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ABSTRACT

Carbonate heterogeneity has complex post-depositional diagenesis, 
superimposed on the original microstructures inherited from the initial deposition 
environment during sedimentation. This causes massive complexity in pore shape, 
pore size, pore connectivity, and distribution of pores in carbonate, which leads to the 
complexity in carbonate reservoir modelling domestically. The porosities of carbonate 
rocks can be separated into three types: macro-porosity (connected porosity), 
mesoporosity (unconnected vugs and pores result from diagenesis dissolution) and 
micro-porosity (isolated porosity). This thesis focuses to propose an improved dual 
porosity carbonate modelling approach. The main contribution of this work is to 
determine the method to recognize and quantify dual porosity in carbonate through six 
(6) information that can be obtained from a reservoir, namely geological core 
description and photomicrographs, RCA and SCAL analysis, nuclear magnetic 
resonance NMR, mercury-injection capillary pressure MICP, pressure transient 
analysis and a bonus for brownfield, production pressure profile. To test the 
effectiveness to quantify dual porosity, Field B in Central Luconia, Sarawak is selected 
as a study candidate. Data from conventional core provide direct observation of the 
rock pore geometry via photomicrograph, a diagenetic process which leads to 
segregation of macro and micro-porosity. Other petrophysical properties obtained via 
routine core analysis (RCA) and special core analysis (SCAL) provide the reservoir 
poro-perm condition. The mercury injection capillary pressure (MICP) curves 
translate the reservoir pore throat efficiency into macro and micro-porosity. Nuclear 
magnetic resonance (NMR) T2 relaxation distribution yields a bimodal trend for the 
dual-porosity reservoir. The pressure derivative transient analysis graph exhibits a V- 
shape yielding a dual-porosity reservoir. The pressure surveillance plot in the 
brownfield shows a flattening pressure depletion trend indicating microporosity 
charging to the production. These results are incorporated into a multiscale model and 
the simulation matches the reservoir's historical data and the type of dual porosity is 
identified as a matrix (connected) -  matrix (isolated) type. Identifying the dual porosity 
in the carbonate reservoir enables the management to understand the reservoir 
hydrocarbon production and subsequently, lay out a proper reservoir management 
plan.
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ABSTRAK

Heterogeniti batu karbonat telah melalui diagenesis pemendapan yang 

kompleks. Ia berlaku ke atas struktur-mikro asal daripada persekitaran pemendapan 

awal. Ini menyebabkan kerumitan dalam bentuk dan saiz liang, ketersambungan liang, 

dan pengagihan liang dalam batu karbonat. Ini menyebabkan kesukaran dalam 

pembinaan model 3D untuk batu karbonat tempatan. Porositi batu karbonat boleh 

dikategorikan kepada tiga jenis, iaitu makro porositi (porositi bersambung), 

mesoporositi (liang tidak bersambung) dan mikro-porositi (porositi tidak 

bersambung). Objektif tesis ini adalah untuk bertambah-baik pembinaan model 3D 

untuk batu karbonat dengan menggunakan cara memodel dwi-porositi. Sumbangan 

utama tesis ini adalah untuk menentukan kaedah untuk mengenali dan kuantifikasi 

dwi-porositi dalam batu karbonat melalui enam (6) maklumat yang boleh diperolehi 

daripada takungan iaitu melalui tafsiran batu nipis geologi dan fotomikrograf, analisis 

analisis batuan rutin RCA dan analisis khas batuan SCAL, magnetic resonans nuclear 

NMR, tekanan kapilari suntikan merkuri MICP, analisis tekanan telaga minyak dan 

profil tekanan produksi minyak untuk ladang minyak. Medan B di Central Luconia, 

Sarawak telah dipilih sebagai calon kajian untuk menguji keberkesanan mengukur 

dwi-porosit. Hirisan batu nipis memberikan pemerhatian secara langsung tentang 

geometri liang batu melalui fotomikrograf, dan jugak pengasingan antara liang makro 

dan mikro. Keadaan poro-perm dalam batu karbonat boleh didapati melalui cara 

analisis petrofizik, iaitu RCA dan SCAL. MICP berjaya menterjemahkan kecekapan 

pengaliran liang makro dan mikro. Dwi-porosity juga boleh ditentukan daripada 

bentuk graf NMR yang memberi trend bimodal, dan bentuk V yang dipamerkan dalam 

graf analisis tekanan transien. Plot bacaan tekanan yang menjadi rata setelah 

pengeluaran minyak adalah suatu indikasi menunjukkan pengecasan mikro-porosity. 

