
NUMERICAL ANALYSIS OF DETONATION STABILITY IN A ROTATING 

DETONATION ENGINE FUELLED WITH BIOGAS AND HYDROGEN

MOHAMMAD NURIZAT RAHMAN

A thesis submitted in fulfilment of the 

requirements for the award of the degree of 

Doctor of Philosophy

School of Mechanical Engineering 

Faculty of Engineering 

Universiti Teknologi Malaysia

JANUARY 2022



DEDICATION

This thesis is dedicated to my mother, my greatest supporter and pillar in my life, 
who taught me that the finest kind o f knowledge to have is knowledge gained for the

benefit of others.

To my father, who ingrained in me the belief that hard work pays off.

To Amaleen, who has been a strong emotional supporter throughout my doctoral 
study and has also assisted me in becoming the best version of myself.

To Along, who was the first to open my eyes to the difficulties of living 
independently and inspire me to become the strong person I am today.

To Angah, my first "unofficial" teacher who imparted knowledge in me at a young 
age and sparked my passion for learning.

iv



ACKNOWLEDGEMENT

In preparing this thesis, I was in contact with many people, researchers, 
academicians, and practitioners. They have contributed towards my understanding and 
thoughts. In particular, I wish to express my sincere appreciation to my main thesis 
supervisor, Professor Dr. Mazlan Abdul Wahid, for encouragement, guidance, critics 
and friendship. I am also very thankful to my co-supervisor Dr Mohd Fairus Mohd 
Yasin for his guidance, advices and motivation. Without their continued support and 
interest, this thesis would not have been the same as presented here.

My fellow HiREF postgraduate student should also be recognised for their 
support. My sincere appreciation also extends to all my colleagues and others who 
have provided assistance at various occasions. Their views and tips are useful indeed. 
Unfortunately, it is not possible to list all of them in this limited space. I am grateful 
to all my family member.

v



ABSTRACT

The novel rotating detonation engine (RDE) fuelled with biogas offers a 
significant contribution to the application o f combustion engines powered by 
renewable-based fuels. However, the potential of a biogas-fuelled RDE has never been 
properly examined in terms o f key operating parameters such as ignition intensity, 
equivalence ratio, and total mass flow rate (MFR). Hence, the primary research goal 
for the current numerical study was to examine the stability o f continuous rotating 
detonation waves (CRDW) in RDEs powered by hydrogen and biogas on the basis of 
the aforementioned operating parameters. The numerical model o f CRDW was first 
established to represent the CRDW stability. Following that, the modified one-step 
chemistry for biogas detonation was developed and merged with the validated CRDW 
numerical model. The impact o f the above-mentioned critical operating parameters 
on CRDW stability in the biogas-fuelled RDE was explored using the validated 
CRDW numerical model, which was merged with the modified one-step chemistry for 
biogas detonation. The CRDW numerical model revealed that the predicted CRDW 
pressure was within 10% of the experimental data. The one-step model was compared 
to experimental data and the detailed chemistry data, revealing 15.75% and 8.29% 
discrepancies in biogas detonation velocities. The result is that in a fuel-lean non
premixed environment at fixed ignition intensities, the biogas-fuelled RDE 
outperformed the hydrogen counterpart in terms o f detonation stability, with the 
predicted time to achieve a stable one-wave CRDW in the former RDE being 1327 
microseconds shorter than that of the latter RDE. However, the former RDE fell short 
in detonation sustainability, as predicted by the wave longevity. After 0.0146 seconds 
from the one-wave emergence, the CRDW was extinguished in the former RDE, while 
the CRDW pressure was only decreased by 1.52% in the latter RDE. The fundamental 
explanation for this was that biogas, which has lower diffusivity and reactivity than 
hydrogen, created an imbalance in counter-rotating waves, resulting in a faster CRDW 
mode transition than hydrogen. Multiple collisions o f counter-rotating waves have 
been discovered to be the primary mechanism in the CRDW stabilization process. 
There was a balance between gaining and losing energy for counter-rotating waves, 
culminating in a CRDW mode transition or CRDW extinguishment. The enhanced 
ignition intensity, equivalence ratio, and MFR produced the expected increase in 
CRDW intensity in the biogas-fuelled RDE. Enhancing these parameters aided in 
boosting the detonability of the biogas-air mixture. Quasi one-wave CRDW was 
observed from the start of ignition in all parametric cases, showing that the state of 
chaotic detonation instability was hardly occurred using biogas. To conclude, the 
current study discovered that the CRDW from the biogas-fuelled RDE has a more 
comprehensive operating stability range than the hydrogen-fuelled counterpart. Still, 
the rapid biogas detonation decay highlights the necessity for an enhanced mixing rate 
to preserve detonation continuity. The assessment of CRDW instabilities in the current 
study is pivotal for ensuring that these instabilities are effectively regulated and taken 
into account during the establishment o f a RDE powered by biogas. The findings will 
also spearhead further research into parameters that could sustain CRDWs in the future 
working prototype o f biogas-fuelled RDE.
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ABSTRAK

