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ABSTRACT

Nanofluid is one of the technologies used to improve heat transfer system.
A class of nanofluid called hybrid nanofluid has been introduced recently. Hybrid
nanofluid can upgrade thermal properties and consequently exhibit good heat transfer
performance compared to nanofluid and conventional fluid. Besides that, the hybrid
nanofluid has also manifested exquisite properties such as better chemical and
mechanical inertness, greater thermal and electrical conductivity, and lower cost. In
view of this, the problem of boundary layer flow of hybrid nanofluid embedded by
the thin-film for viscous and Casson fluid past an unsteady porous stretching sheet is
investigated in this thesis. Thin-film flow on a stretching sheet has a significant effect
on heat transfer analysis. Such applications are used in many industrial operations
including wire and fiber coating, metal and polymer extrusion, transpiration cooling,
and optical industry such as production of smart contact lenses. This study begins with
the derivation of the governing equation for the thin-film fluid flows and heat transfer
based on the conservation law of mass, momentum, and energy. The modified Tiwari
and Das model is applied to describe the properties of the hybrid nanofluid. Then,
the developed nonlinear governing partial differential equations that are subjected
to the appropriate boundary conditions are transformed into the nonlinear ordinary
differential equations (ODEs) using the similarity transformation technique. The
resulting nonlinear systems of the ODEs are then solved using the Keller box method.
The unknown constant, thin-film thickness is obtained by the homotopy analysis
method. The numerical results of surface shear stress and heat transfer coefficient
as well as the velocity and temperature distributions for the pertinent parameters which
are unsteadiness, nanoparticles volume fraction, Casson parameter, and intensity of
suction and injection parameters are displayed graphically and in tabular forms. For
both fluids, it is found that the thickness of thin-film is reduced due to increasing
values of unsteadiness, nanoparticles volume fraction, Casson parameter, and intensity
of injection. Numerical results depict that the presence of hybrid nanoparticles in both
fluids not only enhanced the temperature distribution but it also reduced the velocity
distribution, shear stress, and heat transfer coefficient. A similar pattern is revealed at
the increment of Casson parameter. The unsteadiness parameter tends to upgrade the
velocity and temperature distributions as well as the local skin friction. Incrementation
of the velocity, temperature and shear stress in all fluids have been noticed along with
the enhancement of injection parameter. Interestingly, suction fluid has changed the
thickness of the thin-film that tends to be dense and helps to escalate heat transfer
performance of the hybrid nanofluid.
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ABSTRAK

