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ABSTRACT

The Unmanned Aerial Vehicle (UAV) assisted communication systems 

provide users a unique connectivity platform to support high data traffic demand of the 

future. However, the practical proliferation of the aerial nodes is highly involved in 

finding solutions to the challenges of low spectral efficiency and limited energy 

reserves of the system. In spite of the fact that the power domain Non-Orthogonal 

Multiple Access (NOMA) has established its proficiency for the next generation 

terrestrial wireless networks, the design and validation of NOMA’s performance are 

still needed in the new perspective of an aerial Base Station (BS) deployment. Hence, 

the thesis investigates the capability of NOMA as a promising candidate for future 

aerial communication systems with the objectives to maximize jointly data-rate, 

coverage, and energy efficiency of the system. First, NOMA’s feasibility is established 

by formulating the problem of achievable sum-rate constituting a joint function of 

power allocation and UAV-BS altitude. Then, a constrained coverage expansion 

methodology, facilitated by the increase of NOMA user-rate is proposed. Next, a 

swarm intelligence based user-pairing strategy jointly optimized with UAV altitude 

and user power allocation is devised to minimize the transmission power of the aerial 

system. Finally, the formulated non-linear fractional programming problem of energy 

efficiency maximization is solved using a nested Dinkelbach’s structure. Taken 

together, the presented results manifest that NOMA performs better than the baseline 

scheme of Orthogonal Multiple Access (OMA). Particularly, the proposed NOMA 

schemes achieve 30% coverage radius expansion, 18% spectral efficiency 

enhancement, and 25% transmission power reduction compared to OMA. In addition, 

two times improvement in energy efficiency is observed for the NOMA system as it 

achieves 3 bps/joule compared to 1.5 bps/joule of OMA in dense-urban deployment. 

In conclusion, the research findings prove the proficiency of NOMA for future aerial 

communication systems.
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ABSTRAK

Sistem komunikasi yang dibantu Pesawat Tanpa Pemandu (UAV) 
menyediakan pengguna satu platform kebersambungan yang unik untuk 
menyokong permintaan lalu lintas data tinggi pada masa depan. Walau 
bagaimanapun, pengembangbiakan praktikal nod aerial sangat bergantung 
kepada pencarian penyelesaian terhadap cabaran kecekapan spektrum rendah 
dan tenaga simpanan sistem yang terhad. Walaupun Capaian Berbilang Bukan 
Ortogon (NOMA) domain kuasa telah mem-buktikan kecekapannya untuk 
rangkaian daratan wayarles generasi akan datang, reka bentuk dan pengesahan 
prestasi NOMA masih diperlukan dalam perspektif baru penggunaan Stesen 
Asas (BS) udara. Oleh itu, tesis ini menyiasat kemampuan NOMA sebagai 
calon untuk sistem komunikasi aerial masa depan dengan objektif untuk 
memaksimumkan bersama kadar data, liputan, dan kecekapan tenaga sistem. 
Pertama, kebolehlaksanaan NOMA diwujudkan dengan merumuskan masalah 
jumlah kadar yang dapat dicapai sebagai fungsi peruntukan kuasa dan altitud 
UAV-BS. Kemudian, metodologi pengembangan liputan terhad yang dipermudah 
oleh kenaikan kadar pengguna NOMA dicadangkan. Seterusnya, strategi 
berpasangan pengguna berdasarkan kecerdasan kerumunan dioptimumkan bersama 
dengan altitud UAV dan peruntukan tenaga pengguna direka untuk meminimumkan 
kuasa penghantaran sistem aerial. Akhirnya, pemaksimuman kecekapan tenaga yang 
dirumuskan sebagai masalah pengaturcaraan pecahan tidak linear diselesaikan dengan 
menggunakan teknik struktur Dinkelbach yang bersarang. Secara keseluruhan, 
hasil kajian yang dibentangkan menunjukkan bahawa NOMA mempunyai 
prestasi yang lebih baik daripada skim garis tapak Capaian Berbilang Ortogon 
(OMA). Khususnya, skim NOMA yang dicadangkan mencapai pengembangan 
jejari liputan sebanyak 30%, peningkatkan kecekapan spektrum sebanyak 18% 
dan pengurangan kuasa penghantaran sebanyak 25% dibandingkan dengan OMA. 
Tambahan pula, peningkatan kecekapan tenaga sebanyak 2 kali diperhatikan bagi 
sistem NOMA yang mencapai 3 bps/joule jika dibandingkan dengan 1.5 bps/ 
joule yang dicapai oleh OMA di aturan kedudukan bandar padat. Secara 
kesimpulan, dapatan kajian membuktikan kecekapan NOMA untuk sistem 
komunikasi aerial masa depan.
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CHAPTER 1

INTRODUCTION

1.1 Background and motivation

The future wireless networks promise to provide ubiquitous connectivity to a 

multitude of devices with diversified traffic patterns wherever and whenever needed. 