Enjin ledakan berputar (RDE) digerakkan dengan biogas memberikan 
sumbangan kepada penciptaan enjin pembakaran yang dikuasakan oleh bahan bakar 
berasaskan tenaga boleh diperbaharui. Tetapi, potensi biogas RDE tidak pernah 
disiasat secara menyeluruh berdasarkan kritikal parameter operasi seperti intensiti 
pencucuhan, nisbah kesetaraan, dan kadar aliran jisim total (MFR). Jadi, tujuan utama 
kajian berangka ini adalah untuk meramal kestabilan perambatan gelombang ledakan 
berputar berterusan (CRDW) di RDE yang dibekalkan dengan hidrogen dan biogas 
berdasarkan impak parameter di atas. Untuk mewakili kestabilan CRDW, model 
berangka CRDW telah dibina. Satu model kimia satu langkah diubah suai telah dibina 
untuk peledakan biogas dan telah digabungkan dengan model berangka CRDW. 
Penilaian parametrik terhadap parameter ini telah dijalankan melalui model berangka 
CRDW yang telah disahkan bersama-sama model kimia satu langkah diubah suai 
untuk peledakan biogas. Ramalan tekanan CRDW telah berjaya disahkan dengan 
eksperimen dengan ralat kurang dari 10%. Model kimia satu langkah ini juga telah 
dibandingkan dengan eksperimen dan mekanisme terperinici, yang mana perbezaan 
masing-masing adalah 15.75% dan 8.29% terhadap halaju peledakan telah 
diperhatikan. Keputusannya, di persekitaran kurang bahan bakar dan tanpa pra- 
campuran dengan nilai pencucuhan sama, biogas RDE melebihi hidrogen RDE dari 
segi kestabilan peledakan yang mana ramalan masa untuk mencapai satu gelombang 
stabil di biogas RDE adalah 1327 mikrosaat lebih pendek dari hidrogen RDE. Namun, 
biogas RDE kurang dari segi keberlanjutan peledakan seperti yang diramalkan melalui 
kesinambungan gelombang. Selepas 0.0146 saat dari kemunculan satu gelombang 
stabil, RDW telah terpadam di biogas RDE tetapi hanya berlaku 1.52% pengurangan 
tekanan CRDW di hidrogen RDE. Asas penjelasan kepada perkara ini ialah biogas, 
yang mempunyai difusitiviti dan kereaktifan yang lebih rendah daripada hidrogen, 
mewujudkan ketidakseimbangan dalam gelombang putaran balas, dan menghasilkan 
peralihan mod CRDW yang lebih cepat daripada hidrogen. Perlanggaran berbilang 
gelombang putaran balas telah ditemui sebagai mekanisme utama dalam proses 
penstabilan CRDW. Terdapat keseimbangan antara memperoleh dan kehilangan 
tenaga untuk gelombang berputar balas, yang memuncak dalam peralihan mod CRDW 
atau pemadaman CRDW. Penggunaan intensiti penyalaan, nisbah kesetaraan dan MFR 
yang tinggi dijangka meningkatkan intensiti CRDW kerana peningkatan parameter ini 
akan menghasilkan keupayaan ledakan yang lebih tinggi untuk campuran biogas- 
udara. Kuasi satu gelombang CRDW berlaku dari awal pencucuhan di kesemua kes 
parametrik, menunjukkan ketidakstabilan ledakan sukar untuk dicapai melalui biogas. 
Kesimpulannya, CRDW dalam biogas RDE mempunyai julat kestabilan yang lebih 
luas daripada hidrogen RDE. Tetapi, pereputan ledakan biogas yang cepat 
menyerlahkan keperluan untuk meningkatkan kadar pencampuran untuk mengekalkan 
kesinambungan ledakan. Penilaian ketidakstabilan CRDW dalam kajian semasa 
adalah penting untuk memastikan ketidakstabilan ini dikawal dengan berkesan dan 
diambil kira semasa pembinaan biogas RDE. Penemuan ini juga akan menjadi batu 
loncatan untuk penelitian lebih lanjut parameter yang dapat memanjangkan 
keberlanjutan CRDW dalam biogas RDE.
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CHAPTER 1

