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ABSTRACT 

Cancer cell invasion in the metastasis process contributes to the high death 
cases among cancer patients. The spread of tumors from one part to another in the 
body is a result of the existence of finger-like protrusions or known as invadopodia. 
The formation of invadopodia involves several molecular processes that include the 
activity of matrix metalloproteinases (MMPs) in degrading the extracellular matrix 
(ECM), the creation of ligand, stimulation of signal transduction from the binding of 
ligand with epidermal growth factor receptor, up-regulation of MMPs, and actin 
polymerization. The purpose of this study is to investigate the emergence of 
invadopodia on the plasma membrane through the mathematical model of quasi-
static and unsteady cases involving ligand-protein and signal transduction 
processes. The degradation of the ECM by the MMPs is the starting point for the 
occurrence of invadopodia formation where the density of MMPs is taken as a 
trigonometric function. The creation of invadopodia is a result of actin 
polymerization activity that moves the plasma membrane. Hence, the movement is 
assumed as the membrane velocity and is accounted for as without and with jump 
velocity approaches where the jump from ligand to signal occurs. The method of 
level set is emphasized to detect the movement of the free boundary plasma 
membrane and is considered as a zero level set function. In addition, the location of 
the plasma membrane leads to the occurrence of regular points (a point that is far 
from the interface) and neighboring points (a point that is near to the interface). 
These points are solved using the second-order centered finite difference method and 
ghost fluid with the linear extrapolation method. The results showed that the 
mentioned integrated methods effectively describe the movement of the free 
boundary plasma membrane and this directly points out the formation of protrusions 
(invadopodia) on the plasma membrane. Furthermore, the size of the protrusions is 
observed to become longer as time increases. However, the aggressive (longer) 
protrusion is detected in the quasi-static model, whereas only small protrusions are 
spotted in the unsteady model. It is also observed that the disconnection of the plasma 
membrane happened in the quasi-static model and without jump velocity approach 
compared to the other problems. Nevertheless, in all problems conducted, the 
density of ligand and signal is the highest on the interface due to the stimulation of 
signal through the binding between ligand and membrane-associated receptor that is 
happening here. Besides, the numerical errors are compared for the three sizes of 
meshes. The simulation results demonstrated that for all profiles of level set, ligand, 
and signal, the higher size of meshes provides a smaller value of error compared to 
the lower size of meshes.  
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ABSTRAK 