Particularly, an economically viable and agile multifaceted connectivity platform is the 

primary requisite for successful future generation wireless networks. Hence, a renewed 

interest in adopting the Unmanned Aerial Vehicle (UAV) assisted communication 

systems for a broad range of civil applications has been witnessed in the last few 

years [1]. Among many use cases of UAV communication systems such as coverage 

enhancing relays [2] and data disseminating flying nodes [3], a UAV Base Station (BS) 

deployment may also be necessitated by the presence of coverage holes in the absence 

of a terrestrial BS caused by a malfunctioning or a natural catastrophe [4]. The 

UAV-BS equips the means to swiftly deploy recovery networks, which connects the 

first responder personnel in a case of natural calamity when the terrestrial network is 

partially or entirely malfunctioning [5]. The UAV assisted communication systems, if 

appropriately designed, are envisioned to support the spatially as well as temporally 

volatile traffic surges in the coverage area without relying on the overly-engineered 

cellular network [6].

Irrespective of the deployment scenario, the flexible placement with dynamic 

adaptability to the changing communication scenarios and diversified user Quality 

of Service (QoS) requirements has set UAV communication systems to become 

an essential component of the ubiquitously connected Fifth Generation (5G) and 

Beyond Fifth Generation (B5G) wireless networks [7]. However, the incorporation 

for UAV communication system to reap all the captivating benefits for future wireless 

communication networks needs thoughtful deliberation over the many challenges 

diminishing this synergy. Notably, the issue of optimal deployment for the objectives
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of maximized coverage, capacity, and energy efficiency is of a paramount importance 

in the UAV realm. Though beneficial, the extra degree of freedom facilitated by the 

almost unrestricted mobility makes an optimal deployment of the UAV significantly 

more complicated compared to its terrestrial counterpart.

Particularly, the design and performance of UAV communication systems is 

highly characterized by the deployment objective and the environment profile of the 

coverage area. Furthermore, the spatial distribution of users as well as the Air To 

Ground (A2G) communication channel, defined by the UAV altitude are needed to be 

explicitly taken into account for the optimal deployment of the UAV communication 

system. In addition, the performance of the UAV systems is often limited by deficient 

onboard energy reserve. The energy reserve of a UAV is needed for flight operation, 

communication, and computation purposes, where an inefficient utilization of this 

reserve not only reduces the air operational time of the UAV, but also effects the 

performance of the wireless communication system [8]. Thus, it is imperative to even 

include energy efficiency as a critical parameter in the design of a UAV communication 

system.

On the other hand, the last few years have seen exceptional growth in the 

wireless data traffic demand that is contemplated to reach a staggering 77 Exabytes 

per month by 20221. Classic Orthogonal Multiple Access (OMA) schemes such as 

Time Division Multiple Access in Second Generation, Code Division Multiple Access 

in Third Generation, and Orthogonal Frequency Division Multiple Access in Fourth 

Generation (4G), require each user to be served with a dedicated resource either in 

time, frequency, or code domain. This yields sub-optimal channel resource utilization 

and increased latency for the connected devices. Subsequently, the challenging 

massive spectral efficient connectivity requirements for the 5G/B5G wireless networks 

is often restricted by the available orthogonal channel resources.

Therefore, the high-density presence of users sharing the limited physical radio 

resources has motivated the development of 5G enabling technologies such as massive

iCisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2017-2022", Cisco 
public (2019).
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Multiple Input Multiple Output (MIMO), millimeter Wave (mmWave), and Device- 

to-Device (D2D) communication [9]. Meanwhile, the same prognosis has directed 

investigations on a Radio Access Technology (RAT) called Non-Orthogonal Multiple 

Access (NOMA) that opportunistically serves multiple users within the same channel 

resource block utilizing a novel domain of power control, superposition coding, and 

Successive Interference Cancellation (SIC) [10-17]. NOMA has been proved to 

exhibit improved spectral efficiency as well as balanced and fair access as compared 

to OMA technologies which mostly benefits the user with more favourable channel 

condition [15,16,18]. Additionally, NOMA with the exploitation of a new dimension 

of power is an add-on technology that is able to operate in conjunction with other 

techniques in the multiple access paradigm. For instance, NOMA renders a meaningful 

reduction in interference by extending intra-cluster access for the users sharing the 

same orthogonal resource or beam for inter-cluster access [19, 20]. Undoubtedly, 

NOMA provides the means to meet the challenging 5G envisioned requirements of 

the Internet of Things (IoT) of ultra-low latency and ultra-high connectivity.