Bendalir nano ialah salah satu teknologi yang digunakan untuk menambah baik
sistem pemindahan haba. Satu kelas cecair nano yang dipanggil cecair nano hibrid telah
diperkenalkan baru-baru ini. Bendalir nano hibrid boleh meningkatkan sifat terma dan
seterusnya mempamerkan prestasi pemindahan haba yang baik berbanding cecair nano
dan cecair konvensional. Selain itu, cecair nano hibrid juga menunjukkan ciri-ciri
yang lebih baik seperti lengai kimia dan mekanikal yang lebih baik, kekonduksian
haba dan elektrik yang lebih besar, dan kos yang lebih rendah. Memandangkan
perkara ini, masalah aliran lapisan sempadan cecair nano hibrid yang disertakan oleh
filem nipis untuk cecair likat dan Casson melepasi helaian regangan berliang yang
tidak stabil telah disiasat dalam tesis ini. Aliran filem nipis pada lembaran regangan
mempunyai kesan yang ketara pada analisis pemindahan haba. Aplikasi ini banyak
digunakan dalam operasi di industri termasuk lapisan dawai dan serat, penyemperitan
logam dan polimer, penyejukan transpirasi, dan industri optik seperti penghasilan kanta
sentuh pintar. Kajian ini dimulakan dengan terbitan persamaan menakluk untuk aliran
bendalir filem nipis dan pemindahan haba berdasarkan undang-undang pemuliharaan
jisim, momentum dan tenaga. Model Tiwari dan Das yang diubah suai digunakan
untuk menerangkan sifat cecair nano hibrid. Kemudian, persamaan pembezaan separa
yang tak linear yang dikembangkan tertakluk kepada syarat sempadan yang sesuai
diubah menjadi persamaan pembezaan biasa tak linear (ODEs) dengan menggunakan
teknik penjelmaan keserupaan. Sistem tak linear ODEs yang terhasil kemudiannya
diselesaikan dengan menggunakan kaedah kotak Keller. Pemalar yang tidak diketahui,
ketebalan filem nipis diperoleh dengan kaedah analisis homotopi. Keputusan berangka
tegasan ricih dan pekali pemindahan haba serta taburan halaju dan suhu untuk parameter
yang berkaitan iaitu ketidakstabilan, pecahan isipadu nanozarah, parameter Casson, dan
keamatan parameter sedutan dan suntikan telah dipaparkan dalam bentuk grafik dan
jadual. Bagi kedua-dua cecair, didapati ketebalan filem nipis berkurangan disebabkan
oleh peningkatan nilai ketidakstabilan, pecahan isipadu nanozarah, parameter Casson,
dan keamatan suntikan. Keputusan berangka menggambarkan bahawa kehadiran
nanopartikel hibrid dalam kedua-dua cecair bukan sahaja meningkatkan taburan suhu
tetapi ia juga mengurangkan taburan halaju, tegasan ricih, dan pekali pemindahan
haba. Corak serupa didedahkan pada peningkatan parameter Casson. Parameter
ketidakstabilan mempunyai kecenderungan untuk menaik taraf taburan halaju dan
suhu serta geseran kulit setempat. Penambahan halaju, suhu dan tegasan ricih dalam
semua cecair telah diperhatikan bersama-sama dengan peningkatan parameter suntikan.
Menariknya, cecair sedutan telah mengubah ketebalan filem nipis yang cenderung tebal
dan membantu meningkatkan pemindahan haba cecair nano hibrid.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

This chapter gives an account of the background of the problem. Then, the

statement of the problem and the objective of this research are be highlighted. Some

limitations and scopes of the research are also be explained in detail. Finally, the

significance of this study and thesis organization of this research are be presented.

1.2 Research Background

Recently, technological developments have pushed researchers to perform

diverse studies to fulfill consumers’ needs. One of such inquiries is the study of

heat transfer as it can develop mechanical items or apparatuses that work marvellously

for manufacturing operations and industrial engineering these days. Heat transfer is

a significant aspect of the synthetic industry, oil and gas, atomic energy, electrical

energy, and so on. Heat transfer is the passage of heat across the device border due

to the difference in temperature between the system and the environment. The heat

transfer in the system can also be accomplished at multiple places inside the system

because of temperature differences.

Thermal energy is exchanged via heat conduction, the microscopic interchange

of energy between neighboring objects. Energy transfer occurs in solids, liquids,

and gases [1]. The heat transfer occurs in three ways of mechanisms which are

conduction, convection, and radiation [2]. Heat transfer in conduction is due to

molecular interaction, molecules not being displaced, and the motion of free electrons.

An example of conduction heat transfer is when two bodies at different temperatures

are kept in contact. Secondly, radiation is absorbed or released by the matter within

1



the system as electromagnetic radiation that crosses the system’s boundary. The sun’s

heat going to Earth is one of the most important examples of radiation in heat transfer.

The third type of heat transfer is convection, which occurs when the fluid components

travel to cooler areas of the system or fluid displacement. For instance, water heating

from the vessel is a form of heat transfer in the convection mechanism. Convection

of heat transfer can be classified into three: free convection, forced convection, and

mixed convection. Buoyancy forces cause the fluid motion for free convection. The

fluid flow is driven by the density differences that happened because of the temperature

variation between the surface and the fluid. For instance, heat flow from a heated metal

plate to the ambient atmosphere. On the other hand, fluid that is forced to flow over a

solid surface by external agencies is termed as forced convection. Nuclear reactors and

air conditioning apparatus are examples of forced convection heat transfer. Whereas,

mixed convection occurs when free and forced convection occur together. There are

various types of fluid which are responsible for the motion of convection flow.