Dengan mengabungkan analisis 6 kaedah ini, boleh mengesahkan bahawa batu 

karbonat di Medan B mempunyai dwi-porositi dan jenis dwi-porositi ini adalah 

matriks (bersambung) -  matriks (tidak bersambung). Akhirnya, keputusan ini 

dimasukkan ke dalam model 3D dan simulasi sepadan dengan data sejarah, Mengenal 

pasti liang dwi-porosity dan kesannya membolehkan pihak pengurusan memahami 

pengeluaran minyak dan mengaturkan pelan pengurusan takungan yang betul.
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CHAPTER 1

INTRODUCTION

1.1 Research Background

Carbonate reservoirs hold a large proportion of the world’s oil and gas reserves. 

Some notable large reserves are located in the Middle East, Libya, Russia, Kazakhstan 

and North America. The hydrocarbon reserves in the carbonate reservoir account for 

almost 60% of the world’s oil reserves and 40% of the world’s gas reserves based on 

Schlumberger Market Analysis in 2007 (Kargarpour, 2020). The Middle East, famous 

for its rich oil and gas reserves, has 60% of the world’s proven oil reserves, where 

almost 70% comes from carbonate reservoirs. The region also has 41.3% of the world's 

proven gas reserves, and 90% of these reserves are in carbonate reservoirs. The world 

has an estimated 3000 billion barrels of remaining oil and 3000 trillion SCF gas in 

place stored in carbonate reservoirs. However, the complexity of carbonate reservoirs 

has put a halt to many recoveries throughout the centuries of oil and gas exploration. 

In recent years, carbonate reservoirs have regained interest in improving recoveries, 

considering the challenges of decreasing reserves from conventional clastic reservoirs. 

(Christian, 2016)

Malaysia’s Exploration and Production business started with the formation of 

Malaysia’s national oil company, Petroliam National Berhad (PETRONAS) and has 

been managing petroleum resources and petroleum-related national policies to ensure 

that Malaysians enjoy the benefits obtained from their indigenous petroleum wealth.

Malaysia has a total of 332,300 kilometres of offshore area which includes part 

of the Straits of Melaka, South China Sea, Sulu Sea and Celebes (Sulawesi Sea) and 

60% of these offshore waters are less than 200 metres in water depth. The shallow 

waters give rise to great petroleum exploration opportunities for Malaysia’s petroleum 

business in a relatively mild environment. Offshore Terengganu, Sarawak and north­
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western Sabah are the few active petroleum provinces in Malaysia’s waters. Among 

these regions, Central Luconia province was recognised through a series of marine 

seismic surveys in 1965 and 1966, to be dominated by carbonates build-ups. (The 

Petroleum Geology and Resources of Malaysia, 1999). Central Luconia Province is 

located in the offshore Sarawak, bounded to the east and west by the Baram delta and 

West Luconia delta, and bounded by Balingian Province in the south. The gas 

development in Central Luconia offshore Sarawak started as early as 1982 by (Wee 

& Liew, 1988). The geological detail of Central Luconia shall be discussed in Chapter 

2.

W orld Distribution of Carbonate Reserves

Figure 1. 1 World distribution of Carbonate Reserves (Christian, 2016)

Some of the significant differences between the clastics reservoir and the 

carbonate reservoir are the origins of their grains. Clastics are sandstone deposition 

that is transported from one place to another and then deposited at the sedimentary 

basins, whereas carbonates are growth in-situ within the basin of deposition. The 

growth of carbonate is particularly dependent on the surrounding of the marine 

environment, for example, the chemical composition of seawater, the rate of rising and 

fall of sea level and other factors largely affecting the sediment texture of the carbonate 

reservoir. While clastics sedimentation also depends on sediment supply and 

accommodation space, the chemical composition of seawater and diagenesis 

alterations of sediment grain give a lesser impact on the clastics compaction process. 

In terms of reservoir properties, the porosity of a clastic reservoir is sensitive to burial
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depth compaction, while carbonate is able to preserve excellent properties to great 

burial depths -  far off the burial trends from clastic compaction. Due to this reason, 

the hydrocarbon column heights within a better-preserved carbonate reservoir rock 

may extend far beyond apparent structure closure which the top and lateral seals are 

controlled by chemical compaction of flanking beds. (Wagner, n.d.)

