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ABSTRACT 

The application of fibre reinforced polymer (FRP) composites in pipelines 

repairing and rehabilitation process revolutionizes the whole oil and gas industry 

especially in a condition which repair technique is hard to be implemented. The bond 

strength between FRP and the pipeline metal is the major element in determining the 

system strength. Numerous researchers studied the adhesion failure between FRP and 

metal using both experimental work and finite element (FE) simulation. However, the 

evaluation of bond strength has been specifically constraint within the bonding system 

and materials used only. This study aimed to simulate the pipeline repair system and 

investigate the adhesion shear stress acting at the joint using FE analysis. Double strap 

joint (DSJ) samples consisted of carbon fibre reinforced epoxy (CFRE) and ASTM A36 

steel as the adherend were prepared to model the repairing system using SIKADUR 330 

epoxy as the adhesive. A number of parametric tests was performed to obtain material 

data input for FE simulation. FE model of the DSJ samples was developed using 

ABAQUS software and a linear cohesive zone model was applied to model the behaviour 

of the cohesive layer. Laboratory tensile test was also conducted to validate the FE 

simulation results. The maximum load value in simulation result showed 9.8% higher 

than the result from experimental work while deeper analysis in stress distribution data 

provided an estimation of 69.1% effective length of the bonded area. A parametric study 

was conducted to evaluate the effect on the bond strength by varying adherend’s thickness 

and elastic modulus. For CFRE cases, the maximum applied load increased non-linearly 

with average increments of 2.08% and 1.25 % respectively, while adhesive horizontal 

displacement non-linearly decreased with average decrements of 6.16% and 5.62%, 

respectively as its thickness and modulus increased. Meanwhile, for ASTM A36 steel 

cases, a slight decrement was observed for maximum applied load with average 

decrements of 0.33% and 0.16%, while adhesive horizontal displacement non-linearly 

decreased with average decrements of 2.21% and 2.37 % respectively as its thickness and 

modulus increased. In conclusion, the stiffness of the bonded structure was influenced by 

both parameters, which beneficial in structural design.  
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ABSTRAK 

Penggunaan komposit polimer bertetulang gentian (FRP) dalam proses 

pembaikan dan pemulihan saluran paip merevolusikan keseluruhan industri minyak dan 

gas terutamanya dalam keadaan yang mana teknik pembaikan sukar dilaksanakan. 

Kekuatan ikatan antara FRP dan logam saluran paip adalah elemen utama dalam 

menentukan kekuatan sistem tersebut. Ramai penyelidik telah mengkaji kegagalan 

lekatan antara FRP dan logam sama ada secara eksperimen mahupun analisis unsur 

terhingga (FE). Namun begitu, penilaian kekuatan ikatan terkekang secara spesifik dalam 

sistem ikatan dan bahan yang digunakan sahaja. Tujuan kajian ini adalah untuk membuat 

simulasi sistem pembaikan saluran paip dan menyiasat tegangan ricih yang bertindak 

pada sendi lekatan menggunakan FE. Sampel sendi berganda (DSJ) yang terdiri daripada 

komposit epoksi bertetulang gentian karbon (CFRE) dan keluli ASTM A36 disediakan 

sebagai perekat untuk memodelkan sistem pembaikan menggunakan SIKADUR 330 

sebagai pelekat. Sejumlah ujian berparameter telah dijalankan untuk mendapatkan data 

masukan bahan bagi simulasi FE. Model zon jelekat lelurus digunakan untuk 

memodelkan tingkah laku lapisan jelekat. Ujian tegangan makmal juga telah dijalankan 

untuk mengesahkan data simulasi FE. Nilai daya maksimum keputusan FE menunjukkan 

9.8% lebih tinggi berbanding dengan hasil kerja dalam eksperimen sementara analisis 

yang mendalam terhadap data taburan tekanan memberikan anggaran panjang berkesan  

sebanyak 69.1% dari kawasan lekatan. Satu kajian parametrik telah dijalankan untuk 

menilai kesan terhadap kekuatan sendi dengan memvariasikan ketebalan dan modulus 

elastik perekatan. Bagi kes CFRE, beban tertumpu maksimum meningkat secara tidak 

lelurus dengan purata peningkatan masing-masing sebanyak 2.08% dan 1.25%, manakala 

anjakan melintang pelekat berkurang secara tidak lelurus dengan purata pengurangan 

masing-masing sebanyak 6.16% dan 5.62% apabila ketebalan dan modulus CFRE 

meningkat. Bagi kes keluli ASTM A36 pula, pengurangan kecil beban tertumpu 

maksimum dapat dilihat dengan purata pengurangan masing-masing sebanyak 0.33% dan 