1.2.1 Fluids

Fluid can be divided into two types namely Newtonian and non-Newtonian [3].

Newton’s Law of viscosity defines the behavior of the Newtonian fluid as follows

𝜏 = 𝜇
𝜕𝑢

𝜕𝑦
,

where 𝜏 demonstrates the shear stress exerted by the fluid, 𝜇 is the dynamic viscosity

of the fluid, and
𝜕𝑢

𝜕𝑦
represents the velocity gradient or rate of strain. The Newtonian

fluid is named for after Sir Isaac Newton, who first researched the association between

the intensity of shear strain and shear stress for these fluids in the differential form [4].

Levenspiel [5] reported that the fact of stress rate could characterize the Newtonian

and non-Newtonian fluids. Isaac Newton stated that shear stress in a Newtonian fluid

is proportional to the time rate of strain such as velocity gradient. The shear stress of

non-Newtonian fluid is not proportional to the gradient of velocity [6]. At a wide range

of temperatures and pressures, the vast majority of natural fluids (liquids and gases)

such as water, organic solvents, fats, air, wind, oxygen, and rare gases are Newtonian.
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Whereas, perfume, paint, blood, ketchup, pillows, toothpaste, and starch suspensions

are examples of non-Newtonian fluid.

Casson fluid has drawn the attention of researchers due to its unique properties

among non-Newtonian fluids. Casson fluid was first proposed by Casson [7] for

predicting the flow behavior of pigment-oil suspensions. According to Husannan et

al. [8], Casson is a form of viscoplastic fluid. The Casson fluidmodel is a shear-thinning

liquid with an infinite viscosity at zero rate of shear, yield stress below which no flow

occurs, and a zero viscosity at an infinite rate of shear [9]. It indicates that when the

shear stress is less than the yield stress applied to a fluid, it acts like a solid: however,

when the shear stress is more than the yield stress applied, the fluid begins to flow.

Jelly, tomato sauce, honey, soup, concentrated fruit juice, and human red blood cells

are examples of Casson fluid. Human red blood cells can form aggregates or rouleaux,

which are chainlike structures. Furthermore, Casson’s shear stress shear rate relation

explains the characteristics of numerous polymers over a large range of shear rates [10].

In this study, the effect of nanoparticles in Newtonian and Casson fluids is

given attention. Heat transfer of nanofluid exhibits superior thermophysical attributes

than the conventional base fluid in terms of thermal conductivity, thermal diffusivity,

viscosity, and convective heat transfer coefficient. The reason for this is that traditional

heat transfer fluids have low thermal conductivity when compared to solids. As a

result, scientists have attempted to create fluids that use uniformed dispersion and

stable suspension of solid nanoparticles to improve the low thermal conductivity of

these traditional heat transfer fluids.

1.2.2 Nanoparticles

The existence of nanoparticles in the fluid also influences the heat transfer of

the fluid. The mixture of solid nanoparticles with a base liquid is known as nanofluid

which was introduced by Choi [11]. There are several groups of nanoparticles as listed

below [12]
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i. Chemically stable metals: gold (Au), copper (Cu),

ii. Metal oxide: alumina (Al2O3), silica (SiO2), zirconia (ZrO2), titania (TiO2),

iii. Metal carbides: silicon carbide (SiC),

iv. Metal nitrides: aluminium nitride (AlN), silicon nitride (Si3N4),

v. Carbon (in the various form): diamond, graphite, carbon nanotubes (CNTs),

fullerene.

The mixes of nanoparticles termed “hybrid nanofluids” have gained a response from

various industries that are interested to explore it more deeply due to its extensive

technical, industrial, and scientific applications such as for transportation, microfluidics,

medical manufacturing and so on. The perfect combination of various nanoparticles

properties has demonstrated an outstanding heat transfer coefficient enhancement with

a low-pressure decrease limit [13–16]. According to Maskeen et al. [14], the mix

of stabilized nanofluids leads to an increase in the rate of thermal conductivity with

a minor amount of nanoparticles concentrations in the fluid. Moreover, the proper

hybridization of the improved thermal conductivity of the nanocomposites is believed

to enlarge the heat transfer of fluid flow as well as counteract the disadvantage of

increased viscosity [17]. Normally, stable hybrid nanomaterials can be classified into

three classes as shown in Table 1.1 [18–20].

