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ABSTRACT

Nonlinear Schrodinger equation (NLSE) in the context of drift wave packet

is a difficult partial differential equation to solve without any approximations or

transformations. Numerical computation must be taken into account to solve this

complicated problem and the interplay between the first and second-order chromatic

dispersions (CDs) and Kerr nonlinear effect needs to be considered. Although the

NLSE in the absence of the first-order CD parameter term has been solved using

various numerical and analytical methods, but the influential parameters, second-order

CD, and self-phase modulation (SPM) have yet to be examined. Therefore, in this thesis

the influence of these factors on newwave forms and on related conserved quantities was

investigated. The NLSE was studied numerically by using finite difference methods.

The Crank-Nicolson, which is second-order in time and space, was used. A high

accuracy method that is fourth-order in space and second-order in time and known

as the Douglas idea was also used to solve the NLSE. The accuracy and stability of

the obtained schemes were analyzed. The conserved quantities mass, momentum, and

energy were also computed. NLSE solutions were analyzed to illustrate the complex

interfered model medium properties such as dispersion, dissipation, and nonlinearity.

The impacts of the first and second-order CDs, nonlinearity on the structure of one

soliton, interactions between two and three solitons, dark soliton, soliton-like periodic

and dissipative, and shock waves were numerically inspected. It was found that these

parameters affect not only the width and amplitude of the wave but also shock strength

over the time evolution. On the other hand, new important waves existence can

propagate by increasing time and become the effective wave propagation. These

waves may be periodic, supersoliton, and oscillatory shock forms. Furthermore, a

comparison of the obtained results of different techniques in this study confirmed that

they are consistent with each other as well as with previous studies, indicating the

accuracy of the numerical programming used. The findings of this study have the

potential to improve communication performance through the development of physical

parameters in the used model.
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ABSTRAK

Persamaan Schrodinger tak linear (NLSE) dalam konteks bingkisan gelombang

hanyut adalah persamaan terbitan separa yang sukar diselesaikan tanpa sebarang

penghampiran atau transformasi. Pengiraan berangka perlu dipertimbangkan bagi

menyelesaikan masalah rumit tersebut dan interaksi antara serak kromat (CD) tertib

pertama dan kedua dan kesan tak linear Kerr perlu diambil kira. Walaupun NLSE tanpa

kehadiran sebutan parameter CD tertib pertama telah diselesaikan dengan pelbagai

kaedah berangka dan analitik, namun, semua parameter yang berpengaruh, CD tertib

kedua, dan pemodulatan fasa diri (SPM) masih belum dikaji. Oleh itu dalam tesis

ini, pengaruh semua faktor tersebut ke atas bentuk gelombang baharu dan ke atas

kuantiti terabadi yang berkaitan telah diperiksa. NLSE telah dikaji secara berangka

menggunakan kaedah beza terhingga. Skim Crank-Nicolson, yang merupakan tertib

kedua bagi masa dan ruang telah digunakan. Kaedah ketepatan yang sangat tepat

iaitu tertib keempat bagi ruang dan tertib kedua bagi masa yang dikenali sebagai

idea Douglas juga digunakan untuk menyelesaikan NLSE. Ketepatan dan kestabilan

skim yang diperoleh telah dianalisa. Kuantiti terabadi jisim, momentum, dan tenaga

juga dikira. Penyelesaian NLSE telah dianalisis untuk menggambarkan sifat medium

gangguan model yang kompleks seperti serakan, lesapan dan ketaklinearan. Kesan

CD tertib pertama dan kedua, ketaklinearan terhadap struktur satu soliton, interaksi

antara dua dan tiga soliton, soliton gelap, soliton jenis berkala dan lesapan, dan

gelombang kejutan telah diperiksa secara berangka. Didapati bahawa parameter ini

mempengaruhi bukan sahaja lebar dan amplitud gelombang tetapi juga kekuatan kejutan

disepanjang evolusi masa. Sebaliknya, kewujudan gelombang baharu yang penting

boleh dirambatkan dengan meningkatkan masa dan menjadi rambatan gelombang yang

efektif. Gelombang ini mungkin berbentuk berkala, supersoliton, dan kejutan berayun.

