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ABSTRACT

Mathematical simulation is one of the methods that has been beneficial to 
the knowledge of cancer cell invasion, especially in listing the important components 
that are the main causes of the invasion. In fact, at subcellular view, invadopodia 
which are actin based protrusions formed on the cancer cell membrane degrade the 
extracellular proteins and lead the invasion. In this study, a mathematical model of 
invadopodia formation associated with signal transduction is investigated. The main 
objective of this study is to obtain the numerical solution of invadopodia formation 
of signal transduction in one and two dimensions. The signal equation is represented 
by heat-like equation with initial and boundary conditions. The free boundary of 
plasma membrane is considered and is moved by the velocity of the cancer cell which 
is equal to the gradient of the intracellular signal. The governing partial differential 
equation for a one-dimensional case with initial and boundary conditions is transformed 
into an approximation model by using a signal transformation variable. Then, the 
integrated penalty technique is applied to solve the model numerically. The results 
are validated with the exact solution obtained using separable variable approach with 
suitable similarity variable. From this study, it is discovered that both results have 
shown the same outcome with the constant boundary condition restriction. Simulation 
results demonstrated that the interface position increases from its initial location as 
time increases. This implies that the plasma membrane has moved in tandem with 
the increase in time. Meanwhile, in a two-dimensional case, free boundary of plasma 
membrane is represented by a zero level set function. The partial differential equations 
are discretized by using the level set method which combines the features of ghost 
points and extrapolation methods in order to solve the model numerically. The stability 
condition of the solution is enforced by using Gershgorin circle theorem. It is observed 
that some protrusions are developed on the membrane surface due to the presence of the 
signal density inside the cell with types of cosine and exponential boundary conditions. 
The highest concentration of signal is identified on the interface due to the stimulation 
of signal through contact between the ligand and the membrane associated receptor on 
the membrane. All numerical schemes obtained in this thesis by numerical methods 
(integrated penalty method in one dimension and level set method in two dimensions) 
and an analytical method (separable variable method in one dimension) are useful to 
solve the free boundary problem of an invadopodia formation model particularly on the 
signal transduction factor.
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ABSTRAK

Simulasi matematik merupakan salah satu daripada kaedah yang telah memberi 
manfaat kepada pengetahuan tentang pencerobohan sel kanser, terutamanya dalam 
menyenaraikan komponen-komponen penting yang menjadi penyebab pencerobohan. 
Secara faktanya, dalam pandangan sub sel, invadopodia yang merupakan tonjolan 
berasaskan aktin yang terbentuk pada membran sel kanser telah mendegradasi protein 
ekstrasel dan menjadi punca pencerobohan. Dalam kajian ini, model matematik bagi 
penghasilan invadopodia yang berkaitan dengan transduksi signal dikaji. Objektif 
utama kajian ini adalah untuk mendapatkan penyelesaian berangka bagi penghasilan 
invadopodia transduksi signal dalam satu dan dua dimensi. Persamaan signal diwakili 
oleh persamaan berbentuk haba berserta dengan syarat awal dan syarat sempadan. 
Sempadan bebas membran plasma dipertimbangkan dan digerakkan oleh halaju sel 
kanser di mana ia adalah bersamaan dengan kecerunan signal intrasel. Penghasilan 
persamaan pembezaan separa untuk kes satu dimensi berserta dengan syarat awal 
dan syarat sempadan diterbitkan pada model anggaran menggunakan pembolehubah 
transformasi signal. Kemudian, teknik penalti paduan digunakan untuk menghasilkan 
penyelesaian secara berangka. Hasil penyelesaian disahkan dengan penyelesaian 
tepat yang diperoleh menggunakan pendekatan pembolehubah boleh pisah dengan 
pembolehubah keserupaan yang bersesuaian. Daripada kajian ini, didapati bahawa 
kedua-dua penyelesaian menunjukkan hasil yang sama dengan batasan syarat sempadan 
pemalar. Hasil simulasi menunjukkan bahawa posisi antara muka meningkat dari 
kedudukan awal apabila masa meningkat. Ini menunjukkan membran plasma telah 
bergerak seiring dengan peningkatan masa. Sementara itu, dalam kes dua dimensi, 
sempadan bebas membran plasma diwakili oleh fungsi sifar set aras. Persamaan 
pembezaan separa diturunkan menggunakan kaedah set aras yang menggabungkan 
kaedah titik bayang dan penentuluaran untuk menyelesaikan model secara berangka. 
Keadaan kestabilan penyelesaian dilaksanakan dengan menggunakan teorem bulatan 
Gershgorin. Diperhatikan bahawa beberapa tonjolan terhasil pada permukaan membran 
disebabkan oleh kehadiran ketumpatan signal di dalam sel bersama dengan syarat 
sempadan untuk jenis-jenis kosinus dan eksponen. Kepekatan signal tertinggi dikenal 
pasti pada antara muka disebabkan oleh rangsangan signal melalui sentuhan diantara 
ligan dan reseptor sekutu membran pada membran. Keseluruhan skim berangka yang 
diperolehi di dalam tesis ini dengan penggunaan kaedah-kaedah berangka (teknik 
penalti paduan dalam satu dimensi dan kaedah set aras dalam dua dimensi) dan 
kaedah analisis (pembolehubah boleh pisah dalam satu dimensi) adalah bermanfaat 
untuk menyelesaikan masalah sempadan bebas bagi model penghasilan invadopodia 
terutama pada faktor signal transduksi.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