Yazid et al. [21] found that the host fluid with the hybrid nanoparticles has

greater heat flux in the fluid. The numerical study of convection flow embedded with

hybrid nanoparticles in a nanofluid has been explored by Izadi et al. [22]. As stated

by Ravisankar and Chand [23], the important properties that affect the heat transfer

coefficients of the hybrid nanoparticles are thermal conductivity, viscosity, density, and

heat capacity of the nanoparticles. Figure 1.1 depicts the thermal conductivity of some

nanoparticles which is applied in choosing the hybrid nanofluids [24].

Figure 1.1 displays that the thermal conductivity of pure metal is higher than the

metal oxide. In comparison to other metal oxides, the presence of nanoparticles Al2O3
in a fluid improved the Nusselt number coefficient, which measures the heat transfer

rate of the fluid, as compared to other metal oxides [25]. This is because the thermal
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Table 1.1 Group of stable hybrid nanoparticles

Nanomaterials Hybrid nanoparticles

Metal

i. Alumina (Al2O3) + nickel (Ni),
ii. Magnesium (Mg) + carbon nanotube (CNTs),
iii. Magnesium (Mg) + iron (Fe),
iv. Alumina (Al2O3) + chromium (Cr),
v. Alumina (Al2O3) + copper (Cu).

Ceramic

i. Alumina (Al2O3) + titanium oxide (TiO2),
ii. Silica (Si) + alumina (Al2O3),
iii. Carbon nanotubes (CNTs) + ferric oxide

(Fe2O3),
iv. Silica (Si) + nickel (Ni),
v. Alumina (Al2O3) + silicon carbide (SiC).

Polymer

i. Polymer + carbon nanotubes (CNTs),
ii. Thermoplastic + layered silicates polymer,

iii. Polymer + hydroxide,

iv. Polyester + titanium oxide (TiO2).

conductivity of Al2O3 is higher compared to the other metal oxides. Besides that,

Al2O3 also exhibits several excellent properties like powerful stability and chemical

inertness [26, 27]. Furthermore, as stated in Mikkola [25], the heat capacity of the Cu

nanoparticle is higher compared to the Ag nanoparticle. Physically, heat capacity is the

amount of heat needed to increase the temperature of a substance by 1◦𝐶. The fluid

takes a long time to gain heat and to cool. Therefore, incorporating Cu and Al2O3 in a

fluid can significantly improve the thermal properties of the fluid. Several researchers

have investigated the heat transfer of metal nanomaterials Al2O3 - Cu by conducting

experimental and theoretical studies because the hybrid nanoparticles can enhance the

thermal conductivity and result in an increase of the convective heat transfer [20,26–35].
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Figure 1.1 Thermal conductivity for metal oxides and pure metals

1.2.3 Thin-Film Flow

Thin-film flows are ubiquitous in engineering, geophysics, biology, and

elsewhere, and are often the basis for simplified fluid dynamical models. The

investigation on laminar thin-film flow across moving vertical, horizontal or slanted

flat plates is now focusing on developing a number of specialists since it has a massive

potential to be utilized as a mechanical instrument in many designing applications.

The principle utilization of such thin-film fluid entails several processes of draining,

coating, wetting, biological and solar cells [36–44]. Thin-film is defined as a layered

material of thickness ranging from fractions of a nanometer to several micrometers.

It is produced through a process called thin-film decomposition which is a process of

applying thin-film onto a surface that is to be coated [45]. Based on the theory of

thin-film flow indicated by O’ Brien and Schwartz [46], a common thin-film stream

comprises a field of fluid mostly limited by a strong substrate with a free surface where

the fluid is presented to another fluid as seen in Figure 1.2. The thickness 𝐻 in one

direction, is much smaller than the characteristics length scale 𝐿 in the other direction.