In contrast, the analyses of the potentials and challenges arising with the 

choice of RAT for UAV assisted communication systems have been conventionally 

constrained to OMA [21-23]. Specifically, NOMA is a promising solution 

to challenges encompassing the next generation wireless networks and finds its 

applications in technologies envisioned to support 5G/B5G key technologies [24] 

such as massive MIMO [13,25,26]. However, the incorporation of NOMA for UAV 

communication remained unexplored [27,28] before the preliminary work by Sohail 

et al. reported in [29]. In view of fundamental differences in working principles of 

OMA and NOMA, current studies are not directly applicable to NOMA based UAV 

communication systems and several challenges must be addressed before gauging its 

effectiveness for the UAV communication systems. Henceforth, NOMA scheme with 

its share of benefits is investigated in the thesis for typical deployment scenario of an 

aerial BS, where the aspects of improved throughput, coverage, and energy efficiency 

are addressed.
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1.2 Problem statement

As discussed, NOMA holds the key essence on the fruitful deployment of 

UAV communication systems for harmonized coverage and capacity in the 5G and 

B5G wireless networks [30]. Nonetheless, the aspects of power allocation and the 

corresponding user channel characteristics commonly associated to the performance 

gain of terrestrial NOMA wireless networks are to be viewed within the new 

perspective of an aerial BS deployment. Of particular interests are the characteristics of 

the A2G channel and its effect on the UAV-user link based on their respective location 

in the coverage region [31]. The following presents the problem statements associated 

with investigated case of NOMA based UAV-BS communication system.

1.2.1 The problem of UAV-BS altitude and NOMA user power allocation

According to the widely adopted A2G channel model [32], the increasing 

altitude of the UAV also increases the probability of establishing Line Of Sight 

(LOS) communication links between the UAV-BS and terrestrial users. However, the 

increment in altitude of the UAV-BS also results in increased path loss between the 

communicating nodes. Hence, an optimal vertical placement of the UAV-BS that 

balances between higher probability of LOS and path loss is to be computed for 

the attainment of specific objectives such as maximized throughput as presented in 

[21]. Conventionally, the methodologies presented in [21,33] are primarily devised 

for OMA and propose to improve channel condition for the cell-edge user in the 

coverage region. The improvement of cell-edge user’s channel condition generates 

minimum difference between channel state of the users in the coverage area, which is 

fundamentally different to the working principle of NOMA communication systems 

and further investigation regarding optimal altitude placement of an NOMA system 

need further investigation [34]. Thus, it may hamper the anticipated benefits of NOMA 

transmission [35]. Specifically, the performance of NOMA is highly dependent upon 

the asymmetric channel conditions of the users selected for NOMA transmission [36]. 

In contrast, the improvement of cell-center user channel condition through altitude 

optimization can be utilized to achieve maximum difference in the channel state of the
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NOMA users for increased gains as compared to OMA based aerial nodes. In addition, 

NOMA relying on SIC and NOMA user power allocation holds a significant place to 

create balance between capacity and fair access of the system [37]. As an alternative 

to the fixed power allocation schemes [38, 39], the potential gains of NOMA for 

aerial communication system may be maximized by dynamically adjusting user power 

allocation in accordance to changing altitude of the UAV-BS. The dynamic NOMA 

power allocation schemes in [40], [41], and [42] were proposed to simultaneously meet 

the data-rate thresholds for both NOMA users. However, the devised methodologies 

cater for fixed altitude terrestrial wireless communication networks, which are not 

trivial to extend for the aerial NOMA communication systems. Therefore, the thesis 

investigates a novel altitude displacement scheme to generate distinctive channel 

conditions between the paired users that is jointly optimized with the dynamic power 

allocation for the objectives of maximal throughput and coverage. Particularly, a 

NOMA based aerial communication system is proposed to surpass the sum-rate of 

the system achievable by an equivalent OMA scheme as proposed in [23] and [33]. 

Moreover, a performance comparison of the proposed scheme is also presented with 

the a terrestrial NOMA system having fixed altitude and power allocation scheme [43].