Pencerobohan sel kanser dalam proses metastasis menyumbang kepada kes 
kematian yang tinggi di kalangan pesakit kanser. Penyebaran tumor dari satu 
bahagian ke bahagian yang lain dalam badan adalah hasil daripada kewujudan
tonjolan seperti jari atau dikenali sebagai invadopodia. Pembentukan invadopodia 
melibatkan beberapa proses molekul yang merangkumi aktiviti matriks 
metalloproteinase (MMPs) dalam merendahkan matriks ekstraselular (ECM), 
penciptaan ligan, rangsangan transduksi isyarat daripada pengikatan ligan dengan 
reseptor faktor pertumbuhan epidermis, pengawalaturan MMP, dan pempolimeran 
aktin. Tujuan kajian ini adalah untuk menyiasat kemunculan invadopodia pada 
membran plasma melalui model matematik kes kuasi-statik dan tak mantap yang 
melibatkan ligan-protein dan proses transduksi isyarat. Degradasi ECM oleh MMP 
adalah titik permulaan kepada berlakunya pembentukan invadopodia di mana 
ketumpatan MMP diambil sebagai fungsi trigonometri. Penciptaan invadopodia 
adalah hasil daripada aktiviti pempolimeran aktin yang menggerakkan membran 
plasma. Oleh yang demikian, pergerakan diandaikan sebagai halaju membran dan 
dikira sebagai tanpa dan dengan pendekatan halaju lompatan di mana lompatan 
berlaku dari ligan ke isyarat. Kaedah set aras ditekankan untuk mengesan pergerakan 
membran plasma sempadan bebas dan dianggap sebagai fungsi set aras sifar. 
Tambahan lagi, lokasi membran plasma membawa kepada berlakunya titik biasa 
(titik yang jauh dari antara muka) dan jiran (titik yang dekat dengan antara muka). 
Titik ini diselesaikan menggunakan kaedah beza terhingga berpusat tertib kedua dan 
bendalir jelmaan dengan kaedah ekstrapolasi linear. Keputusan menunjukkan 
bahawa kaedah bersepadu yang dinyatakan berkesan menggambarkan pergerakan 
membran plasma sempadan bebas dan ini secara langsung menunjukkan 
pembentukan tonjolan (invadopodia) pada membran plasma. Tambahan pula, saiz 
tonjolan diperhatikan menjadi lebih panjang apabila masa meningkat. Walau 
bagaimanapun, tonjolan yang agresif (lebih panjang) dikesan dalam model kuasi- 
statik, manakala hanya tonjolan kecil yang dikesan dalam model tidak mantap. Ia 
juga diperhatikan bahawa pemotongan membran plasma berlaku dalam model kuasi 
statik dan tanpa pendekatan halaju lompat berbanding masalah lain. Namun begitu, 
dalam semua masalah yang dijalankan, ketumpatan ligan dan isyarat adalah paling 
tinggi pada antara muka disebabkan oleh rangsangan isyarat melalui pengikatan 
antara ligan dan reseptor berkaitan membran yang berlaku di sini. Selain itu, ralat 
berangka dibandingkan untuk tiga saiz jejaring. Keputusan simulasi menunjukkan 
bahawa untuk semua profil set aras, ligan dan isyarat, saiz jejaring yang lebih tinggi 
memberikan nilai ralat yang lebih kecil berbanding saiz jejaring yang lebih rendah.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

In this chapter, the main area of this study is presented concisely. The

background of the study is explained in Section 1.2 where this section is divided into

two sub-sections: (1.2.1) biological point of view, and (1.2.2) mathematical point of

view. The problem statements corresponding to the aim of this study are explained

in Section 1.3. Next, the objectives of solving the proposed problem are stated in

Section 1.4. Further, the scope of the study is discussed in Section 1.5. In addition, the

significance of the study is explained in Section 1.6. Finally, the thesis organization is

clarified in Section 1.7.

1.2 Background of the Study

According to World Health Organization, in the next two decades, the total of

death related to cancer will rise by 70% [1]. Cancer is the second-highest cause of

death and one out of six deaths that happened globally is due to cancer. The types

of cancer that usually occur in men are lung, prostate, colorectal, stomach, and liver

while among women are breast, colorectal, lung, cervix, and thyroid cancer [2]. Over

the years, the case of cancer is increased. By 2014, it is reported that, in the United

States alone, about 1,665,540 people experienced cancer, and 585,720 of them died [2].

Hence, from this large value, cancer is one of the serious problems that can affect

human health [3]. Referring to Malaysia, the statistics of cancer patients released by



the national cancer institute showed an increasing trend from 2014 to 2019 and a slight

decrease in 2020 [4].

However, the data of cancer patients for 2021 and 2022 is not yet released

by the national cancer institute. The decrease of patients in 2020 is because of

the establishment and upgrading of treatment facilities such as surgery, radiotherapy,

chemotherapy, hormonal therapy, immune therapy, and symptomatic and supportive

therapy. In Malaysia, there are 14 radiotherapy centers where patients can seek

treatment. In addition, the increase in training of skilled staff in the treatment of cancer

also leads to a reduction in the number of cancer patients [5].

Thus, in this section, the occurrence of cancer is explained from the biological

and mathematical points of view. In the biological part, the cancer cell invasion

is discussed through the explanation at the sub-cellular level where the formation

of invadopodia occurs. Meanwhile, from the mathematical view, the invadopodia

formation is explained in terms of mathematical modeling.