Seterusnya, perbandingan keputusan yang diperoleh dari teknik yang berlainan dalam

kajian ini didapati konsisten antara satu sama lain serta konsisten dengan kajian

sebelumnya, menunjukkan ketepatan program berangka yang digunakan. Keputusan

yang diperoleh dari kajian ini berpotensi untuk meningkatkan prestasi komunikasi

melalui pembangunan semua parameter fizikal dalam model yang digunakan.
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CHAPTER 1

INTRODUCTION

1.1 Problem Background

Many phenomena in applied fields are described by nonlinear partial differential

equations. The exact solution of the partial differential equations is required since it

gives a clear understanding of the physical situation of these phenomena in nature

which has become an underlying topic in mathematical physics [1]. One of the most

important partial differential equations is the nonlinear Schrodinger equation (NLSE)

which is applicable to classical and quantum mechanics [2].

The linear Schrodinger equation was educed in 1925 and published in 1926

by Erwin Schrodinger, an Austrian physicist [3]. When a system includes ! quantum

particles, 3! + 1 dimensions will be produced in the Schrodinger equation. Solving

the Schrodinger equation for dynamics of ! particles with ! > 10 is problematic due

to such high dimensions. This difficulty was overcome by using Hatree-Fork method

which converted the linear Schrodinger equation with 3! + 1 dimensions to a 3 + 1

dimensions NLSE. Although the new obstacles in the NLSE due to the nonlinearity,

the dimensions were shrunken dramatically in comparison with the main system. This

provided an opportunity to investigate dynamics of ! particles at large values of ! [4].

The NLSE can be derived from Bose-Einstein condensation (BEC) and wave

propagation [4]. In view of mathematics, dealing with NLSE, even with the linear one,

may be precise and critical because such equation possesses a mixture of the properties

of parabolic and hyperbolic equation [5].

In theoretical physics, the NLSE rises in describing nonlinear waves like

transmission of the laser beam over a medium with refraction index influenced by

the amplitude, plasma waves, water waves of an ideal fluid at the free surface and
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light propagation through nonlinear optical fibers [2, 6]. In general, the NLSE is

regarded as a cosmopolitan equation that dominates the transmission of slowly varying

packets of quasi-monochromatic waves in dispersive and weakly nonlinear media.

The NLSE supposes nonlinearities to be weak, whereas a dispersion is to be finite

at the scale of the carrying wave. While in other situations, a reductive perturbative

expansion, when both dispersion and nonlinearities are equally weak, results long-

wavelength equations like the Korteweg–de Vries (KdV), the Benjamin–Ono or the

Kadomtsev–Petviashvili equations in multi dimensions. Near collapse, the validity of

the NLSE breaks down where the fundamental assumptions of large-scale modulation

and small amplitude, in comparison to the frequency and the wavelength of the carrier,

are no longer satisfied [2, 7]. Between the stability and instability, there is a group

of critical points called singular points. The attitude of solutions around these points

changes significantly to form numerous solution forms in these regions, such as solitons,

periodics, shocks, solitons of dark and bright envelopes and rogue waves. Around the

singular points, the directions of these solutions are changing [8].

In quantum mechanics, the one-dimensional NLSE is a particular case of the

classical nonlinear Schrodinger field, which in turn is a classical limit of a quantum

Schrodinger field [2]. The quantum NLSE respects the bose field’s commutation

relations, including the resulting uncertainty relations between observables. In this

sense, it is an exact equation within the range of validity of the Born approximation.

Generally, it governs the full quantum field theory of bosons in one dimension, beyond

anymean-field description [9]. In addition, the quantized vortex stretching in superfluid

HeII turbulence is studied by using the NLSE [10].