This chapter discusses the main area of study, where the first section covers 

the research background on cancer invasion. The background of this research is 

divided into two subsections; (i) biological approach, and (ii) mathematical approach on 

cancer invasion, specifically at subcellular view. The problem statements corresponding 

to the aim of this research are outlined thoroughly in Section 1.3. The research 

objectives, scope of research, significance of study, research methodology and the 

thesis organization are also included in this chapter.

1.2 Research Background

The World Health Organization [1] reported cancer as the third leading cause 

of death. Lung (1.69 Million), liver (788, 000) and colorectal (774, 000) are top three 

body parts where cancer cells (tumor) are frequently detected (three most vulnerable 

body parts to cancer) [2]. Throughout the past decade, intensive studies had been 

done through biological and mathematical approaches to understand the mechanism of 

cancer cell invasion since there is potential of the development of anti-invasion therapy 

for treating cancer patients [3].

1.2.1 Cancer cell invasion: Biological point of views

There are two main biological approaches to investigate the cancer cell invasion, 

which are by in -  vivo, or in -  vitro approach. Note that, in -  vivo refers to work that 

is performed in a whole by the living organism meanwhile in -  vitro happens outside
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of a living organism where it usually happen by experimental observation [4]. By 

in -  vivo approach, the basic mechanism of cancer cell invasion are observed directly 

by using microarray analysis. At cellular level, at first, a cancer cell is formed through 

multiple mutations in an individual normal cell’s key genes. Proliferation of cancer 

cells continues until a lump (avascular cancer cells) is formed. This process is known 

as primary stage of tumor. Until one time, these avascular cancer cells cannot grow any 

further at the local site. The cancer cells then transform into metastatic ones, which 

allow them to invade the surrounding tissue, while the surviving cells enter the other 

site and proliferate themselves; forming a new colony, hence forming secondary stage 

of tumor. In order to move and invade the other site, the cells have to undergo two main 

processes named angiogenesis and metastasis.

Angiogenesis is a process where new capillaries are form and link the blood 

vessel to the cancer cells [5]. At this stage, the avascular cancer cells produce an 

angiogenic factor, called as vascular endothelial growth factor-A (VEGF-A)[6]. The 

factor promotes blood vessel proliferation by splitting their vessel of membrane, forming 

new blood vessels sprout, and hence connecting the blood circulation system to the 

cancer cells. The cells gain enough nutrient to invade and grow further at the new site 

by undergo metastasis.

Metastasis is a process where some cancer cells are able to move and invade the 

surrounding tissue barrier and escape from their local site to colonize a new distant site. 