1.2.2 The problem of NOMA user-pairing

To this end, the work in this thesis is proposed to establish the viability 

of NOMA UAV communication systems by tackling the problem of a two user 

deployment in the coverage region. However, the evaluation of the case with more than 

two users in the coverage area raises the question of appropriate user-pairing scheme 

for the aerial BS. Since the conception of NOMA, a significant number of studies have 

been conducted to investigate terrestrial NOMA user-pairing and its effect on various 

performance metrics of the network [44-46]. Nonetheless, the A2G channel gain for 

the case of aerial networks varies as a function of altitude and imposes an additional 

complexity of dynamic channel conditions for all users when adjusting altitude for 

better performance. Although the available literature on terrestrial NOMA user-pairing 

have laid a strong foundation, further investigations are still needed to determine the 

appropriate pairing scheme for a NOMA based aerial deployment [47]. Meanwhile,
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the energy-efficient operation for enhanced mission time has been recognized among 

the most pressing concerns in the UAV communication realm [48,49]. Consequently, a 

Particle Swarm Optimization (PSO) based user-pairing methodology was proposed to 

minimize the required transmission power for an aerial NOMA communication system 

[50]. However, the authors assumed simplification of fixed altitude for the proposed 

methodology and the mutual contribution of UAV-BS altitude and NOMA user-pairing 

optimization remains unexplored in the literature. Specifically, the reported analysis 

in [50] ignored the inter-dependency between various parameters such as user-pairing, 

power allocation, and altitude in the problem formulation. Although the presented 

work evaluates the effect of varying altitude of UAV-BS, no methodology was proposed 

for optimization of UAV-BS altitude for the considered utility function. Moreover, 

the user-pairing scheme in [50] failed to elaborate the effect of various environmental 

factors on the performance of NOMA based aerial systems and the presented analysis 

fails to compare the performance of the proposed scheme with other competing 

heuristic techniques. Thus, a novel problem of joint optimization of NOMA UAV- 

BS altitude, power allocation, and user-pairing needs to be investigated for achieving 

a reduction in the required transmission for the aerial NOMA systems. Moreover, a 

detailed investigation on the performance of the NOMA UAV-BS based on deployment 

environment and user-density needs to be conducted for an insightful knowledge.

1.2.3 The problem of NOMA UAV-BS energy efficiency

It is also noteworthy that a significant proportion of the available energy is 

consumed during the flight operation of a UAV [51]. For instance, Hua et al. in 

[52] and [53] examined iterative strategies to minimize total energy consumption 

and maximize the secrecy energy efficiency of a fixed-wing UAV-BS, respectively. 

However, the reported analyses assumed OMA with fixed altitude and the evaluation 

of secrecy energy efficiency was carried out by considering only the more prominent 

mobility related energy consumption of a fixed-wing UAV. Meanwhile, the energy 

efficiency defined as the ratio of achievable sum-rate to the total power consumption 

has been identified as a core performance metric for the NOMA based wireless 

networks [54-58]. Fang et al. in [54,55] examined joint user-scheduling and power
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allocation for the cases of perfect and imperfect Channel State Information (CSI), 

respectively. A matching theory based channel allocation limited to two users per 

sub-channel was proposed in [54], whereas the same concept was extended in [55] 

for the general case of the arbitrary number of users per sub-channel given imperfect 

CSI. Zamani et al. [56] also studied a power allocation based energy efficiency 

maximization for imperfect CSI, where a value close to optimal total power allocation 

was computed by leveraging the concept of the difference of two concave functions 

programming and Dinkelbach’s structure. On the other hand, a joint bandwidth and 

power allocation optimization was conducted by transforming the non-convex problem 

into a difference of two convex functions problem [58]. However, it is crucial to note 

the substantial difference between the UAV and terrestrial wireless communication 

systems in terms of their design and operational characteristics. Different from the 

terrestrial perspective, the total power consumption of the rotary-wing UAV-BS is 

computed considering the composite of powers required for the signal transmission 

and hover operation of the UAV-BS modeled as a linear function of altitude [59,60]. 