Moreover, at present, the study of nonlinear propagations in dispersion-

dissipation medium plays a very motivating role to investigate physical problems of

fluids, superfluids, ocean, geophysics, hydrodynamics, quantum fluids and fiber-optical

new communications technology applications [11–20]. Dissipative and dispersive

progressing waves are unstable trains that rise automatically in nonlinear weak

dispersion media. A soliton will be formed when the dispersion dominates over the

dissipation due to the balance between nonlinearity and dispersion. Furthermore, vice

versa, when the dissipation is superior, a shock wave is constructed because of the
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combination between the nonlinearity and dissipation effects. The front steepening

induced by nonlinear effects develops a gradient catastrophe. When a gradient

catastrophe is developed, dispersion will encourage the beginning of oscillatory shock

profiles [14, 21–23]. Experimentally, such dispersive breaking was first discovered

at the beginning of the year 1970. The oscillatory nature of the shock appearing

in the extremely rarefied (collisionless) plasma was firstly predicted by Sagdeev and

coworkers [24]. On another point of view, nonlinear unlocalized waves structure such

as dissipative shock applications can be noticed in space fluid, laboratory experiments

and scientific observations [25–34].

It is worth mentioning that the NLSE displays two essential types of breaking

according to the formula of the initial solution used. For a bright wave, the dispersive

effects display two propagating envelopes that are the type of breaking occurs in fibers.

On the contrary, when a dark waveform represents the initial solution, the breaking

arises at time equals to zero [21, 22, 24]. The resulting oscillatory waves exhibit one

narrower central zero velocity soliton with symmetric pairs [21, 22].

Previously, the exact solution of the NLSE was obtained analytically by writing

this equation in real forms through some transformations and then using some methods

like Jacobi elliptic expansion, tanh-function method, Cole-Hopf transformation, Hirota

bilinear method, inverse scattering method and others. Lately, direct methods are

utilized to find the exact wave solutions of the NLSE such as, complex tanh-function

method, complex hyperbolic-function method, sub-ordinary differential equation

method, complex ansatz method, complex Jacobi elliptic method and so on [1].

Furthermore, there are various numerical methods for solving the NLSE,

including the well-known spectral and pseudospectral methods which depend on the

use of fast Fourier transforms, the finite difference methods which are flexible and

easily implemented, space-time finite element methods, and the improved quadrature

discretization method [35].

The NLSE has two kinds from the viewpoint of the features of their solutions;

one is called self-focusing which has opposite signs of dispersion and nonlinear term
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and possesses bright soliton solutions whose modulus grows from a certain value at

infinity and tend to the same value. On the contrary, in the other kind the de-focusing

NLSE, the dispersion and nonlinear terms have the same signs and its solution is

called a dark soliton whose modulus is less than the one of the uniform solution where

the dark soliton propagates [36, 37]. Solitons are exact solutions of the NLSE that

represent a wave of permanent form even when interacting with other solitons as if the

principle of the superposition was valid [38]. In addition, the NLSE has a plane-wave

solution provided that the dispersive relation between wavenumber and amplitude of

the complex wave function is satisfied [4].

Besides the importance of the NLSE, the study of the coupled nonlinear

Schrodinger equations (CNLSEs) has received a great deal of attention recently because

of their appearance as governing equations in many physical areas like nonlinear

optics, including optical communications, bio-physics, multi-component BEC at zero

temperature, etc. Specifically, soliton pulse type transmission in fiber arrays and

multimode fibers is ruled by a system of N-NLSEs which is often not integrable [39].

Nonlinear fiber optics describes the phenomena of nonlinear optical occurring

inside optical fibers. To manufacture optics, two different substances are used to guide

the light pulses to travel inside the cables that carry information sent from one side

to another. Polymeric fibers are usually utilized through short-distance transfer and

in installations rough surroundings, while glass fibers are used for high quality and

long-distance data transfer [40]. The information holding pulses travels for hundreds,

or even thousands, of kilometers and experiences various degeneration procedures [41].