0.16%, manakala anjakan melintang pelekat berkurang secara tidak lelurus dengan purata 

pengurangan masing-masing sebanyak 2.21% dan 2.37% apabila ketebalan dan modulus 

keluli meningkat. Kesimpulannya, kekukuhan struktur melekat dipengaruhi oleh kedua-

dua parameter, yang mana memberi manfaat dalam mereka bentuk struktur.   
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CHAPTER 1 

 

 

INTRODUCTION 

1.1 Research Background 

Carbon steel remains the main material used in pipeline manufacturing today 

[1]. During their service life, pipelines are subjected to various deterioration factors, 

such as erosion and corrosive environments. If unattended, these types of deterioration 

may cause further damage to the pipe such as thickness reduction, surface cracking or, 

worse still, complete failure. However, pipeline monitoring and assessment are now 

used practically worldwide, often to give a prior assessment of the required repairs and 

replacements [2]. The use of fibre-reinforced polymer (FRP) composites in repairing 

and strengthening pipelines is increasing in both onshore and offshore applications. 

The advantages of using FRP for repairing pipes include its versatility in making 

repairs without the need for a pipeline shutdown, as well as the elimination of 

explosion risk due to welding [3]. These attributes compensate for the reasons to use 

a simpler repair process. Additionally, FRP is also viable due to its high-tensile 

strength, light weight and non-corroding attributes [4]. 

The unique properties of FRP offer many possibilities in civil infrastructure 

applications, ranging from repair and rehabilitation to the development of new 

structural elements [5][6][7]. FRPs are generally resistive to corrosion and highly 

suitable for harsh environment applications, including subsea locations and corrosive 

soils. Transportation costs can be reduced greatly as the low weight properties of FRP 

eliminate the need for heavy equipment during installation. Its high strength-to-weight 

ratio also makes FRP an effective strengthening material for use in rehabilitated 

structures, where extra load might be a threat. FRP also provides engineers with the 

option of decreasing the dimension changes of any repaired structure, as FRP with 

high specific strength or modulus is also available in thin strips. Other unique 

advantages of FRPs include their formability and their easy manufacture and 



 

2 

installation. The unidirectional laminates application of FRP also provides better 

control of specific direction strengthening in any structural application. 

Wet layup is one method that can be employed in the FRP manufacturing 

process. The formability of FRP increases the capability to use it with any structure, 

even if unevenly shaped. Fibre is also available in many forms, including strips with 

numerous width differences, which are formed by stitching long fibres next to each 

other. This minimises any material waste as FRP can be formed to the specific size 

needed in the application. 

However, FRP still possesses some drawbacks [8]. Despite the advantages 

listed, FRP is vulnerable to damage from impact, fire, or vandalism. To eliminate these 

threats, a type of cover should be used as a protection medium for the FRP. Moreover, 

the FRP matrix resin is still susceptible to degradation caused by heat or other 

environmental factors. The most serious drawback to the FRP repair technique is that 

sufficient information is lacking on the long-term durability of FRP, making any 

service lifetime prediction unavailable. 

1.2 Problem Statement 

Load transfer ability is the main criterion for determining the performance of 

an FRP composite in any repair and strengthening system of a metallic structure. To 

achieve that, the proper selection of material has been the focus of both the industrial 

and academic worlds, since a structure’s strength generally derives from the material 

properties themselves. Adhesive with a high curing speed and performance has 

become a necessary form of load transfer medium, together with high-strength fibre, 

as reinforcing materials, especially in extreme environment applications. The current 

wet lay-up and fibre-wrapping techniques used in composite repair and strengthening 

systems have encountered many technical difficulties, resulting in a poorly bonded 

structure. This would lead to the formation of voids at the bond interface, affecting the 

structural integrity and load transfer capability of the bonded structure itself. Many 

studies have been conducted to improve the quality of composite repair systems and, 
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in terms of structural capabilities, the bond between the fibre and its connected 

substrate has always been the primary focus. Joint debonding is the primary failure 

mode of an FRP/metal-bonded structure and this issue is becoming a major concern in 

the design and application of composite repair and strengthening systems. 