Secondly, the optimization of UAV-BS specific parameters such as altitude, which is 

comparable to the problem of channel assignment, imposes an additional complexity 

of dynamic channel conditions for all users during the optimization. This is in contrast 

to the conventionally assumed static channel states while optimizing the channel 

allocation [54]. Furthermore, it is important to observe the tight coupling between 

altitude and power allocation for conflicting goals of maximized sum-rate, minimized 

transmission power, as well as efficient flight operation of the UAV-BS. Particularly, a 

low energy consumption during the hovering operation of the UAV-BS requires a low 

altitude flight while serving the ground users. On the other hand, the UAV-BS may be 

required to fly at a relatively higher altitude for lower transmission power allocation 

to fulfill the QoS thresholds of the users. Consequently, it is not trivial to maximize 

the information bits per unit energy consumption of the UAV-BS utilizing the existing 

work that is mainly focused on energy efficiency maximization for terrestrial NOMA 

based systems.

A summary of the most notable literature that influenced the directions of the 

thesis is presented as Table 1.1.
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2014

2015

2016

2018

2016

2017

2020

2019

2019

2019

2018

2018

2019

Table 1.1 Summary of the open problems in literature

[23]

[33]

Ref. Summary Open problems

[32] A2G channel gains are dependent on An optimal vertical placement o f the

[6 1 ] the elevation angle and distance UAV-BS that balances between LOS

between the ground users and UAV- and path loss needs further investiga-

BS. The optimum altitude for mini- tion for a NOMA aerial communica-

mum path loss for cell-edge user also tion system. An altitude optimization

maximizes the Signal to Noise Ratio methodology to maximize the

for all OMA users within the channel distinctiveness between

coverage region. paired NOMA user for maximum

gain needs to devised.

[40] A fixed power allocation scheme A dynamic power allocation strategy

[4 1 ] lacks the ability to cater for users is needed to tackle varying channel

with different QoS requirements. conditions for changing altitude of

Thus, dynamic power allocation the UAV-BS for maximum NOMA

strategies are proposed to meet data- gains in comparison to fixed and

rate thresh-old set for all terrestrial terrestrial communication system

NOMA users given a utility based power allocation strategies.

function.

[37]

[44] The impact o f user-pairing on the A joint optimization o f user-pairing,

[47] performance o f terrestrial NOMA is power allocation, and altitude con-

highlighted for different utility func- sidering the prevailing A2G channel

tions. A PSO based user-pairing conditions is neglected in literature,

scheme is presented for fixed altitude which requires further investigation. 

aerial NOMA BS.

[56]

[52] The ratio o f sum-rate to the total The energy consumption during the

[5 7 ] power consumption for fixed altitude flight operation o f the UAV-BS

terres-trial NOMA system is needs to considered in the problem

evaluated. The role o f UAV flight formula-tion. The joint altitude

energy consumption is highlighted. optimization and the corresponding

power alloca-tion strategy is required 

for conflicting goals o f energy 

efficiency maximiza-tion o f the 

NOMA UAV-BS.
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1.3 Research objectives

The main objectives of the thesis are listed as:

1. To propose the joint optimization of NOMA UAV-BS altitude and NOMA power

allocation for improved throughput and coverage.

2. To propose the joint optimization of NOMA user-pairing and UAV-BS altitude

to minimize the total transmission power allocation.

3. To propose the joint optimization of NOMA UAV-BS altitude and NOMA power

allocation to maximize the energy efficiency.

1.4 Research Scope

The research work presented in the treatise focuses on establishing NOMA’s 

viability for the UAV assisted communication systems. The identified performance 

metrics of throughput, coverage, and energy efficiency have been investigated by 

formulating for each metric of a constrained optimization problem. It is important 

to note that all the presented analyses have been conducted assuming a DownLink 

(DL) communication employing a single antenna aided low altitude rotary-wing UAV 

platform providing coverage to disc-shaped Region Of Interest (ROI). The radii of 

the ROI is fixed as 60 m, 120 m, and 180 m (unless otherwise stated), where the 

users in the ROI are also assumed to be equipped with single antenna devices. A 

single cell scenario has been assumed throughout the thesis, where the effect of 

co-located cellular network such as interference is excluded from the scope of the 

presented work. A widely adopted generic A2G channel model is employed to 

characterize the effect of altitude as well as the deployment environment (rural, urban, 

and dense urban) towards the performance of the UAV communication system in 

terms of various metrics under consideration [62, 63]. The channel gains between 

the UAV-BS and the ground users are dependent on the altitude of the UAV-BS and 

the position of the users on the ground. Hence, it is assumed that the knowledge 

of user position is known to the UAV-BS and corresponding channel gains can be 

computed using the adopted A2G channel model. The energy consumption of the
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UAV-BS during the flight operation is modeled as a function of altitude following the 

work in [59,60]. The formulated optimization problems in the thesis constrained by 

multi-QoS requirements pose fair analyses between the OMA and NOMA techniques 

by following a stringent benchmark for each NOMA user to meet the individual 

rate threshold attained by a conventional OMA UAV-BS deployment. The numerical 

analyses including Monte Carlo simulations have been conducted utilizing MATLAB 

software, where optimization tool such as fminsearch and fmincon have been applied 

to solve various unconstrained and constrained convex problems, respectively. The 

presented results are computed using numerical simulation by performing established 

models and no field measurement is performed.