Note that metastasis is the main cause of death among cancer patients [7]. Initially, 

the groups of cells invade the surrounding tissue through cells adhesion. An epithelial- 

mesenchymal transition (EMT) process then takes place, where the epithelial cells 

convert into mesenchymal cells, allowing the cancer cells to pass through the tissue. 

The cells then form protrusions; elongating themselves and degrading the extracellular 

membrane (ECM) proteins (to converge onto the blood vessels) with helps from matrix 

metalloproteases (MMPs) [8, 9, 10]. This process is known as intravasation. The cells 

then move through the blood stream by three different ways of cell’s motility; either 

by collective mode, mesenchymal mode, or amoeboid mode. Collective movement 

means that the cells move in a group, while mesenchymal and amoeboid movement 

imply individual movement. The only difference between mesenchymal and amoeboid
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movement is that, an amoeboid movement does not need to undergo EMT process. The 

surviving cells are needed to once again pass through the tissue membrane barrier to 

completely locate in the other site. This process is called as extravasation, where the 

cells form protusions again and transmigrate the entire body through the vascular wall 

[11]. The surviving cells then proliferate themselves, hence a new colony is formed, 

establishing the second stage of tumor.

Mechanism of cancer cell invasion at subcellular level has remained a focus 

of research for many years. Invasion of a cancer cell on tissue compartment is 

initiated by the formation of protrusions known as invadopodia, and degradation of 

ECM barrier [12, 13]. There are four types of protrusions, which are filopodia, 

lamellipodia, invadopodia, and podosomes. The study on invadopodia formation is 

important since this actin based protrusions are form and have the ability to degrade 

the ECM proteins, causing cells to penetrate the blood stream, as previously proven 

in in -  vitro  studies by [14]. The formation of invadopodia and degradation of ECM 

proteins key processes lead by actin polymerization and assembly (chemotaxis), up- 

regulation of MMPs, degradation of ECM, ligand formation, and signal transduction.

During chemotaxis, endothelial growth factor receptor (EGFR), which is 

a chemoattractant, provides signal to activate the actin polymerization during the 

precursor formation. After filament (F)-actin is formed in bundle, the actin matures 

and stabilizes, through nucleation, elongation and annealing processes. The EGFR also 

gives signal to the MMPs to undergo up-regulation process, and consequently pushes 

the plasma membrane outwards and degrades the ECM proteins outside the cell. The 

ECM fragment, known as ligand, then binds on the plasma membrane and stimulates the 

signal once again. These processes are repeated until protrusions exist with size around 

8jum diameter, and 5jum height [15, 16]. Recently, Aron and Alissa [17] reviewed 

the invadopodia formation, and concluded that it is mediated from signalling pathway 

inside the cell.

In in -  vitro, several experiments had been conducted to observe the mechanism 

of cancer cell invasion based on the studies by in in -  vivo approach. Yu etal. [18] 

recently studied the factors that trigger the cancer cells invasion in in -  vitro. They

3



found that miR-126, which is one of the angiogenesis regulatory microRNAs, up 

regulates the VEGF expression. Studies on extravasation part were done by [19] and 

[20]. Michelle et. al [19] found that the extravasation begins by the presence of thin 

tumor cell protrusions across the endothelium. Jessie et. al [20] observed that cancer 

cell has tendency to be in contact with the endothelium in the first 24 hours. In  -  vitro 

approach is able to successfully reproduce the mechanism of cancer cell invasion, but 

this approach is time and cost consuming.

1.2.2 Cancer cell invasion: M athem atical point of views

Mathematical approach to predict/study cancer cell invasion based on the 

hypothesis and illustration has been considered in order to understand the in -  vivo 

dynamics of invasion, particularly at tissue and cellular levels, in the past decades. 

In 2005, Chaplain and Lolas [21] thoroughly discussed the urokinase plasminogen 

activation (uPA) system role in tissue invasion and form the mathematical modelling. 

