems can be modelled or 

simulated in form of NLS. When this is done, it becomes very easy to understand the 

problem/system as it is currently and even predicting how it will be in the future. 

Predicting the future behaviour of a system is very important because it helps to 

identify suitable actions or decisions that should be made so as to prevent deterioration 

of the system when it is exposed to certain conditions. 
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1.7 Scope of the Study 

The main focus of this research is on finding numerical solution for 1D NLS 

using Crank-Nicolson method. The project will find out the numerical solution using 

Crank-Nicolson method and comparing the solutions obtained with exact solutions of 

the equations. This will help to establish the suitability, accuracy and reliability of 

using Crank-Nicolson method in solving Schrödinger equation by Dirichlet boundary 

conditions.  
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