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ABSTRACT 

The progressive development of industrialisation and rising of populations has 
led to the depletion of energy resources, global environmental pollution and climate 
changes. This challenges can be reduced by using trigeneration and total site systems. 
The trigeneration system is one of the innovations that can increase the performance 
of power systems by using waste energy for heating and cooling applications to meet 
the demand requirements. Total site system, on the other hand, is a technology that can 
integrate intra-processes of utility at multiple sites. However, the combination of 
trigeneration and total site systems has not yet been established. This work proposed a 
new methodology for developing an insight-based numerical pinch analysis 
methodology to simultaneously target the minimum cooling, heating and power 
requirements for continuous and batch processes of total site systems of the centralised 
trigeneration pressurised water reactor (PWR) system. The new proposed 
methodology is called trigeneration system cascade analysis (TriGenSCA). The 
procedure of TriGenSCA for the trigeneration PWR system in continuous processes 
of total site system consists of six steps which are data extraction, problem table 
algorithm (PTA), multiple utility problem table algorithm, total site problem table 
algorithm, TriGenSCA and trigeneration storage cascade table. Based on case study 1, 
the overall energy production, energy losses and equivalent annual cost of the optimal 
trigeneration PWR system are 122.6 GWh/day, 75.3 GWh/day and USD 400.0 M, 
respectively. As for the batch processes of total site system, additional of time slice as 
step 2 in case study 2 is proposed to show the batch processes of the total site system. 
The results found that the overall energy production, energy losses and equivalent 
annual cost for the optimal trigeneration PWR system are 9.0 GWh/day, 2.3 GWh/day 
and USD 367.5 M, respectively. This shows that energy production, energy losses and 
annual equivalent cost are reduced by 21.0%, 17.3% and 8.0%, respectively. 
Consideration of transmission energy losses while transferring the energy from the 
trigeneration PWR system to the demands were incorporated into the TriGenSCA 
methodology to improve the sizing utility in the system. The findings indicated that 
1.0 MW of extra energy is required in 5.0 km of transmission lines. Additional step in 
a method which is called as trigeneration system sensitivity table is used to analyse the 
sensitivity of the centralised trigeneration PWR system if some of the industrial plants 
in the Total Site system are shut down. The results showed that additional 100.7 MW 
of hot water (HW) are needed if Plant C is shut down for continuous processes, whilst 
12.6 MW of HW and 50.2 MW of cool water are required if Plant B and Plant C are 
shut down in batch processes. 
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ABSTRAK 