Typical clastic reservoirs are commonly identified as a single-porosity system 

and are divided into four basic porosity types: intergranular, microporosity, 

dissolution, and fracture porosity (Pittman, 1979). Carbonate reservoirs are often 

characterized as a dual-porosity system, and the pore types in carbonate rocks are more 

varied due to carbonate as a plant skeletal organism and the post diagenetic 

sedimentation effect on carbonate which alter the porosity of a carbonate reservoir. 

Choquette and Pray recognize three basic groups of pore types, namely fabric 

selective, non-fabric selective and fabric selective or not. (Choquette & Pray, 1970). 

These pore types are further subdivided into interparticle, intraparticle, intercrystal, 

moldic, fenestral, fracture and vugs, and will be discussed in detail in Chapter 2.

In the context of a textbook, porosity is defined as the reservoir storage 

capacity, which is the ratio of void space (pore volume) to bulk volume in a rock. It is 

reported either by a fraction or by percentage. Dual porosity as the term describes has 

two porosity systems within the reservoir and is often described as being of primary 

or secondary origin. Primary porosity is the original porosity that existed at the time 

of deposition, while secondary porosity is defined as porosity created by the 

subsequent process of deposition, which was superimposed on the rock or sediment by 

the diagenetic process. (Zarrouk & McLean, 2019).

However, in reality, carbonate reservoirs that only contain primary porosity are 

very rare. Secondary porosity is more accurately described as a rearrangement or 

reconstruction of the original pore network, for example, the dolomitization of a 

porous lime mud reorganized and help preserves the porosity that was already present. 

The combination of multiple porosity results in carbonate exhibiting dual-porosity 

which will cause properties heterogeneity. (Mazzullo & Chilingarian, 1992). Others 

define a dual-porosity reservoir as a rock characterized by primary porosity from

3



original deposition and secondary porosity from some other mechanism, and in which 

all flow to the well effectively occurs in one porosity system, and most of the fluid is 

stored in the other. Naturally fractured reservoirs and vugular carbonates are classified 

as dual-porosity reservoirs, as are layered reservoirs with extreme contrasts between 

high-permeability and low-permeability layers. (Schlumberger, n.d.)

Commonly used approaches in the clastic reservoir by using net-to-gross and 

porosity cut-offs often do not properly characterize the carbonate reservoir as the 

carbonate reservoir is acutely susceptible to macro-porosity and microporosity 

irregularity, for example, high-porosity carbonate interval may be non-pay reservoir 

due to dominance of microporosity which gives low hydrocarbon saturation and low 

porosity carbonate may give good hydrocarbon production results due to naturally 

occurred micro-fracturing or chemical dissolution between microporosity that forge a 

high-way for hydrocarbon flow.

This main discussion of this thesis is to showcase the methods for identifying 

dual-porosity and the way to implement the findings for model prediction. Among 

those methods, geological thin section and borehole images (BHI) are the direct 

specimens to qualitatively identify dual-porosity occurrence. Other methods include 

quantitatively acquiring engineering data from reservoirs such as reservoir pressure 

data from production profile, special core analysis SCAL, routine core analysis RCAL 

(porosity-permeability cross plot), mercury injection capillary pressure MICP and 

Nuclear magnetic resonance NMR. A domestic carbonate field from Central Luconia 

Province, offshore Sarawak will be selected as the case study to complement the 

discussion.

1.2 Problem Statement

With the increasing demand for secondary and tertiary oil and gas recovery 

from explored and produced fields, the subsurface ability to locate the remaining oil 

has become indispensable alongside the business effort to look back at the remaining 

potential in existing assets. Though many modellers have done a considerable amount 

of studies on the 3D geological modelling of fracture porosity for dual-porosity
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reservoirs, many domestic studies only focus on the single porosity equivalent 

reservoir modelling. The absence of courage to incorporate the dual porosity concept 

within the subsurface reservoir models are mainly due to an insufficiency of 

knowledge to implement dual-porosity engineering data into reservoir modelling and 

a shortfall of field data to support the theory of dual-porosity modelling. Nevertheless, 

these drawback has caused inaccuracy in modelling results, which may possibly lead 

to unsuccessful history matching and even underestimating or overestimating the 

hydrocarbon in-place of a carbonate reservoir (Chen, Cai, Fan, Li, & Ni, 2008).