INTRODUCTION

1.1 Background

The rotating detonation engine (RDE) is an ingenious energy conversion 

system in such it promises remarkable reduction in fuel consumption and emissions 

[1]. Utilisation of detonation mode is the pinnacle feature of a RDE as it has the 

capability to liberate energy much quicker than deflagration combustion mode which 

take place in the conventional gas turbine system [2]. To further enlighten the 

understanding of RDE working operation, two major modes of combustion needs to 

be described properly. Detonation and deflagration are referred as the supersonic and 

the subsonic combustion processes respectively. The detonation mode triggered by the 

initiation of shock wave propagates through the flammable mixture with a supersonic 

speed. The characteristics of detonation including high thermal efficiency, rapid 

release of energy, and shockwave across the combustion region, and thus, makes it 

favourable in power and propulsion studies.

A RDE not only has all of the advantages of detonation, but also has the 

advantage of the compact and simple structure. With pressure gain attribute in 

detonation phenomenon, it can minimise the pressure that is required to compress the 

incoming air in the gas turbine system, thus, contribute to less compressor stages as 

compared to the conventional gas turbine systems. The current gas turbine systems 

utilise deflagration mode to burn the reactant mixture. The deflagration mode requires 

multi-stages compressors to elevate the pressure prior to being burned in a combustor. 

Therefore, the implementation of a RDE can simplify the engine structure, reduce the 

engine weight, and decrease the fuel consumption [2]. A RDE can provides nearly 

constant thrust using continuous rotating detonation waves (CRDWs) [2]. The concept 

of CRDW in a RDE makes it a better energy conversion system than the prior
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detonation-based energy conversion system; the pulse detonation engine (PDE) which 

used intermittent detonations [3-4].

The concept of a non-fossil fuel economy has now become the target of many 

regions around the world. In the spirit of developing a novel combustion engine 

powered by renewable-based fuels, the already novel RDE, when combined with the 

potential to operate with renewable-based fuels such as biogas and green hydrogen, 

will create a major contribution to the creation of a novel combustion engine powered 

by renewable-based fuels. With its high potential for incorporation into a gas turbine 

system by replacing the traditional deflagration combustion mode, the future of a RDE 

powered by renewable-based fuels is bright. As a result, the RDE system will bring an 

innovative revolution to existing power generation, aviation, and aerospace propulsion 

systems, as well as contribute to the reduction of global warming [5]. To accomplish 

this aim, the creation of a dependable and functional RDE system powered by 

renewable-based fuels such as biogas and green hydrogen is needed.

1.2 Problem Statement

In experiments to detect CRDWs in RDEs, pressure transducer and ion probe 

readings are commonly used [2]. Despite the vast amount of experimental data that 

can be taken from these sensors and exploited to discover different CRDW 

peculiarities [2], there is still a lack of information as there is a dearth of an overall 

picture of the CRDW process due to experimental setup constraints. Having said that, 

the point-based readings from the pressure transducer and the ion probe are insufficient 

to provide complete insights into CRDW dynamics. The constraints of experimental 

methodologies for displaying CRDW dynamics hampered in-depth understanding of 

CRDW phenomena, particularly CRDW stabilization and sustainability. When 

compared to experiments, numerical analysis can greatly improve and simplify CRDW 

visualisation. However, the lack of reliable numerical models that can improve 

understanding of CRDW stabilization will result in major instabilities not being 

properly identified during the CRDW stabilization stage, and the "indiscernible" 

difficulties not being appropriately addressed in order to construct a workable RDE,
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particularly one powered by biogas or hydrogen. Therefore, in order to construct a 

feasible RDE system, a credible numerical model that can improve understanding of 

CRDW stabilization and sustainability is required, which will eventually be employed 

for simulation-based design processes. A reliable numerical model can also be used to 

optimise RDE injection structures in order to improve mixing processes in the RDE 

annulus, which appears to be lacking in experimental studies that have leveraged the 

advantage of the RDE numerical model to improve mixing processes.