The stream flows transcendentally towards one of the more extended measures as a
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result of extrinsic factors such as gravity, surface pressure inclinations, and a pivoting

substrate.

𝐿

Free surface

𝐻
Liquid film

Substrate

Figure 1.2 Thin-film flow

The first problem of the hydrodynamics of the thin liquid film over a stretching

sheet has been explored byWang [47] without considering the heat transfer. Wang [47]

studied the issue of thin-film flow in the Newtonian fluid. The study done byWang [47]

was inspired by the research activities that had been done by Sakiadis [48], Crane [49]

and Carragher and Crane [50] who studied the theoretical technique to solve the heat

transfer flow along with the stretching sheet. The study found that the rare exact

similarity solution of the unsteady Navier-Stokes equation and an investigation on

integration for that equation is needed. Therefore, Andersson et al. [51] started an

analysis to explore the nature of the hydrodynamic heat transfer problem solved by

Wang [47]. Andersson et al. [51] extended Wang [47]’s analysis and introduced the

similarity transformation for the thermal equation. The temperature on the thin-film

flow enlarges from the elastic sheet towards the free surface.

Then, Wang [52] explored the flow problem with heat transfer. The homotopy

analysismethod (HAM)was applied to attain the solution for the investigated parameters

which are unsteadiness and Prandtl number towards velocity and temperature profiles.

As a result, different values of parameters tend to vary in the thickness of the thin-film.

Shear stress between the wall of thin-film and fluid flow was enlarged but decreased in

thin-film thickness due to the increase in the unsteadiness parameter that points out the

stretching rate of the plane. The enhancement of the Prandtl number declines the heat

transfer of the thin-film flow. Then, Xu et al. [53] extended the work of Wang [52] by
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considering the presence of nanofluid. The model developed by Tiwari and Das [54]

was considered in this study.

Recently, Aziz et al. [55] reported that the increment of nanoparticles volume

fraction in the nanofluid enhanced the heat transfer rate in a thin-film flow across an

unsteady stretching sheet. Giri et al. [56] studied the magnetohydrodynamics (MHD)

nanofluid across a stretching sheet and the authors claimed that the increase of the

magnetic parameter reduces the velocity profile while elevating the temperature of

the nanofluid over similar geometry as Wang [52]. In addition, Mahian et al. [57]

and Turkyilmazoglu [58] cross-examined the nanofluid flow in the thin-film due to

a moving substrate and heat transfer which accounted for seven different types of

nanoparticles. The study by Turkyilmazoglu [58] summarized that the rate of heat

transfer is dependent on the thermal conductivities of the nanoparticles. Besides that,

Pal et al. [59] investigated the effect of the porous medium in a thin-film nanofluid

flow and found that the particles of nanofluid move slowly due to the porous medium

of the stretching sheet. Lu et al. [60] studied the thin-film flow of single and multi-

walled carbon nanotubes. They observed that the dimensionless temperature increases

as the concentration of the nanoparticles in the thin-film increase. Furthermore, the

existence of the hybrid nanoparticles in the thin-film flow increases the heat transfer

rate compared to the single nanofluid as reported by Sulochana and Aparna [61].

Andersson et al. [62] initiated to explore the power-law fluid in a thin-film

flow. The research by Megahed [63], Vijaya et al. [64], Abd El-Aziz and Afify [65],

Mahmoud and Magehad [66], Khan et al. [67], Ray Atul et al. [68] and Rehman et

al. [69] also contributed to the development of non-Newtonian thin-film flow. Recently,

the Casson fluid in thin-film has attracted the interest ofmany researchers and engineers.