1.2.1 Biological Point of View

The occurrence of the tumor begins as the genomes of the individual cells

in an organism becomes destabilized. In normal conditions, the proto-oncogenes

are responsible for cell division and growth but during genetic mutation, it becomes

oncogenes that are dangerous for the existing cell. The stimulation of the uncontrolled

cell division is because of deficiency of tumor suppressor genes. Therefore, in the past

three decades, studies on a substantial volume of information about genes and proteins

with their relationship to cancer growth had been investigated [6–8]. Recently, the

role of mutated genes in cancer cells is very important. Hence, the potency of gene

expression and defective proteins becomes the important discoveries to detect the novel

cancer biomarkers [9].
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The cancer cell has the ability to invade the local tissue and move to the other

part of the body. This process is known as metastasis which is famously known as

the key event to cancer cell invasion. The metastasis process is the major contributor

to the high mortality cases among cancer patients. Normally, the invasion of cancer

occurs when the tumor has reached a certain size and the peripheral rim of the cells

has started to separate. In order to allow the tumor to grow further, the cancer cells

innovate several methods of invasion both individually or in combination.

Figure 1.1: The invadopodium formation on the plasma membrane of the tumor cell

[10].

In invasive cancer cells, specialized sub-cellular membrane structures that

carry out a pivotal process in cancer cell invasion termed invadopodia are observed.

Invadopodia are small punctuated finger-like protrusions that can be spotted on the

membrane of cancer cells. Many kinds of proteins are recruited to invadopodia

and these structures are responsible for high levels of proteolysis during cancer cell

invasion and metastasis. Mentioned by [11], the invadopodia is the actin-based

protrusions of the tumor cells. These specialized sub-cellular membrane structures

can be found on the plasma membrane of an invasive cancer cell (see Figure 1.1).

The signal transduction through the binding of ligand and receptor leads to the

polymerization of actin. The actin polymerization consequently pushed the membrane

of the migrating cells and enables the metastatic cancer cells to pass through it. As

mentioned by [12], in invasive cancer cells, invadopodia are the invasive feet that carry

out a pivotal role in the cancer cell invasion. In addition, [13], stated that invadopodia

are the structure that initiates the cancer cell invasion through the metastasis process.
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From the perspective of biology, the formation of invadopodia involved the

molecular interaction of ligand, membrane-associated receptor, signal transduction,

matrix metalloproteinases (MMPs), extracellular matrix (ECM), and actin. The tumor

cells secreted matrix-degrading enzymes mainly of the type of MMPs and urokinase

plasminogen for the process of degradation. Thus, the degradation of the matrix

enabled the cancer cells to migrate and invade the secondary sites of the body. The

consequence of the degradation of the ECM, the creation of ligand on the extracellular

region will be imminent. Followed by the binding of the ligand with the membrane-

associated receptor such as epidermal growth factor receptor stimulate the signal

transduction. Hence, the stimulation of signal transduction initiates the polymerization

of actin, and up-regulation of the MMPs.

A study on the invadopodia should be seen as an important stage in the area of

cancer research because these structures are the beginning of the metastasis process and

can directly contribute to the number of deaths among cancer patients [14]. In addition,

a study on the invadopodia formation should be the crucial strategies to control and

more seriously to stop the metastasis process [15].

1.2.2 Mathematical Point of View

From the mathematical point of view, the formation of invadopodia has been

widely explored in terms of mathematical modeling. There are two types of approaches

that have been considered which are the fixed and free boundary plasma membrane.

The fixed boundary plasma membrane has been considered in [12]. The formation

and maturation of invadopodia include the actin reorganization, ECM degradation,

signaling process through the receptor, and MMPs delivery to the invasion front has

been focused on through the explanation of four key variables such as actin, ligand,

MMPs, and ECM. In addition, the effect of the MMPs rate constant has been marked

to investigate the level of invasiveness of a cancer cell. The deficiency of this study is

the region of actin becomes disconnected and actin is spotted in the extracellular region
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where it contradicts the biological fact, that the actin must lie within the cancer cell,

especially at the location of the invasion front. Besides, its polymerization activities

exert some pushing forces for the movement of the cancer cell.