Although the fibre-wrapping technique is considered new in repair and 

strengthening systems, its analysis began in 1940, since when joint analysis has 

become a key discipline in structural analysis. Over the years, researchers have devised 

numerous analytical and numerical methods of predicting the lifetime of a joint such 

that this aligns with the fundamental wrapping technique. However, while analytical 

analysis has limitations and employs too many assumptions, numerical studies are 

hampered by their complexity and the deep understanding required, even though these 

approaches actually provide more accurate data than analytical analysis. Although 

laboratory experiments are ideal for determining many critical properties of FRP/metal 

composite bonded structures, their applicability is limited to certain geometric sizes 

and a small number of material properties variations. Experimental work on composite 

structures with various combinations of different parameters is both difficult and 

uneconomical. As the complexity of bonded structure applications increases, 

computerised and numerical work (including the finite element method) are becoming 

major analysis tools and an integral part of structural engineering. With the correct 

understanding and method, numerical work can model a specimen as small as a grain 

of sand or as large as a building, while it can also predict the outcome after loads and 

displacements have been applied. In addition, with a non-linearity problem exhibited 

in the analysis due to surface contact and traction, numerical analysis in joint strength 

should be encouraged, particularly on FRP/metal bonded structures, as they are useful 

in practical terms and in industry. 

Despite the numerous designs and applications of FRP/metal bonded 

structures, most FRP repair and strengthening activities have been undertaken with 

carbon steel as it is widely used in structural applications, including construction and 

pipelines. Therefore, the focal point of this research centred on the development of a 

numerical model for an FRP/steel bonded specimen using ABAQUS finite element 

analysis software, which was used to evaluate its mechanical behaviours. FE analysis 
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on FRP/steel bonded samples has been performed frequently by researchers 

worldwide. However, with numerous material and design configurations available for 

application, the analysis of FRP/steel bonded structures is a considerable challenge 

since different configurations usually produce different performance and mechanical 

data. The usage of brittle epoxy, such as Sikadur 330, as the adhesive on FRP/steel 

bonded structures is widely recognised in industrial applications. However, little 

thorough experimental or numerical analysis is available on its mechanical behaviour 

and performance. As a major industrial applicable configuration, understanding the 

structural debonding behaviour of an FRP/steel adhesively bonded structure is 

important and has been highlighted in this study. An FRP/steel double-strap joint 

(DSJ) model was developed with Sikadur 330 as the adhesive. After the model had 

been calibrated using experimental data, it was used to conduct a parametric study. 

The geometrical and material effects on the load transfer capability and structural 

integrity are discussed in depth. The parameters evaluated were the thicknesses and 

elastic modulus of the FRP, adhesive and steel. 

As the numerical approach has become a major tool for evaluating the 

mechanical behaviour of bonded structures, accuracy has become a concern. Problems 

arise when the plastic behaviour and damage mechanism play a substantial role in 

debonding failure. Many models have been proposed to describe the failure 

mechanism of a bonded surface through numerical simulation. In the last decade, 

cohesive zone modelling (CZM) has been extensively used by researchers to describe 

the adhesion properties of a bonded surface. CZM was initially developed by 

Barrenblatt in describing the fracture between two surfaces as a material separation. 

Such material separations revolve around the concept that crack propagation is 

prevented by some cohesive force that exists before the crack occurs. The description 

of material separation is defined by traction-separation laws, which regard traction as 

a function of separation and determine the constitutive behaviour of cohesive zone 

models. In computational CZM, material separation and degradation are assumed to 

occur in a discrete plane; this is represented using cohesive elements. These failure 

and degradation mechanisms are embedded into the constitutive law, which relates 

cohesive traction to local separation. Its effects on load transfer capability and 

structural integrity are later discussed in depth. 