Vijaya et al. [64] and Khan et al. [67] cross-examined the MHD Casson fluid in a liquid

film but Vijaya et al. [64] also considered viscous dissipation and internal heating. An

excellent performance between the analytical method and numerical method for solving

the Casson fluid film has been reported by Rehman et al. [69] together with slip, suction,

and injection effects in uniformed film thickness when the sheet is stretched. Ray et

al. [68] added the nanoparticles to the magneto-bioconvection of Casson fluid in a

thin-film over a similar geometry. Ray et al. [68] found that increasing bioconvection
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Péclet number substantially elevates the temperatures in the regime, thermal boundary

layer thickness, nanoparticle concentration values and nanoparticle species boundary

layer thickness.

Motivated by thework done byDevi andDevi [30–32],Wang [52], Xu et al. [53],

Sulochana and Aparna [61] and Rehman et al. [70], the behavior of the boundary layer

flow and heat transfer in the thin-film of hybrid nanofluid and Casson hybrid nanofluid

due to the stretching sheet are considered in this study. The horizontal sheet is assumed

to be encapsulated in the suction and injection effects. The effect of the nanoparticle’s

volume fraction is the additional feature of the current study. To better comprehend the

physics of the thin-film flow, the nonlinear ordinary differential equations (ODEs) are

attained by transforming nonlinear partial differential equations (PDEs) as governing

equations when implementing the similarity transformations technique. Then, the

nonlinear and dimensionless ODEs are solved numerically by exploiting an implicit

finite difference method namely the Keller box method.

1.3 Problem Statement

Thin-film flow modeling and analysis have increased significantly nowadays

due to their application in industrial manufacturing. The existence of the fluids either

Newtonian or non-Newtonian can complete the thin-film model. It is well known

that conventional heat transfer fluids are unable to meet the maximum heat transfer

rate since they have low conductivity in heat transfer. Therefore, to overcome this

limitation, a perfect combination of nanoscale solid particles has been proposed to

change the thermophysical properties of the fluid and intensify rate of the heat transfer.

The hybrid nanofluid enhances the heat transfer rate without significantly increasing

the viscosity of the fluid as compared to nanofluid and fluid [30–32, 61, 71]. The

existence of the hybrid nanoparticles in the thin-film flow could possibly pose an

essential influence on the fluid fields and heat transfer. Besides that, the flow problem

becomes even more complicated if the effects of suction and injection of the sheet are

taken into consideration. This alters the fluid flow behavior and the fluid’s physical

quantities. Furthermore, the flow problem becomes more advanced and interesting
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if the non-Newtonian type of fluid is considered. The complex rheological behavior

of the non-Newtonian fluid may dominantly affect the distribution of the velocity and

temperature of the thin-film hybrid nanofluid flow. Therefore, together with this study,

the following questions have been explored:

i. How to mathematically model the unsteady thin-film flow for Newtonian and

non-Newtonian hybrid nanofluids over the stretching sheet?

ii. How does the presence of hybrid nanofluid alter the features of the thin-film

flow and heat transfer in different types of fluids?

iii. How does the presence of suction or injection impact the velocity and

temperature profiles as well as local skin friction and Nusselt number of the

hybrid nanofluid in the thin-film?

1.4 Objectives of Study

An unsteady incompressible boundary layer flow and heat transfer in Newtonian

and Casson hybrid nanofluids thin-film are numerically studied and analyzed. The flow

over a porous stretching sheet is investigated. The main objectives of this research are:

i. To derive the mathematical models of the problems which consist of continuity,

momentum, and energy equations.

ii. To carry out mathematical formulation and simplification.

iii. To solve the governing equations together with boundary conditions of the

thin-film flow by using the HAM and Keller box method.

iv. To develop a computational algorithm for solving the problem.

v. To obtain the numerical results of velocity and temperature distributions as well

as skin friction and Nusselt number for each of the problems.

vi. To analyze the results obtained graphically and tabulated for different physical

conditions namely, thin-film thickness, unsteadiness, the intensity of suction

and injection, nanoparticle volume fraction, and Casson parameter.
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1.5 Scopes of Study

The boundary layer flow and heat transfer on Newtonian and Casson hybrid

nanofluids passing through a thin-film is investigated in this study. The suction and

injection effects are considered at the boundary layer of the horizontal sheet. The Cu

and Al2O3 spherical nanoparticles are selected for each issue based on prior study by

Devi and Devi [30–32], Waini et al. [33–35] and Sulochana and Aparna [61]. The

spherical particles have small particles with a high surface area. The smaller particles

have a low sedimentation rate and higher energy levels. Based on an experimental

study by Suresh et al. [26], thermal conductivity for the spherical Cu and Al2O3 shows

an excellent correlation with the theoretical model (Hamilton and Crosser [72] model)

when the authors set 𝑛 = 3 (empirical shape factor for spherical).