To overcome the insufficiency in the [12]’s model, [10] proposed the new

variable which is signal transduction which lies inside the cell. This variable is not

considered in [12]. Hence, the semi-complete model for the formation of invadopodia

has been proposed. However, the one-dimensional signal transduction is taken in the

mathematical modeling with the others variables are omitted for simplicity purposes.

In the numerical part, the plasma membrane is treated as a free boundary to separate

the activities on the intracellular and extracellular regions. Through this study, the

movement of the plasma membrane is increased as time increases and in this state, the

invadopodium should be formed.

The continuation study from [10] is conducted by [16] with considering a two-

dimensional study of signal transduction. Hence, the formation of invadopodium as

stated in [10] has been proven through this study. Apart from this, the density of signal

transduction is observed to be higher in the area of the invadopodium formation.

In the meantime, [17] investigated the two-dimensional free boundary problem

with the implementation of ligand and signal transduction to study the cell protrusions

formation on the plasma membrane. Apart from this, the activities of actin

polymerization that are taken from the gradient of the intracellular signal drive the

motion of the interface. In the mathematical modeling part, the Laplace equation of

signal transduction with Dirichlet condition inside the cell is coupled to the Laplace

equation of ligand with the Neumann condition for the exterior region has been

emphasized. This study also described the availability of regular and neighboring

points consequent of boundary movement.

Currently, different approaches to mathematical modeling should be conducted

as a technique to observe the formation of invadopodia. The mathematical modeling
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for ligand and signal transduction by considering the Dirichlet boundary conditions in

both regions also needs to be explored. In addition, the actin polymerization is the

direct cause of the protrusions, and their activities moved the plasma membrane in the

outward direction. Here, actin polymerization is accounted for as the velocity of the

interface and is one of the crucial points in mathematical modeling.

Hence, two velocities have been selected which are without jump velocity as

proposed by [10] and with jump velocity that is yet to be considered. The main purpose

of applying the jump velocity is because of the possible interactions in the regions

intracellular and extracellular. Meanwhile, ligand and signal transduction that are

considered in the mathematical modeling also are in two different regions. Therefore,

this study aims to make such an attempt.

1.3 Problem Statements

Cancer is one of the leading causes of mortality in the world. Each year the

number of cancer patients increases and is attacking all categories of ages. Due to this

serious issue, the study on cancer cell invasion is very crucial. One of the key processes

that contribute to cancer cell invasion is the metastasis process. The metastasis process

starts from the migration of tumor cells from their primary location and invades another

tissue or organ. For this purpose, the metastatic cancer cells need to penetrate several

physical barriers to escape from the primary tumor before spread to the other part of the

body. In order to pass through these barriers, the finger-like actin-rich protrusions or

invadopodia are formed and play their role. The research on the invadopodia formation

mainly on the mathematical interpretation needs to be solved since it can be one of the

useful efforts in mathematical biology and cancer studies.

The interest in studying the formation of invadopodia from the perspectives of

mathematics has increased substantially over the past decades. A series study from
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Chaplain et al (refer [18–22]) have investigated the formation of invadopodia through

the mathematical modeling approach. Their study focused on the cancer cell invasion

at the tissue level. However, within years, the cancer cell invasion at the sub-cellular

level has become a great concern from researchers. Meanwhile, the invadopodia are

confirmed to be one of the structures that can initiate the cancer cell invasion at the sub-

cellular level. Hence, in recent years, the research on invadopodia has been a focus of

study.

Some researchers have successfully shown the presence of the protrusions on

the plasma membrane by considering the fixed plasma membrane, [12]. In addition,

there are researchers that have described the movement of the plasma membrane as the

free boundary, [10,16,17]. It is well known that the formation of invadopodia includes

several molecular processes of ligand, signal transduction, membrane-associated

receptor, ECM, MMPs, and actin. Currently, there are several mathematical models

available to observe the formation of invadopodia.