 

5 

1.3 Objectives of the Research 

 The research aim is to improve an existing polymer composites 

strengthening/repairing materials system that can be applied in oil and gas structural 

applications (e.g., gas pipes) due to variations in the subjected load. To fulfil the 

project aim, the objectives are as follows:  

i. To conduct finite element (numerical) analysis on a double-strap joint model 

of a steel pipe strengthened with an FRP system under adhesion shear. 

ii. To evaluate the bond performance and shear stress distribution on the adhesive 

layer of the joint numerically using FE analysis.  

iii. To investigate numerically the effects of geometrical and material parameters 

on the joint strength using FE analysis. 

1.4 Research Scope 

The scope of the research covers the understanding of the overall need for the 

project through a literature review; a parametric study of materials systems, such as 

identifying their mechanical and physical properties; the development of a numerical 

model for finite element analysis; and a numerical analysis of the model when 

subjected to adhesion shear based on experimental and analytical analysis using 

ABAQUS software. A double-strap joint configuration will be used in the numerical 

model to better simulate a real application. The structural bond performance and shear 

stress distribution will be investigated and discussed. The data from the analysis will 

be compared with the experimental work. 
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1.5 Research Questions 

i. Can a finite element model predict the bond performance and structural 

integrity of a CFRE-steel strengthening system within an acceptable range of 

errors?  

ii. How is shear stress distributed on the joint overlaps and how does this affect 

the bond integrity? 

iii. How do different parameters - such as the adherend’s thickness and elastic 

modulus - affect the bond strength of a double-strap joint system? 

1.6 Significant of the Research  

This research will predict data and results concerning the performance of a 

CFRE plate bonded system under adhesion shear which is, at present, the major 

concern in real-world applications. The research finding is vital and will be used as a 

standard reference in the design and quality control of composite repairs made to 

strengthen pipelines. The data prediction will also be used to provide directions for 

further analysis, as well as a more effective repairing and strengthening system. 
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is time consuming, the other option seems unnecessarily costly, and is difficult to 

perform in the subsea or hazardous areas. Still, in both cases, a long downtime and 

revenue losses will occur as the pipeline must be shut down and emptied before any 

work could been done. 

During early 1970s, a development of full encirclement steel sleeves was made 

for pipeline repair [9]. These  repair system were done by wrapping the damaged pipe 

with a length of pipe that possessed same diameter, wall thickness, and grade. The 

steel sleeves are then welded using butt or fillet welded techniques produced a type A 

or type B sleeve condition. However, type A sleeves are incapable of containing 

pressure and not suitable to be used for any through-thickness defects and any defects 

that are deeper than 80% of wall thickness. For these cases, type B sleeves are more 

suitable to be applied. However, the repairing required full drained or depressurized 

of the pipe to allow any fillet welding process being made.  

Other conventional methods of repair include weld overlays, fillet welded 

patches, flush welded patches and welded leak box mechanical clamps [3]. 

2.2.2 FRPs Wrapping Technique 

The interest of FRP as a materials  for structural purposes was started way back 

in the 1950s and 1960s, where their high specific modulus and strength was very 

welcome in the structural application. Military industry was the earliest usage of FRP 

materials as high strength FRP was firstly introduced in fighter aircraft. It was only 

until 1980s, the first development of FRP pipeline repair system was made [9].  

Through time, a number of different repair systems for internal and external pipeline 

repair existed for commercial used, and the development of a better repairing system 

continue to progress until today [10]. 

Low weight and flexibility are the major advantages of FRP materials in 

pipeline repair application [3] [4]. Adding the corrosive issue, FRP wrapping solve the 

problem of pipeline repair in corrosive environment as they are corrosive resistant 
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Appendix A Material Properties for FE Simulation 

 

 

Fibre 

 

 

 

Steel 

 

 

E1 E2 E3 Nu1 Nu2 Nu3 G12 G13 G23 

300000 10000 10000 0.0058 0.0058 0.3 26500 26500 3700 

Elastic 
Young 
Modulus 

Poison 
Ratio 

 251602.1 0.26 

Plastic UTS  

 726205.1  
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