The present study also considered ethylene glycol plus water as the base fluid

for the Newtonian model as proposed by Sandeep [73] and CMC plus water as the base

fluid for the Casson fluid as recommended by Rawi et al. [74] and Maleki at al. [75].

Ethylene glycol plus water is the Newtonian fluid since the viscosity of the ethylene

glycol plus water is constant when the shear rate is increased [76]. Ethylene glycol is

primarily used as an antifreeze ingredient in cooling systems. Depending on whether

the system is used for heating or cooling, the ethylene glycol either absorbs energy from

the source or distributes it to the sink.

CMC is not an ion exchanger but a water-soluble polymer. It is a cellulose

derivative in which carboxymethyl groups are covalently linked to some of the hydroxyl

groups of the glucopyranose monomers that comprise the cellulose backbone. It is

insoluble in organic liquids (those containing volatile organic compounds such as

petroleum distillates) and combines with the heavy metal salts to generate insoluble

films in water, making it transparent, reasonably tough, and resistant to organic

materials. It produces a film due to its polymeric composition and is used to improve

the moisturizing agent. The experimental studies found that CMC plus water exhibits

the shear-thinning fluid at the low concentrations of the solution [77–79]. The following

problems are discussed in Chapter 4 and Chapter 5 of this thesis:
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i. Boundary layer flow and heat transfer in a hybrid nanofluid thin-film over an

unsteady porous stretching sheet.

ii. Boundary layer flow and heat transfer in a Casson hybrid nanofluid thin-film

over an unsteady porous stretching sheet.

The governing PDEs are initially transformed into a set of nonlinear ODEs by using

an appropriate similarity transformation as given in the published paper [52]. The

unknown thin-film thickness is approximated by HAM with the help of open-source

code BVPh 2.0 by Shi-Jun Liao [80]. Then, the nonlinear and dimensionless ODEs are

solved by exploiting an implicit finite differencemethod, namely the Keller boxmethod.

HAMwas first developed by Shi-Jun Liao in 1992 [81]. It is one of the most successful

and efficient methods for solving nonlinear equations. The HAM is a general semi-

analytic method for attaining series solutions of various types of nonlinear equations

[82]. The Keller box method which implements the finite difference method (FDM) is

extremely powerful in obtaining the estimated results for a nonlinear differential system.

The FDM is more versatile for the clarification that underlies approximations control

the convergence rate, among various other mathematical strategies. The details of

this method can be found in the manuscript of Cebeci and Bradshaw [83]. Numerical

solutions for temperature and velocity profiles as well as the surface shear stress in

terms of local skin friction coefficient and heat transfer rate characterized by the Nusselt

number are obtained by solving the governing ODEs of each proposed problem. Figure

1.3 illustrates the research framework of this study.

1.6 Significances of Study

Numerical simulation is a computational technique used nowadays among

educational, engineering, and scientific. In the real world, most of the flow problems

are formed as PDEs or ODEs. As stated in the book Computational Methods in

Engineering by Venkateshan and Swaminathan [84], numerical methods for ODEs can

also be extended to the solution of PDEs. Example of numerical methods includes

the finite difference method (FDM), finite element method (FEM), boundary element
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method (BEM), and many more which are commonly used for attaining the solution of

PDEs and ODEs numerically [84].