They considered the interaction of cancer cell and the chemicals, by an equation called as 

reaction-diffusion-taxis equation. Vivi et al. [22] improved the model, and considered 

five reaction-diffusion-taxis partial differential equations. The model was used to 

describe the interactions between cancer cells, uPA, uPA inhibitors, plasmin, and the 

host tissue. They successfully showed that there are chemotactical and haptotactical 

reactions to the spatio-temporal effects of the uPA system with the cancer cell.

Recently, mathematical modelling on the study of cancer cell invasion at 

subcellular level has received much attention, since in vivo study claims that cancer 

cell starts to migrate from the local site by the formation of invadopodia around 1-10 

l im , and invade the dense membrane to enter the blood stream [15]. Invadopodia is 

composed of a variety of proteins such as actin and actin regulatory protein, adhesion 

molecules, membrane remodeling and signalling proteins. Saitou et al. [23] derived 

a continuous model based on partial differential equations (PDEs) to describe the 

formation and maturation of invadopodia. The model considered the main processes 

for invadopodia formation except signal transduction. This model was able to generate
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protrusions with small value of the effect of MMP rate constant. However, the region 

of actin, n > 0 became disconnected as time progressed.

Admon [24] proposed a new model by considering signal transduction (inside 

the cell) during the invadopodia formation, which was not taken into account in [23], 

and treated the cancer cell membrane as free boundary. Due to the complexity of 

invadopodia model, and the signal does not depend on the other variables, Admon

[25] only considered signal transduction process during invadopodia formation, and 

solved the model numerically by using fixed domain method in one dimension. The 

membrane was observed to expand as time advanced, implying that protrusion should 

exist [24]. Since this formation involves a free boundary problem, two-dimensional 

(2D) simulation is needed to get a clearer picture of invadopodia formation with 

presence of signal transduction. Recently, Olivier e t, al. [26] successfully modelled 

the steady state of chemical interaction between the signal transduction and ligand 

formation during invadopodia formation in 2D with first and second order accuracy 

[27].

The present research aims to derive analytical solution of signal transduction 

during invadopodia formation, for comparison with numerical solution obtained by 

using integrated penalty method. The quasi-static and unsteady states of signal 

transduction process during the formation of invadopodia in two dimension case based 

on the model proposed by Admon [24] is considered since it is still not yet available 

in the literature. The membrane is set to be free-boundary membrane, which would 

shrink if the membrane is to be pulled inside or expand if the membrane is to be pushed 

outside the region of cell. The signal equation is represented by heat-like equation with 

Dirichlet boundary condition, by which the plasma membrane is taken as zero level set 

function. The membrane is moved by the velocity of the cancer cell, which is equal to 

the gradient of the signal. The first order Cartesian finite difference scheme of the level 

set method is used to solve the complete model numerically.
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1.3 Statem ent of Problem

By realizing the fact that cancer is a critical societal and scientific problem, 

the study on cancer cell movement driven by invadopodia is vital, as this movement 

causes migratory pathways through the ECM. Mathematical studies on the behaviour 

of the cancer cell invasion has received much attention nowadays since this study able 

to highlight all the key processes of the invasion by numerical simulation. However, 

mathematical modelling and numerical simulation of cancer invasion at subcellular 

view are active yet limited. The main interest of this particular study is due to these 

few research questions:

i. What is the simplified model of a signal transduction that is reduced from the 

model of invadopodia formation in [24]?

ii. How to solve the one dimensional unsteady signal transduction model 

analytically and numerically?

iii. How to solve the two dimensional quasi-static and unsteady signal transduction 

models numerically?

iv. How to analyse the signal distribution profiles and free boundary positions 

(plasma membrane locations) of the signal transduction models?

1.4 Objectives of the Study

The aim of this study is to investigate the mathematical modelling of signal 

transduction associated with invadopodia formation. The objectives of this study are 

as follows:
i. To construct simplified mathematical formulation of signal transduction of the 

invadopodia formation based on the model proposed in [24].

ii. To obtain the analytical and numerical solutions for the one dimensional 

unsteady signal transduction problem using separable technique and integrated 

penalty method, respectively.
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iii. To develop the numerical algorithms for the quasi-static and unsteady signal 

transduction models in two dimension using finite difference technique of level 

set method.

iv. To analyse the signal distribution profiles and free boundary positions (plasma 

membrane locations) for the formation of invadopodia associated with signal 

transduction.