The chemistry model is one of the most critical factors to take into account 

when constructing a reliable numerical model that can accurately predict the CRDW 

dynamics in RDEs. The development of an appropriate chemistry model for biogas 

detonation is critical for predicting CRDW dynamics in a biogas-fuelled RDE. The 

validation feedback loop at varied constants in a chemistry is often executed until the 

simulation results agree well with the experimental data. While there is almost no 

experimental study on the use of biogas in RDEs, there are a few experimental 

publications, such as Wahid [6], Ghazali [7], and Elhawary [8], that have experimentally 

tested biogas detonation on detonation tube-based engines The fitting of a chemical 

model to simulate biogas detonation is critical because the comparatively low reactivity 

and diffusivity of biogas [9] could leads in diverse reacting flow dynamics in RDEs. If 

the chemistry model is not calibrated to represent biogas detonation, significant CRDW 

phenomena such as CRDW stabilization [10-11], unstable CRDWs [12], and detonation 

extinguishment [13-19] cannot be accurately captured in a biogas-fuelled RDE.

While there have been a number of detonation studies that have employed one- 

step and two-step Arrhenius chemistry models to account for both the accuracy and 

efficiency of detonation modelling [20-31], all of these studies addressed hydrogen 

detonation and hence used a hydrogen-air/oxygen chemistry model. Therefore, the 

published one-step chemical models have not been validated or tuned for biogas 

detonation modelling. As a result, there is some doubt about the credibility of the 

published one-step Arrhenius chemistry model to well predict the detonation 

behaviour in biogas-fuelled RDEs, as there is a high possibility that the published one- 

step models will produce ignition delay times that are a few orders of magnitude 

different than the ignition delay times from biogas detonation [32]. To appropriately
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model the CRDW from the biogas-powered RDE, the constant in the one-step 

Arrhenius chemistry model should be adjusted via the validation feedback loop to 

reflect the biogas detonation experimental data.

In terms of RDE systems, the construction of a fuel-lean non-premixed RDE is 

appealing in terms of safety and fuel consumption reduction. Nonetheless, in terms of 

CRDW dynamics, previous studies have found a number of serious concerns with the 

CRDW sustainability in a non-premixed RDE, the most notable of which being 

CRDW stability and longevity. Because hydrogen is the most commonly investigated 

fuel in the realm of RDE research, the majority of these issues were discovered in 

hydrogen-fuelled RDEs. Several research have already discovered the transient 

stabilization period for achieving a stable CRDW. Both Ma [10] and Liu [11] have 

scrutinized the events that lead to the formation of a stable CRDW. However, both of 

these references used premixed reactants. There are scenarios in non-premixed cases 

where it ends up producing unstable CRDWs [12] or even worse, the detonation 

extinguishment happened [13-18]. The phenomenon of detonation extinguishment in 

a non-premixed RDE is much more common in which a detonation failed to be created 

in the RDE annulus, ends up becoming a normal deflagration or no combustion at all. 

In a leaner equivalence ratio, the severity of CRDW instabilities was observed to be 

worsened [19]. All of these findings indicate that there is still a significant knowledge 

gap on the CRDW stabilization process in a fuel-lean non-premixed RDE, with one of 

the key reasons being the limits in experimental methodologies for visualising 

CRDWs, which inhibited in-depth understanding of CRDW dynamics. 

Characterization of instabilities during the CRDW stabilization process in a fuel-lean 

non-premixed RDE is critical to ensure that instabilities are adequately regulated and 

taken into consideration during the development of a fuel-lean non-premixed RDE, 

especially one powered by biogas or hydrogen.