Numerical techniques can have a significant impact on solving mathematical

problems. Mostly, the researcher code the coding in mathematical software like

MATLAB,MAPLE, and C++ programming to run or produce the outputs as the results

of the mathematical models. Patankar [85] states that computational investigation can

reduce cost and gain complete output information. The cost of a computer run is very

much lower than a corresponding experimental investigation. A computational result

gives detailed and complete information to the researchers. For example, the output

from the computational coding can provide accurate and convergence values for all

pertinent parameters that are used in the study of fluid flow such as velocity, pressure,

temperature, and concentration parameters [85].

The existence of the nanoparticles in the fluid can improve the change rate of

the heat and working fluid properties due to their special features [86]. According

to Choi [11] who proposed that metallic or non-metallic particles that have a high

thermal conductivity in a fluid can tend to uplift the superior of heat transfer. The

incorporation of nanoparticles and fluid can reduce the boiling performance and

increase degradation. Most importantly, it smooths out the surface of nucleate sites,

hence there is a considerable deterioration of the heat transfer coefficient [87, 88].

The increase of heat transfer aids the industries to produce better products in various

areas such as industrial cooling applications, nuclear reactors, automotive applications

(nanofluid coolant, nanofluids in fuel, brake, and other vehicular nanofluids), electronic

applications (cooling of microchips, microreactors) and biomedical applications (nano-

drug delivery, cancer therapeutics, cryopreservation, nano cryosurgery, sensing, and

imaging) [89, 90].

Gould et al. [91] reports that thin-film is commonly used in the optical and

electrical sectors. All coating processes need a smooth glossy finish that meets the

best appearance and maximum performance requirements, such as low friction, clarity,

and strength. The rate of heat transfer within the thin liquid film directly affects the

coating process’s performance and the component’s chemical characteristics. In many
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industrial applications, the thin-film medium also plays a leading role, including solar

thin-film, thin-film batteries, and thin-film photovoltaic cells [92]. Microfabrication is

another interesting method of materials science, in which thin-films are an important

concept and guiding principle [93].

The study of boundary layer flow and heat transfer in thin-film flow numerically

is important as it can benefit our daily life, especially in the production of products. The

results and analysis from this research could build a better understanding of the behavior

of Newtonian and Casson hybrid nanofluids through a thin-film. Also able to enhance

the knowledge of the thin-filmflowand heat transfer characteristics through the variation

of the governing physical parameters. Besides that, the computational algorithm

incorporated with new scientific study information can guide scholars, implementations

for manufacturing, and education in solving the computational fluid dynamics for the

future.

1.7 Thesis Organization

This thesis comprises six chapters. Chapter 1 explains the important elements

for starting a new research which include research background, problem statement,

objectives, scope, and significance of the research. A systematic overview of the

literature review related to current problems in this research is presented in Chapter 2.

Chapter 3 focuses on the basic governing equations for the boundary layer

which consists of continuity, momentum, and energy equations. The boundary layer

approximation is applied to reduce the complexity of the governing equation. The

mathematical formulation and the similarity transformation employed for reducing the

governing equation using dimensionless variables are discussed. After that, the main

elements of the solution methods employed in this study which are HAM and the Keller

box method are discussed in detail.

Chapter 4 reports on the hybrid nanofluids’ thin-film flow and heat transfer

on an unsteady stretching sheet with the suction and injection effects. The problem
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is solved by using the semi-analytical method, HAM and numerical method, Keller

box method. The effects of particle concentration, unsteadiness as well as suction and

injection parameters are shown graphically and implications are discussed.

Then, the heat transfer for Casson hybrid nanofluid is explored in Chapter 5.

The HAM and Keller box methods are also applied in this chapter. The flow to solve the

proposed problems starts with the introduction, mathematical formulation, followed by

the numerical procedures, and continued with the results and discussion in the form

of graphs and tables. At the end of each problem, the obtained results which include

the thin-film thickness, velocity, and temperature distributions, as well as skin friction

and heat transfer coefficients are summarized and presented in the form of a table.

Finally, the summary of this study is conferred in Chapter 6 as well as the suggestions

and recommendations for future work. All the references that support this study’s

supportive explanation are listed.
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