Pembangunan perindustrian yang progresif dan peningkatan pertumbuhan 
penduduk telah menyebabkan pengurangan sumber tenaga, pencemaran persekitaran 
global dan perubahan iklim. Cabaran ini dapat dikurangi dengan menggunakan sistem 
trigenerasi dan keseluruhan tapak. Trigenerasi adalah salah satu inovasi yang dapat 
meningkatkan prestasi sistem kuasa dengan menggunakan semula tenaga buangan 
sebagai aplikasi pemanasan dan penyejukan bagi memenuhi keperluan permintaan. 
Sistem keseluruhan tapak pula merupakan satu teknologi yang membenarkan utiliti 
diintegrasikan secara proses luar pada pelbagai tapak. Walau bagaimanapun, gabungan 
antara sistem trigenerasi dan sistem keseluruhan tapak masih belum mapan. 
Penyelidikan ini mencadangkan metodologi baharu untuk mengembangkan 
metodologi berdasarkan penglihatan analisis jepit berangka untuk menganalisa 
serentak tenaga penyejukan, pemanasan dan kuasa untuk proses berterusan dan 
kelompok bagi sistem tapak keseluruhan melalui sistem pusat trigenerasi reaktor air 
bertekanan (PWR). Metodologi baharu yang dicadangkan ini dipanggil sebagai 
analisis lata sistem trigenerasi (TriGenSCA). Prosedur TriGenSCA dalam sistem 
trigenerasi PWR pada proses berterusan sistem tapak keseluruhan terdiri daripada 
enam langkah iaitu pengekstrakan data, algoritma jadual masalah (PTA), algoritma 
jadual masalah utiliti berganda, algoritma jadual masalah keseluruhan tapak, 
TriGenSCA dan jadual penyimpanan lata trigenerasi. Berdasarkan kajian kes 1, 
pengeluaran keseluruhan tenaga, kehilangan tenaga dan kos setara tahunan dalam 
sistem trigenerasi PWR yang optimum masing-masing adalah 122.6 GWh/hari, 75.3 
GWh/hari dan USD 400.0 juta. Bagi proses kumpulan sistem keseluruhan tapak, 
penambahan potongan masa di langkah 2 dalam kajian kes 2 menunjukkan proses 
kumpulan sistem dalam keseluruhan tapak. Hasil kajian mendapati bahawa 
keseluruhan pengeluaran tenaga, kehilangan tenaga dan kos setara tahunan untuk 
sistem optimum trigenerasi PWR masing-masing adalah 9.0 GWh/hari, 2.3 GWh/hari 
dan USD 367.5 juta. Ini menunjukkan bahawa pengurangan pengeluaran tenaga, 
kehilangan tenaga dan kos setara tahunan masing-masing sebanyak 21.0%, 17.3% dan 
8.0%. Pertimbangan kehilangan tenaga penghantaran semasa memindahkan tenaga 
dari sistem PWR trigenerasi ke industri dimasukkan ke dalam metodologi TriGenSCA 
untuk meningkatkan ukuran utiliti dalam sistem. Kaedah yang dikaji menunjukkan 
bahawa 1.0 MW tenaga tambahan diperlukan dalam talian penghantaran sejauh 5.0 
km. Penambahan langkah dalam kaedah yang dipanggil sebagai jadual sensitiviti 
sistem trigenerasi digunakan untuk menganalisis kepekaan sistem PWR trigenerasi 
terpusat akibat beberapa kilang industri dalam sistem keseluruhan ditutup. Hasil kajian 
menunjukkan bahawa tambahan 100.7 MW air panas (HW) diperlukan kerana Industri 
C ditutup dalam proses berterusan, sementara 12.6 MW HW dan 50.2 MW air sejuk 
diperlukan jika Industri B dan Industri C ditutup dalam proses kelompok. 
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CHAPTER 1  
 

 

INTRODUCTION 

1.1 Introduction 

Nowadays, progressive development of industrialisation and rising of 

populations has led to the depletion of energy resources, global environmental 

pollution and climate changes. The International Energy Agency (2019) has predicted 

that Southeast Asia is going to experience rising of energy demands from 244 Mt of 

oil equivalent (Mtoe) in 2018 to 329 Mtoe in 2040. Consequently, the rising energy 

demands have created energy shortage gaps in some of the countries as well as 

increasing global carbon emissions. Currently, residential and commercial buildings 

consume around 40 % of the total global energy. In Malaysia, buildings consume 

around 48 % of the power that is generated in the country, and more than 50 % of this 

energy are used for occupants’ comforts such as air conditioning and refrigeration 

(Hassan et al., 2014). Chua and Oh (2010) have revealed that in Malaysia, the total 

power generation and consumption are expected to drastically increase soon. The 

change of policy of the Malaysian government from agricultural industries to 

technology has led to an increase of energy consumptions in the country. The modern 

usage of home appliances such as air conditioning and refrigeration also contributed 

to the highest rate of energy consumption. Lighting, on the other hands, is the second-

highest energy consumption after home appliances (Zakaria et al., 2013). Figure 1.1 

summarises the rising energy consumption in Malaysia from 1990 to 2016 

(Suruhanjaya Tenaga Malaysia, 2019). 
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Figure 1.1 The rise of energy consumption in Malaysia from 1990 to 2016 

(Suruhanjaya Tenaga Malaysia, 2019) 

This has encouraged governments and private organisations to promote the 

development of new technologies so that the carbon emissions and energy shortage 

gaps can be reduced. In order to reduce carbon emissions and fuel consumption as well 

as to meet energy consumptions, Zhang et al. (2016) outlined strategies by proposing 

taxes and incentives to high efficient energy generations, as well as a mix of energy 

generation technologies at one site. Cogeneration is one of the technologies that can 

improve the thermal efficiency of the conventional power plant by enhancing useful 

waste heat to produce a heating application. Trigeneration is an advanced technology 

of cogeneration system thanks to the development of absorption chiller. The 

trigeneration system can be defined as a technology that is capable of generating 

simultaneous power, heating and cooling from a single burning of fuel. Generally, by 

reusing waste heat in the conventional power station to produce heating and cooling 

applications, the thermal efficiency can be drastically improved from 30 % - 40 % to 

80 % - 90 %. Khamis et al. (2013) stated that improvement of thermal efficiency could 

translate into a reduction of emissions of all pollutants as well as lower operating costs. 