Although the beginning of the optical fiber communications field dates back to 1960,

the commercial usage of optical fibers became workable only when fiber losses were

reduced significantly after 1970. The single-mode fibers are mainly used to study

nonlinear effects, where single-mode fibers mean that the electromagnetic wave in the

HI (transverse) directions has a stationary shape called a mode [5].
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1.2 Motivation

In the telecommunications area, it has been needing to transfer more data in

a faster time with appropriate bandwidth and frequency via high transmission [42,

43]. New communications technology has become essential according to fiber-optical

applications in allowing longer transmission distances with higher bandwidths [5].

Likewise, in the infrared ray region, fiber optics is the most critical preferred

transmission method. These fibers have been used in networks for the purpose of

transoceanic and terrestrial long-haul to offer low losing, great bandwidths, and immune

electromagnetic properties. Currently, optical communications have depleted all the

degrees of freedom in single-mode fiber except the space dimension [44, 45].

Today, traveling pulses in optical fiber transfer most of the telecommunications

of all data. Transmission in fibers are preferable in comparison to electrical cables

because of two compelling features: waves in fibers suffer low power loss and fibers

supply an extremely wide bandwidth [46].

Another aspect of comparison between optical and electrical transmission

indicates that they share a defect wherein each kind of ducts, group velocity depends

on frequency, thus transmitted signals suffer from distortion due to group velocity

dispersion (GVD) because each signal needs a specific bandwidth. This distortion is

linear which implies that the possibility of its compensation completely by using an

opposite dispersion element [46].

Rahman studied the rarefactive (compressive) time damping soliton properties

depending on the superthermal factor of electrons and positrons. Furthermore, the

behavior of existing waves at critical double layers is taken into account [47]. In

addition, the increased attention to dissipative and dispersive waves has provided

opportunities to discover new systems to find new higher resolution data, predict

new phenomena and counteract unphysical singularities in dispersive conservative

media [24, 48].
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It was thought that the incidence of shock waves is often referred to and

investigated concerning higher-order cubic terms that affect ultrashort pulses. However,

it turned out that the Kerr effect in partnership with standard nonlinear term in the

NLSE represents the major-order influence responsible for wave-breaking under typical

experimental conditions that involved pulses with a period in the range from a few psec

to nsec [48].

The temporal-optical solitonic waves of the NLSE have been investigated

theoretically, experimentally and by the simulation to examine their properties in

communications using fiber optics [8, 41, 49–58]. Also, these optical profiles

are introduced as a serious alternative to successive generations in ultrafast

telecommunications systems [8,49,53,55]. The nonlinear form of NLSE became one of

themajor delegatedways for depicting thewaves behavior in a large number of nonlinear

physical applications i.e., plasmas, optics, fluids, deeper water, semiconductors, BEC

and dynamical models [8, 41, 49–60].

Moreover, the NLSE has various applications in many fields, as it has been

mentioned in the background. In the field of optical signal transmission, the universal

known model NLSE enabled the studies and numerical calculations as well as it

performs a definitely main role in nonlinear applications and studies because it has

soliton solutions. Another significant property of the standard NLSE is that it has an

infinite number of polynomial conservation laws [37]. The NLSE in the context of the

drift wave packet and that describes optical pulses propagation has the following form

8
mq

mC
+ 8X mq

mG
− V

2
m2q

mG2 + W |q |
2q = 0, −∞ < G < ∞, C ≥ 0, (1.1)

where q (G, C) is the complex slowly varying pulse envelope where |q |2 is measured

in , , X ≡ 1
E6

is the drift wave packet parameter, which is measured in units of (?B),
of the pulse envelope moves at the group velocity E6 which is measured in in units of

(</B), V ∈ {' − {0}} is the GVD parameter that measured in units of (?B2/<), W
is the self-phase modulation (SPM) parameter that measured in units of (,<)−1 and

8 =
√
−1 [5, 22, 24, 41, 46, 61, 62].
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The chromatic dispersion (CD) of the first and second-order X and V with

the nonlinearity SPM considered in this NLSE (1.1) occupy a pivotal role in the

propagation of short optical pulses in the nonlinear regime. The fiber dispersion arises

due to the frequency dependence of the refractive index and accordingly different

spectral components associated with the pulse travel at different speeds which gives

the dispersion a major influence in the transmission of pulse in fibers. Also, the CD

of the second-order V is responsible for pulse broadening. The nonlinear parameter

SPM W describes the self-induced phase shift occurring inside an optical field during

the pulse propagation. The major effect of SPM is to modulate spectral broadening of

ultrashort optical signals propagating through the fiber due to the intensity dependence

of the refractive index [22].