The biogas-fuelled detonation engine, however, is not a new concept. In fact, 

studies have previously been conducted to evaluate biogas detonation with an 

emphasis on practical use of the detonation engine [6-8]. Nonetheless, all of these 

studies have concentrated on detonation tube-based applications, such as the PDE, 

which have a lower detonation frequency than a more novel detonation engine, such
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as the RDE. Hence, it is difficult to achieve a high detonation frequency in a PDE 

powered by low reactivity fuels such as pure biogas [6-8], making it unsuitable for 

practical usage. That being said, the CRDW, a quasi-continuous detonation with 

constant thrust in a RDE, could be the suitable combustion mechanism to allow the 

use of low reactivity fuels like biogas in detonation-based engines. However, hardly 

no study has been conducted on the use of biogas for RDEs. To investigate the 

potential of CRDWs in a biogas-fuelled RDE, a parametric assessment of critical 

operating parameters must be carried out. The equivalence ratio [2, 17, 19], mass flow 

rate [16, 24,] and ignition intensity [26, 76] are all significant operating parameters in 

RDE systems that have been examined previously. Despite this, there have been almost 

no studies that have investigated the effects of these parameters on CRDW stability in 

a biogas-fuelled RDE. As a result, the potential of a biogas-fuelled RDE has never 

been thoroughly investigated, leaving this type of engine with an unknown potential.

1.3 Research Questions

The research questions are:

(a) In comparison to experimental data, how accurate is the numerical model based 

on the Reynolds-averaged Navier-Stokes (RANS) equation and the one-step 

Arrhenius chemistry model in predicting the CRDW behaviour in RDEs?

(b) Is the above-mentioned numerical model capable of reasonably predicting the 

transitory detonation stabilization phase in RDEs?

(c) Is the modified one-step chemistry model capable of reasonably predicting the 

occurrence of biogas detonation?

(d) Does the biogas-fuelled RDE used in the present study have a transitory 

detonation stabilization phase? If so, how does the transitory detonation 

stabilization phase from the biogas-fuelled RDE vary from the hydrogen- 

fuelled RDE?
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(e) What is the expected intensity and stability of CRDWs in fuel-lean non

premixed biogas- and hydrogen-fuelled RDEs?

(f) What is the expected intensity and stability of CRDWs in the biogas-fuelled 

RDE at different ignition intensities, equivalence ratios, and mass flow rates?

1.4 Research Objectives

The research objectives are:

(a) To establish the validated numerical model of CRDW based on the detonation 

experimental data.

(b) To establish a comprehensive comparative assessment of CRDW behaviour 

from fuel-lean non-premixed biogas- and hydrogen-fuelled RDEs.

(c) To predict the impact of ignition intensity, equivalence ratio, and mass flow 

rate towards the CRDW stability in the biogas-fuelled RDE.

1.5 Scopes of Research

The scopes of the present research are as follows:

(a) The CRDW simulation in the hydrogen-fuelled RDE is limited to a single case 

as the baseline. The subsequent parametric studies are only for the biogas- 

fuelled RDE.

(b) For objective (a), both experimental and numerical methods are used to establish 

the validated numerical model of CRDW.

(c) For objectives (b) and (c), numerical methods are employed using the established 

validated numerical model in objective (a).
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(d) To capture the mixing process and CRDW behaviour, both non-reacting and 

reacting flows are transiently modelled.

(e) The only geometry covered in the current analysis is the RDE body, which plays 

a significant role in the flow dynamics behaviour within the RDE system.

(f) The current research focuses solely on the intensity and stability of CRDW in the 

biogas-fuelled RDE in terms of the predicted pressure front, as this is the most 

common parameter examined in experimental studies via pressure transducer 

readings. To back up the pressure front findings, the predicted heat of reaction rate 

is also analysed.

(g) The predicted CRDW stability in the biogas-fuelled RDE is investigated via the 

decay of CRDW pressure and heat of reaction over time, with simulation time 

limited to the 12th cycle of CRDW propagation to balance simulation accuracy and 

efficiency.

(h) The parameters studied in the biogas-fuelled RDE parametric studies are only the 

ignition intensity, equivalence ratio, and total mass flow rate.

(i) Since it is the most typical biogas composition in the literature, this analysis only 

covers biogas with a composition of 65% methane (CH4) and 35% carbon dioxide 

(CO2). The impact of varying biogas composition on the CRDW stability is left 

for future research.
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