The payback period of the conventional power station can also be shortened through 

the use of the trigeneration system. 
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Nuclear energy is clean energy and zero carbon emissions that can generate 

numerous thermal energy for power production. Nuclear energy can be defined as the 

splitting of atoms to produce a large amount of heat energy to heat water to generate 

steam in the nuclear power plant. The production of steam in the nuclear power plant 

will then be supplied to the turbine for power generation. Figure 1.2 presents the 

formation of nuclear energy from the splitting of atoms. Currently, in certain countries, 

nuclear power plants have implemented a cogeneration system to meet different types 

of energy needs effectively. A wide range of specific temperature requirements that 

can be supplied to the demands is based on the utilisation of waste heat from the 

nuclear power plants. The waste heat with temperatures around 100℃ to 300℃ can be 

used as hot water and steam for the agriculture industry, seawater desalination and 

district heating. For a waste heat with temperatures more than 1,000℃, it can be 

supplied for process steam in oil and gas, and chemical industries. Figure 1.3 shows 

the range of applicability between existing nuclear power plants and heat applications 

based on temperatures. 

 
Figure 1.2 The formation of nuclear energy from the splitting of atoms 

(Department of Energy and Mineral Engineering, 2018) 
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Figure 1.3 The range of applicability between existing nuclear power plants and 

heat applications based on temperatures (Khamis et al., 2013) 

However, none of the countries has ever implemented a trigeneration system 

into a nuclear power plant. Implementation of the trigeneration system can generate 

cooling and chilling applications from the waste heat that is produced from nuclear 

power plants by using chillers. The chilled water can be beneficial to the food 

processing industries in tropical countries such as Malaysia and Thailand to refrigerate 

the foods for long-lasting. Along with the advantages of a trigeneration system in the 

nuclear power plant, several technical issues need to be considered. Firstly, the nuclear 

power plant needs to be placed near a ready supply of cooling water, which mostly 

from lakes and seawater, where the location of the population may not be necessarily 

near to the power plant. As consequences, the energy cost due to steam and cooling 

transmissions will be rising with the distance. The capacity of transmissions and inlet 

pressure, however, will be reduced with the rising of the distance between the power 

station and consumers. Reduction of inlet pressure can lead to the reduction of 

temperature as the energy reached to the destinations.  

Particularly, the heat recovery in the Total Site system has been gained more 

interest since its inception in the ’90s (Klemeš et al., 1997). The Total Site system can 

be expressed as a system that can able to exchange utilities through the site utility 
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system as a marketplace. The reason is that some industrial plants can generate power, 

heating and cooling energy due to the high cost of early purchased power. A bottoming 

cycle is usually applied in the industrial plants where exhaust steam from a boiler is 

primarily used for process heating. Available excess steam is then extracted by a 

turbine to produce power or through the chiller to produce chilled water. The 

production of excess energy from respective industrial plants can be sold to the other 

industrial plants which in deficit energy. The heat recovery in the Total Site system 

can be determined in two ways which are direct between processes and indirect 

through an intermediate medium. Direct heat recovery may not be the best practice in 

the real case study due to the distances between processes and operational issue. 

Indirect heat recovery, on the other hand, can give an advantage since it offers 

operational flexibility where the number of utility temperature levels are set as utility 

targets (Chew et al., 2013).  

Many works on designing trigeneration and Total Site systems have been 

presented, but mostly in separated matters. A combination of trigeneration nuclear 

power plant and Total Site system, however, has not been emphasised in the past study. 