In the nonlinear regime, which is considered in this work via the NLSE (1.1),

the interplay between dispersion and nonlinearity can lead to qualitatively different

behavior depending on the sign of the GVD. In the anomalous dispersion regime of

fibers where V < 0 , the SPM reduces spectral broadening of signals and contributes

to developing of optical solitons. On the contrary, in the normal dispersion regime of

fibers where V > 0, the SPM enhances the broadening rate [22].

Therefore, these features of the NLSE and its factors have motivated the study

and discussion of the influence of the parameters considered in the NLSE (1.1) on

the solitonic optical pulses and interaction between them through transmission in this

work. Furthermore, the relation between NLSE and the emergence of shock waves has

been a strong motivator for discussing the effects of the parameters on shock waves

and oscillations behavior. The conserved quantities affected by these parameters are of

interest in this work.

1.3 Problem Statement

Pulse propagation in a nonlinear optical fiber can be studied by solving the

NLSE (1.1). It is clear that this NLSE in the context of the drift wave packet is

a very complicated partial differential equation and cannot be solved without any
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approximations or transformations. So, numerical calculations and schemes must be

taken into account to solve the complicated problem and to study the interplay among

the first and second-order chromatic dispersions (CDs) and Kerr nonlinear effects in

optical fibers [63–67]. Moreover, some researchers [5, 35, 46, 68, 69] turn to solve

and study the NLSE with X by using some transforms to convert it to the normalized

standard form of the NLSE as follows

8
m*

mC
− m

2*

mG2 + @ |* |
2* = 0, (1.2)

where * = * (C, G) is a complex-valued function and @ ∈ ', or by ignoring the

coefficient of the drift wave packet. These simplifications may produce less accurate

solutions. Therefore, the main focus in this work is to solve the NLSE (1.1) numerically

when (X ≠ 0) by deriving a new scheme using an implicit finite difference method with

high accuracy and stability in order to study soliton solutions and shock waves during

transmission in single-mode optical fibers. In addition, this work has concentrated on

examining the stability and accuracy of the obtained scheme. The resulting scheme has

been applied on many numerical experiments to investigate and discuss the influence

of the first order CD, X on the shapes, amplitudes and the velocities of the solitons, new

soliton-like periodic and new shock waves and on the conserved quantities like mass,

momentum and energy of a system governed by the NLSE.

In addition, in this work, Eq.(1.1) when X = 0.0 has been investigated. In this

case, many researchers [8, 35, 41, 52, 53, 56, 58, 68] have treated the resulting NLSE

by using different numerical and analytical methods with no focus on the effects of

the parameters considered in the resulting NLSE. But in this work, the NLSE in the

field of single-mode of light progress in nonlinear fibers has been solved numerically

by using two implicit finite difference methods to inspect the distinctive reliance of

the waves forms and conserved quantities on GVD and SPM. Also, the movement and

shape properties of one, two and three solitons interaction, new soliton-like periodic

and new shock waves have been examined. Likewise, their conservation laws in terms

of W and V are taken into account.
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In addition, the full discretization of the NLSE using the proposed implicit

numerical methods produces nonlinear block tridiagonal systems [6, 38, 70] which

need to be solved.

1.4 Scope of the Research

An optical fiber is a thin glass thread consisting of a cladding around a central

core made of fused silica with an ultra-low loss. In a single-mode fiber, the internal

core is microscopic with a radius of less than 5`<. In this work, single-mode optical

fibers are regarded to transmit signals from one end to the other rather than metal

wires because signals pass through the fibers with lower loss and block electromagnetic

interference. Another feature of single-mode optical fibers is that various applications,

including optical communications, depend on the use of them almost exclusively [5,71].