Although extensive research works have been devoted, the two-dimensional

ligand and signal transduction with Dirichlet boundary conditions has yet been

considered. Moreover, a different approach for the velocity of the plasma membrane

can be improved. The previous studies have described the movement of the free

boundary plasma membrane with the implementation of the gradient of the inner

signal. Nevertheless, jump velocity that is accounted as the difference of gradient

between intracellular signal and extracellular ligand is interesting to be implemented

due to two regions that have been considered which are intracellular and extracellular.

Therefore, the interaction in both regions inevitably occurs.

Based on the aforementioned matters, this study is carried out to study the

formation of invadopodia on the plasma membrane using two-dimensional quasi-static

and unsteady ligand and signal transduction. There are two different velocities selected

to solve for the velocity of the plasma membrane. Hence, this study explores the

following research questions:
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1. What is the simplified mathematical formulation of the invadopodia formation in

[10] that considering only ligand and signal transduction variables?

2. How to solve the quasi-static and unsteady models numerically?

3. How does the interface, ligand, and signal profiles are important for the formation

of invadopodia on the plasma membrane?

1.4 Objectives of the Study

This study investigates the two-dimensional mathematical model for the

formation of invadopodia in an invasive cancer cell with the approaches of without

and with jump velocities. Specifically, the objectives of this study are:

1. To formulate the simplified mathematical model of the invadopodia formation from

[10], consisting only ligand and signal variables.

2. To develop numerical algorithms for the level set method using finite difference

techniques in solving quasi-static and unsteady problems from the mathematical

model in (i).

3. To analyze the graphical results of the interface, ligand, and signal profiles with the

formation of protrusions on the plasma membrane.

1.5 Scope of the Study

This study is focused on the mathematical modeling that correlated to the

formation of invadopodia on the plasma membrane of an invasive cancer cell. Two-

dimensional mathematical modeling is investigated to gain a clearer view of the

formation of invadopodia. Furthermore, both quasi-static and unsteady mathematical

models for the ligand and signal transduction are considered in order to understand the

mechanism of invadopodia formation. Two different approaches for the velocity of the

8



plasma membrane have been considered in this study to observe the behavior of the

protrusions.

The proposed mathematical models are solved numerically by using the level

set method and finite difference technique of second-order centered finite difference,

and ghost fluid with linear extrapolation, as proposed by [17]. The level set function

is employed to detect the movement of the plasma membrane while, the regular and

neighboring points are discretized by using the second-order centered finite difference

and ghost fluid with linear extrapolation, respectively. For the time derivative, the

forward difference is performed. The following problems are discussed in Chapters 4

to 5 of this thesis:

1. the effect of without jump velocity and with jump velocity in the quasi-static ligand

and signal transduction mathematical model for the formation of invadopodia, and

2. the effect of without jump velocity and with jump velocity in the unsteady ligand

and signal transduction mathematical model for the formation of invadopodia.

Further, the numerical algorithms and discretization are developed and solved

using MATLAB software to obtain the graphical results. The research framework in

Figure 1.2 is a pictorial description for every step taken in this study.
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Figure 1.2: Research framework.
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1.6 Significance of the Study

Most cancer patients do not aware that the cancer cells have been successfully

spread to the secondary part of the body. This situation needs to be concerned as

the secondary tumor is reported to be more dangerous when compared to the first

tumor. Before the tumor cells are able to migrate from the primary location and invade

another tissue or organ, the invasive cancer cells have to penetrate physical barriers to

escape from the primary tumor. Here, the main role of the invadopodia takes place and

degrades the extracellular matrix. Hence, the results from this study are significant and

could be beneficial to mathematicians, biologists, and medical practices, according to

the following reasons.

1. To build a better understanding of the biological process in the formation of

invadopodia.

2. To become one of the efforts to cease the metastasis process.

3. The proposed variables such as ligand and signal transduction are indispensable

for the formation of invadopodia. Hence, the results obtained from this study can

be a new reference for medical experts to develop new therapies to control the

invasiveness of cancer cells.

4. From the mathematical point of view, the employment of the free boundary plasma

membrane can show a better insight into the movement of the plasma membrane.