1.5 Scope of the Study

This study concerns about the modelling of signal transduction for the 

invadopodia formation in one and two dimensional problems. In one dimension 

problem, derivation of analytical solution for signal transduction model is conducted. 

The comparison of the analytical and numerical solutions by using integrated penalty 

method is obtained.

The modelling of both time independent and time dependent signal transduction 

in two dimensional problem are simulated by using level set method with first order 

Cartesian finite difference scheme. The derivative of the interface of cellular membrane 

is taken as the second order upwind scheme. The combination of first order Cartesian 

finite difference scheme and upwind scheme are used to get a consistent finite difference 

approximation to the governing partial differential equation. Forward Euler scheme 

was then implemented for the time derivative term. Matlab software is utilized in this 

study to simulate the algorithm, powered by 8th Gen Intel @ Core™ i5 processor. The 

stability of the solution is obtained by using Gershgorin circle theorem in order to get 

the Courant-Friedreichs-Lewy condition (CFL condition).

1.6 Significance of the Study

The results obtained from this project should contribute to
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i. a better understanding on how the cancer cells invade the other site through 

angiogenesis (development of blood circulation brancing-path) and metastasis 

(cancer cells invasion onto tissue compartment) process,

ii. better insight on the mechanism of cancer cell invasion at subcellular level, 

where the cancer cell start to form protrusions called as invadopodia, which are 

actin rich protrusions that degrade the extracellular proteins,

iii. The information regarding the behaviour of the invadopodia formation, 

especially where the signal stimulation plays the key role for the formation 

process.

iv. enhancement of knowledge on the invadopodia formation from mathematical 

perspective by treating the cell membrane as a free boundary to researchers and 

medical practitioner, and

v. wider knowledge on numerical simulation using level set method especially 

when the case related to the free boundary.

1.7 Thesis Organization

This thesis contains six chapters. Chapter 1 discusses the research background, 

constituting all definitions of problem, followed by statement of problem, objectives of 

research, scope of research, significance of research, research methodology, and thesis 

organization. The following Chapter 2 reviews some published researches related to 

proposed problems, as acknowledged in the objectives.

Chapter 3 presents the derivation of governing heat-like equations for unsteady 

signal transduction and free boundary of plasma membrane in one dimension. The 

velocity on the membrane is derived in one dimension space. The governing equation 

is transformed into an approximation model by using signal transformation variable. 

This chapter also provides the solution of the membrane position and signal density 

profile, which are obtained by using integrated penalty method. These solutions are 

plotted by using MATLAB software in order to display the solutions graphically, for
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detailed discussion. The validation is obtained by comparing the present solution with 

the exact solution, which is in the form of error function.

Chapter 4 presents the derivation of governing heat-like equations for signal 

transduction and free boundary of plasma membrane in two dimension, for both quasi­

static and unsteady cases. The velocity on the membrane is derived in two dimension 

space. The free boundary of plasma membrane is represented by level set function. The 

governing equations are computed numerically by using level set method. The analysis 

of the stability condition is also highlighted in this chapter. The stability condition is 

obtained by using Gershgorin circle theorem to ensure the stability of the solution.

Chapter 5 presents details of the discretization of the model by using level set 

method approach. Five main steps were emphasized, which includes initialization of 

the level set function and the signal equation, computation of the signal distribution, 

computation of the velocity in the interior region and on the boundary, extension of the 

velocity in the exterior region and updating the level set function.

Chapter 6 discusses all the numerical solutions obtained in two dimensional for 

both cases. The discussion focuses on the position of the membrane as time progresses 

and the signal density profile throughout the computation. The physical meaning of the 

solutions is also discussed in this chapter. Finally, Chapter 7 summarizes this research; 

inclusive of suggestions for future researches. References and appendixes are listed at 

the end of this thesis.
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