The fundamental factor that controls the carbonate heterogeneity is nonetheless 

the complex post-depositional diagenesis, which is superimposed on the original 

microstructures inherited from the initial depositional environment during 

sedimentation. This creates a massive complexity in pore shape, pore size, pore 

connectivity and distribution of pores. The knowledge of porosity values alone is 

insufficient to describe the trends in the dual porosity-dual permeability relationship 

in carbonate rock. (El Husseiny & Vanorio, 2016)

Classifying porosity data qualitatively based on a geological concept which 

aims to evaluate the depositional environment is insufficient to identify dual-porosity 

existence in carbonate rocks. This further suggests the need for quantifiable 

engineering parameters that can describe the rock characteristics and can be used as 

an input for subsurface reservoir modelling. The remaining question will be on how to 

identify these parameters and how to properly utilize them in the subsurface reservoir 

models.

The discussion will include the porosity evolution of carbonate rocks, and the 

qualitative and quantitative methods to identify dual-porosity in carbonate. Finally, the 

integration between geological data and engineering data for dual-porosity modelling 

in the carbonate field.

The hypothesis of this study is predicted as below:

i. Carbonate reservoirs have dual porosity. The type of dual porosity is a matrix

(connected) -  matrix (isolated) type.
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ii. Dual porosity can be identified qualitatively and quantitatively via geological 

data and engineering parameters. Carbonate rock textures can identify the 

relationship between micropore and macropore under microscope SEM. 

Macropore will mainly contribute to primary porosity while diagenesis 

micropore contributes to secondary porosity, resulting in a dual-porosity effect 

on engineering parameters including routine core analysis RCA, mercury 

injection capillary pressure MICP, nuclear magnetic resonance NMR, pressure 

transient analysis and pressure production trend.

iii. The dual porosity concept can be incorporated into reservoir modelling with 

quantifiable engineering parameters.

1.3 Objective

The main objective of this study is:

(a) To identify the presence and the type of dual porosity in the carbonate 

reservoirs in Field B (a carbonate gas field in Central Luconia).

(b) T o qualitatively and quantitatively characterize the carbonate rock porosity that 

is impacting the petrophysical properties (porosity, permeability, capillary 

pressure, water saturation and relative permeability) based on a combination 

approach for a better estimate (Mbal matches with historical data) in the 

hydrocarbon in-place volume and flow behaviour.

1.4 Research Scope

The scope of this study includes:

(a) Identifying detailed geological aspects of Carbonate reservoirs in Field B,

including identification, description, and characterization of hydrocarbon
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reservoir in Carbonate rocks, stratigraphic principal, depositions, and 

diagenetic of Carbonate reservoirs

(b) Identify and validate Field B dual-porosity geology and engineering 

parameters acquisition methodology and available data, via 6 methodologies: 

geological photomicrograph analysis, routine core analysis RCA, mercury 

injection capillary pressure MICP, nuclear magnetic resonant NMR, pressure 

transient analysis and production pressure trend.

(c) Integrating the dual-porosity in reservoir modelling for Field B dual-porosity 

modelling

1.5 Significant of research

Application of dual-porosity modelling concept in carbonate reservoir model 

can accurately predict the reservoir performance by providing a much more accurate 

resource prediction in the reservoir. The underestimated single porosity modelling, if 

switched to dual porosity modelling, can contribute up to 30% additional resource on 

top of single porosity gas initial in-place GIIP and vice versa, an overestimated single 

porosity modelling may reduce in-place volume by up to 30% from the single porosity 

prediction model. By understanding the possibility of dual porosity existence in the 

reservoir, engineers are encouraged to deduce a better observation and calculation on 

field data instead of neutralising the obtained data as outliers.

In addition, managements are able to lay out a proper reservoir management 

plan that allows the micropore to charge into the wellbore within a sufficient amount 

of time, gas initially in-place contribution could possibly increase after the transition 

charge period and thus generating additional recoverable potential to the field.

Lastly, the depleted carbonate reservoir field can very likely be a good 

candidate for the geo-environmental future which is the carbon capture and storage 

known as CCS (CO2 sequestration). This aligns with the effort to reduce carbon 

dioxide in the atmosphere, in conjunction with the country’s and world’s aim to 

mitigate climate change. Therefore, identifying dual-porosity in the carbonate

7



reservoir is crucial not only for the short-term benefit of the operating company for oil 

and gas production but also serves in a long run for the reservoir management plan.

8
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