5. Regarding the proposed method, the level set is the most suitable method since it can

track the position of the free boundary over time. Meanwhile, it can distinguish the

regions of the extracellular, and intracellular to separate the activities that happened

at both regions.

6. The new approach of the velocity of the plasma membrane could provide the good

reference needed in dealing with actin polymerization.
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1.7 Thesis Organization

This thesis consists of six chapters, focusing on the problem of invadopodia

formation on the plasma membrane by using two mathematical models (quasi-static

and unsteady) with two approaches of velocity (without and with jump velocities). In

Chapter 1, the background of the study is given, followed by the problem statements,

objectives of the study, the scope of the study, and the significance of the study.

The following Chapter 2 discusses some published research related to the proposed

problems. In Chapter 3, the mathematical formulations involving the invadopodia

formation in conjunction with the numerical discretizations are discussed in detail.

Chapter 4 presents the first problem of this study which is the quasi-static model

of ligand and signal for the invadopodia formation. In this chapter, two approaches of

velocity (without jump velocity and with jump velocity) to represent the velocity of

the plasma membrane are included in the model.

Next, Chapter 5 is an extension of work in Chapter 4 which is by considering

the unsteady model. Similar to the case in Chapter 4, the actin polymerization that

is assumed as the velocity of the plasma membrane is accounted as the without jump

velocity and with jump velocity.

In each chapter, the numerical results are discussed via graphical simulations

of interface position, ligand, and signal densities. Finally, Chapter 6 summarizes

and concludes the obtained results. The suggestions and recommendations for future

research are also given in this last chapter. Meanwhile, all the references used are listed

at the end of the thesis.
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21. SZYMAŃSKA, Z., Rodrigo, C. M., LACHOWICZ, M. and Chaplain, M. A.

Mathematical modelling of cancer invasion of tissue: the role and effect of

176



nonlocal interactions. Mathematical Models and Methods in Applied Sciences.

2009. 19(02): 257–281.

22. Andasari, V., Gerisch, A., Lolas, G., South, A. and Chaplain, M. Mathematical

modeling of cancer cell invasion of tissue: Biological insight from mathematical

analysis and computational simulation. Journal of mathematical biology. 2011.

63: 141–71.

23. Powathil, G., Gordon, K., Hill, L. and Chaplain, M. Modelling the effects of

cell-cycle heterogeneity on the response of a solid tumour to chemotherapy:

biological insights from a hybrid multiscale cellular automaton model. Journal

of theoretical biology. 2012. 308: 1–19.

24. Powathil, G., Swat, M. and Chaplain, M. Systems Oncology: Towards patient-

specific treatment regimes informed by multiscale mathematical modelling.

Seminars in cancer biology. 2014. 30. doi:10.1016/j.semcancer.2014.02.003.

25. Powathil, G., Munro, A., Chaplain, M. and Swat, M. Bystander effects

and their implications for clinical radiation therapy: Insights from multiscale

in silico experiments. Journal of Theoretical Biology. 2014. 401. doi:

10.1016/j.jtbi.2016.04.010.

26. Wang Z., D. T. S. Mathematical modeling in cancer drug discovery. Drug Discov

Today. 2014. 19(2): 145–50.

27. Halbrook, C. and Lyssiotis, C. Employing Metabolism to Improve the Diagnosis

and Treatment of Pancreatic Cancer. Cancer cell. 2017. 31 1: 5–19.

28. Tolde, O., Rsel, D., Vesel, P., Folk, P. and Brbek, J. The structure of invadopodia

in a complex 3D environment. European Journal of Cell Biology. 2010. 89(9):

674 – 680.

29. Cooper, G. M. and Hausman, R. E. The Cell: A Molecular Approach, 4th Ed.

Sinauer Associates Incorporated. 2007.

30. Li B., D. C. X. J. D. W., Gordon G. M. Specific killing of Rb mutant cancer cells

by inactivating TSC2. Cancer Cell. 2010. 17(5): 469–80.

177
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