Process integration methodology to optimally sizing of trigeneration system in the 

Total Site system has also not been addressed. Recently, Sandoval-Reyes et al. (2020) 

developed a new methodology by combining simulation and clustering with multi-

criteria decision-making to analyse the impact of load size in the trigeneration systems 

with a thermal storage system. The study, however, does not involve the Total Site 

system and has implemented complex calculations which is hard for the users to 

understand. Moreover, other vital decision variables are still in need to be considered, 

such as single and multiple periods of demands, maximum power and thermal storage 

systems, amount of minimum outsourced energy and excess energy source. 
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1.2 Problem Statement 

Nuclear power plants are reliable sources of energy generation. The nuclear 

power plants are non-intermittent and can be classified as controlled sources which 

able to produce predictable power and thermal energy. However, most of the nuclear 

power plants only have overall thermal efficiencies of 30 % to 35 % to generate power 

and another 65 to 70 % of the total energy will be dissipated to the environment 

(Khamis et al., 2013). Three Miles Island nuclear power plant, for example, using only 

33 % of total energy to generate power and the remaining is released to the 

environment in the form of cool water vapour through the cooling tower (Barnes, 

2013). The waste heat that is dissipated to the environment shows tremendous energy 

losses as well as can cause increasing operational costs and payback period. A 

trigeneration system can be implemented in a nuclear power plant to improve total 

thermal efficiency. The total thermal efficiency in trigeneration system can be 

improved by up to 90 % by reusing waste heat for other applications (Wu and Wang, 

2006). 

However, the implementation of the centralised trigeneration system alone to 

generate energy can increase the sizing of the system since the system requires a large 

amount of energy to supply to the demands. The Total Site system can reduce the 

sizing of the centralised trigeneration system by exchanging utilities through the site 

utility system as a marketplace. However, implementation of the centralised 

trigeneration nuclear power plant in the Total Site system has not yet been emphasized. 

The procedure for the optimal design of the centralised trigeneration nuclear power 

plant in the Total Site system based on Pinch Analysis methodology has also not been 

established.  

The previous study on designing an optimal trigeneration system involves 

complex mathematical formulations which makes it difficult to master. The previous 

methodology gives little insights into the network designs and lack of user 

involvements. In contrast, Trigeneration System Cascade Analysis (TriGenSCA) 

applied in this research is very handy to implement and allows the users to have better 

control over the decision making process. Effects of time variables and sensitivity 
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analysis on the demand targets can also be explored with the insights available during 

various analysis and design stages. The TriGenSCA algebraic approaches are less 

tedious and easier to construct as the methodology provide faster in algorithmic 

calculations. Therefore, the concept of TriGenSCA is introduced and extended in this 

study to solve the problems and limitations encountered in the previous methodology. 

1.3 Research Objectives 

The main objective of the research is to develop a novel algebraic systematic 

methodology based on Pinch Analysis for optimal design and targeting minimum 

cooling, heating and power generation of a Pressurised Water Reactor (PWR) as a 

centralised nuclear power plant in the Total Site system. Sub-objectives of this 

research are as follows: 

i. To evaluate an optimal sizing of the centralised trigeneration PWR system in 

single and multiple periods of Total Site system in 24 h operations.  

ii. To integrate the centralised trigeneration PWR system with consideration of 

energy storage losses. 

iii. To develop the centralised trigeneration PWR system by considering energy 

transmission losses. 

iv. To analyse the sensitivity of the centralised trigeneration PWR system as each 

industry in the Total Site system shuts down. 

1.4 Research Scope and Limitation 

This study is focused on the design of optimal sizing of centralised 

trigeneration PWR in the Total Site system. The Total Site system can be implemented 

to diverse applications including the residential, commercial and industrial sectors. 



 

8 

The Pinch Analysis methodology is applied in this research through the use of 

Microsoft Excel as a tool. The scope of this research includes: 

i. State of the art review on Pinch Analysis, types of the Pressurised Water 

Reactors and trigeneration system. 

Studying the development in Pinch Analysis, types of the Pressurised Water 

Reactors and trigeneration system, and identifying the research gaps. 

ii. Development of algebraic methodology for the integration of the centralised 

Pressurised Water Reactor as a trigeneration system with the Total Site system. 