In the slowly varying envelope approximation, optical pulses propagation along

single-mode fibers has been studied in this work by solving the NLSE (1.1) numerically.

This study is considered in the presence of the first and second-order CDs and SPM

coefficients that play an important role in producing and propagating of different types

of solitons and shock waves depending on the values and signs of these parameters. The

choice of nonlinear parameter W and CDs X and V is prompted by their convenience to

produce pulses soliton shape during propagating in fiber for optic telecommunication

systems and by their usage in the previous studies and applications.

Moreover, in weakly dispersive nonlinear media, the dispersion factor and Kerr

effect associated with the nonlinear term in the NLSE perform a significant role in the

forming of an unlocal oscillatory structure with short-wavelength. The transition of

the wave-like between two edges leading and trailing is generally called a dispersive

shock. In such a frame, it should be clear that dispersive shock waves compose the

dispersive counterpart of viscous regularization of classical shock waves which arise

when the dissipation surpasses the dispersive effects [24, 72]. Thus, in this work, the

properties of the dispersive and dissipative shock waves have been discussed via the

9



schemes obtained from solving the NLSE (1.1) when X ≠ 0 and when it is neglected

by using implicit finite difference methods.

In this work, the trivial Neumann boundary condition has been used to solve

the regarded models where they are boundary value problems. In addition, the two

implicit finite difference methods, Crank-Nicolson and Douglas, have been used to

solve the NLSE as they are beneficial and coinciding with the ultrashort optical

signals propagation which have very short widths that is the signal includes a few

optical cycles. Another feature of both of Crank-Nicolson and Douglas methods is

that they are unconditionally stable which ensures that there is no limitation on the

time step size [22, 38, 65, 73–75]. Many authors used the Crank-Nicolson technique

for numerical estimation of nonlinear complicated partial differential models such as

heat conductions, fluid mechanics and optics because of its accuracy and stability in

obtaining a solution that agrees with real data and observations [76, 77] In addition,

under the same grid and coefficients, the implicit approximations are dramatically

more accurate than the explicit ones, although the high cost of solving a system of

algebraic equations at each time step. Although the common use of the split-step

Fourier method for investigating nonlinearity in optical fibers, its implementation

consumes time significantly when solving the NLSE that simulates the evolution of

wavelength-division-multiplexed light pulse systems. These reasons make the finite

difference methods very attractive for solving the NLSE [22, 38, 65, 73–75]. The

stability of the resulting schemes has been proven by using von-Neumann stability

analysis. Furthermore, the accuracy of the resulting schemes has been shown by

evaluating the truncation error with Taylor’s series expansion. Also, the validation

of the numerical solutions has been confirmed by studying the stability and accuracy

of the resulting schemes analytically and by comparing some of the obtained findings

with previous results. Also, the consistency and harmony in the representation of the

solutions at very large times validate the resulting schemes and codes.

Likewise, Newton’s method has been used to solve the resulting block nonlinear

tridiagonal systems after applying the former numericalmethods. All the computational

processes have been implemented by using FORTRAN software.

10



1.5 Research Objectives

This work aims to achieve the following objectives

1. To develop two computer codes in order to solve the NLSE (1.1) in the absence

of the first order CD (X = 0). The first code has been derived by using the

Crank-Nicolson technique, where the resulting scheme is second order in time

and space. The second code has been derived by using the Douglas technique,

where the resulting scheme is fourth-order in space and second-order in time.

2. To develop a computer code in order to solve the NLSE (1.1) when X ≠ 0 by

using the Crank-Nicolson scheme.

3. To prove the accuracy and stability, by using von-Neumann stability analysis,

of the resulting numerical schemes mentioned in the Objectives (1) and (2).

4. To investigate the effects of the CDs of the first and second-order and SPM on

solitons and shock waves properties and on their conserved quantities.

1.6 Contribution of the Research

The tremendous development in the uses and applications of the nonlinear

phenomena in the field of communication via optical fibers and what may affect waves

during transmission motivate this study to address some of the effects by using a

mathematical numerical computational treatment.