The developing methodology based on Pinch Analysis to determine power, 

heating and cooling targets as well as to design an optimal trigeneration system 

in the Total Site system.  

iii. Development of process integration methodology for centralised Pressurised 

Water Reactor with energy losses consideration. 

A method with consideration of losses during conversion, transfer and storage 

reflects the actual power targets for the energy generation in centralised 

Pressurised Water Reactor.  

iv. Design and sizing of centralised Pressurised Water Reactor in the Total Site 

system using Pinch Analysis. 

Developing a handy TriGenSCA method by using Microsoft Excel as a tool to 

size the centralised Pressurised Water Reactor, including the storage system 

for various energy demands in the Total Site system.  

v. Analysis of the sensitivity of the demands in the Total Site system and 

centralised Pressurised Water Reactor. 

Extending the TriGenSCA methods with sensitivity analysis to determine the 

effect of the performance of the centralised trigeneration system to generate 

energy to be supplied to the demands. The backup system can be obtained 

through the sensitivity analysis as some industrial plants are shut down due to 

maintenance or production changes.   
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vi. Method validation 

Validating the methodologies with various case studies from the literature. The 

results are compared with results obtained from available methodologies of 

different researches to prove the effectiveness and the practicality of the 

proposed methodologies. 

The limitations of this research are also included as below: 

i. The charging and discharging efficiencies of the energy storage systems, as 

well as utility efficiencies, are limited at constant values for each time. 

ii. The proposed method does not consider variations of seasons in an annual 

cycle. 

iii. The design of a nuclear power plant only considers PWR as a trigeneration 

system with six heat exchangers (Barnes, 2013 and Cholewinski and Tomkow, 

2018) 

iv. The trigeneration PWR system operates in continuous 24 h operations. 

v. Energy consumption remains unchanged regardless of changes of the topology 

in the industrial plants.  

vi. The energy demands fluctuation of industrial plants in the Total Site system 

does not consider weather changes and catastrophic events. 

1.5 Research Contributions 

Five main contributions have emerged from this work which is proposed as 

below:  
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i. A new systematic methodology to target and design of the centralised 

trigeneration PWR in the Total Site system. 

The power, heating and cooling allocations are established from TriGenSCA 

methodology, which can provide the designers with valuable insights for the 

design of optimal trigeneration Pressurised Water Reactor in the Total Site 

system.  

ii. A new methodology with detains energy storage losses for the design of a 

centralised PWR in the Total Site system. 

More realistic power, heating and cooling allocations for the centralised 

trigeneration system that considers energy storage losses can be established to 

avoid an under-sized system’s design.  

iii. A new sizing approach for centralised trigeneration PWR in both single and 

multiple periods in the Total Site system. 

The best combination of the centralised trigeneration PWR with Total Site 

system and capacity for the centralised trigeneration PWR can be decided with 

the sizing method presented even the industries in the Total Site system are in 

continuous or batch processes.  

iv. A new approach to analyse the sensitivity of the centralised trigeneration PWR 

in the Total Site system. 

The impact of industrial plants are shut down, or production changes on the 

centralised PWR and Total Site system can be determined. Through the new 

sensitivity analysis approach, the sizing back up system can be obtained. 

v. A comprehensive methodology for optimisation of storage technologies in the 

Total Site system. 

The extension of the TriGenSCA methodology with the inclusion of energy 

losses occurring in power and thermal storage schemes can guide the designers 

to determine the most efficient and economical storage scheme for the given 

power, heating and cooling trends of the centralised trigeneration Pressurised 

Water Reactor. 
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1.6 Thesis Outlines 

This thesis is divided into five chapters. Chapter 1 provides an introduction to 

the research, including the overview of global and Malaysia’s energy outlook, problem 

statement, research objectives, scope and research contributions. Reviews on the 

development in Pinch Analysis, types of PWR and trigeneration system technologies 

as well as analysis on previous works are done in Chapter 2. Chapter 3 describes the 

stepwise methodology construction to accomplish the targeted objectives. Chapter 4 

presents the results obtained from the application of the developed techniques on case 

studies. Finally, Chapter 5 concludes the overall research study and recommends 

possible future works to be explored. 
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