Some nonlinear effects control the transmission of waves in fiber optics; it is

imperative to study them carefully. Examples of these influences are the intensity

dependence of medium refractive index and the phenomenon of inelastic-scattering.

Dispersion properties of the fiber medium play numerous roles in the investigation

of communicating nonlinear wave existence in optical fibers as the relatively optical

wave modes. These modes’ propagations can either reinforce or frustrate the impacts

of different mode conditions and coupling as they range from the balance of linear-

nonlinear phase shifts in soliton formations to damped and super continuumgenerations.
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In this work, the spatial equivalents of dispersions as diffractions and dissipations

are used in defocusing nonlinearity to form different forms of dispersive shock

propagating waves. Furthermore, the unliked dissipative wave shocks which absorb

energy make dispersion and nonlinearity perform in the same directions creating a

damped dissipative soliton train. Here, the considered dispersions, dissipations and

nonlinearity interactions have been described numerically by the NLSE. NLSE has

been established to describe waves displaying weak self-defocusing nonlinear waves,

self-phase modulations, chromatic dispersions and cross-phase modulations. So, this

equation has been attractive for the consideration of dispersive and dissipative wave

shock phenomena.

Numerically, this study has the following contributions:

i A numerical code has been produced for solving the NLSE (1.1) when X = 0

using Crank-Nicolson method. The novelty is using this code to investigate

the impacts of a wide range of values of V and W factors on several input

waves properties including solitons, interaction between them, new soliton-like

periodic and dissipative and new shock waves as well as on the conserved

quantities. It has been proven that the accuracy of the numerical results is

second-order in space and time. It has been proven that the resulting scheme is

unconditionally stable.

ii A numerical code has been produced for solving the NLSE (1.1) when X = 0

using Douglas method to validate the obtained findings using Crank-Nicolson

method in the point (i) and it has been found that all the numerical results

obtained using Douglas method are consistent with those obtained using Crank-

Nicolsonmethod. In addition, it has been confirmed that Douglas method offers

results with higher order accuracy as it is fourth-order in space and second-order

in time, thus Douglas method is better than Crank-Nicolson one. It has been

proven that the resulting scheme is unconditionally stable.

iii A novel numerical code has been produced for solving the NLSE (1.1) when

X ≠ 0 using Crank-Nicolson method. Another novelty is using this new code to

investigate the influence of a wide range of X values and overlap impacts among

first-second-order CDs and SPM factors on several input waves properties

12



including solitons, interaction between them, novel soliton-like periodic and

dissipative and novel shock waves as well as on the conserved quantities. It

has been proven that the accuracy of the new numerical results is second-

order in space and time. It has been proven that the new resulting scheme is

unconditionally stable.

The produced codes have enabled to overcome the difficulties in solving the NLSE

(1.1) and provided the opportunity to study a lot of applications, especially when X ≠ 0

in this equation, which was not solved in advance except by using some transforms or

by neglecting the first-order CD factor. The numerical results can be used to guide the

specialists in fiber manufacture to avoid some values that lead to oscillations that cause

the quality of communications to decrease.

1.7 Outline

The thesis is organized as follows; the first chapter has established the problem

background, motivation of the research, problem statement, scope of the research,

research objectives and research contribution. Chapter two has presented some basic

information in the field of optical fibers, including solitons and dispersive-dissipative

shock waves. Also, the second chapter has given a review of the literature related

to the forms of NLSE in various fields and to solve this equation numerically and

analytically. In addition, a review of the usage of the implicit Crank-Nicolson method

andDouglas technique in the literature has been displayed in Chapter two. Chapter three

has provided the methodology of the research and some important related concepts. In

the fourth chapter, the NLSE has been solved by using the Crank-Nicolson method as

well as several new initials have been presented. In Chapter five, the NLSE has been

solved by using Douglas idea and some numerical experiments have been conducted.

In Chapter six, the NLSE when X ≠ 0 has been solved by using the Crank-Nicolson

method in addition to displaying a comparison between the two models of the NLSE

for the considered new initial conditions. Lastly, a summary of the research has been

demonstrated.
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