1.5 Contributions

Chapter 4 presents a dynamic power allocation strategy for altitude optimized 

NOMA UAV-BS to maximize its capacity. The optimization problem is formulated as 

a function of the altitude of the UAV-BS, constrained to meet or exceed the individual 

user-rates set forth by OMA for the same deployment scenario and target area. The 

role of altitude for improved NOMA aerial system performance is highlighted, where a 

lower flight operation compared to an equivalent OMA system is proposed to generate 

greater throughput. Furthermore, a methodology is devised to render an expansion of 

the aerial cell coverage, which is facilitated by NOMA user-rate gains. Thus, the 

high dependency between various optimization parameters such as altitude, power 

allocation, and user-pairing is identified to influence the achievable gains of NOMA 

for the aerial system. The findings of Chapter 4 are published as [64].

The Chapter 5 further elaborates the complex inter-dependency of diverse 

optimization parameters on the overall performance of a NOMA aerial communication 

system. Thus, a novel scenario involving joint optimization of user-pairing, altitude, 

and the corresponding power allocation is investigated for optimizing transmission 

power requirements in terms of the multi-functional objective for a NOMA UAV-BS 

configuration. A novel hybrid optimization methodology invoking the provisions of the 

nature-inspired heuristic technique and convex optimization is proposed to solve the
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formulated Mixed Integer Non-Linear Programming (MINLP) problem. The proposed 

methodology is the first work to leverage a potential on Cat Swarm Optimization 

(CSO) in the field of NOMA communication systems. The evidenced reduction in the 

required transmission power for various communication environments and coverage 

areas compared to an OMA deployment scenario proves the efficacy of the proposed 

scheme. The findings of the Chapter 5 are under review process at the Journal of 

Vehicular Communications, Elsevier.

Finally, the implications of altitude to the overall energy expense during the 

hovering operation of the UAV-BS is emphasized in the Chapter 6. Henceforth, the 

effect of altitude is also incorporated in a novel formulation of total energy efficiency 

of the NOMA UAV-BS. The chapter evaluates the effect of paired users on the 

operational altitude of the UAV-BS considering pairing between users with the best 

and worst channel conditions. An exhaustive methodology is devised to determine the 

feasible altitude range of the UAV-BS for which each user’s rate constraint is satisfied 

within the prescribed transmission power limits. The analyses are further extended by 

assessing the dependency of the feasible altitude range on a subset of user-pairs and 

subsequently, a low complexity method to determine the constrained altitude bounds 

is proposed. The formulated non-convex Non-Linear Fractional Programming (NLFP) 

problem is solved by employing an alternating optimization technique where at first an 

energy efficiency maximization problem is solved as a function of altitude by fixing 

the power allocation to a feasible value. Next, the power allocation is optimized 

to maximize the objective of energy efficiency by fixing the altitude of the UAV- 

BS obtained in the previous step. A nested Dinkelbach’s structure is opted to solve 

the NLFP problem and guarantee convergence within an error tolerance limit. The 

energy efficiency, power allocation, and sum-rates of the proposed NOMA based 

UAV communication system are evaluated at close to optimum altitude. Explicitly, 

a lowest possible flying altitude of the UAV-BS is suggested when operating in low 

Signal to Noise Ratio (y) regimes to save vital flying energy of the UAV-BS. On 

the other hand, the NOMA UAV-BS could attain a higher altitude when operating 

at higher SNR to balance between system throughput and total energy consumption 

for maximized energy efficiency. Subsequently, the results are compared with the 

baseline OMA scheme to fortify the better performance of the proposed methodology. 

Analytical and numerical analyses are demonstrated for the proposed scheme, where
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results are detailed for various target regions, user-pairing schemes, and deployment 

environments. Taken together, the proposed scheme achieves improved total energy 

efficiency in bits/joule. The findings of the Chapter 6 are published as [65].

1.6 Thesis organization

The thesis is organized into following chapters:

Chapter 1 presents a brief introduction to NOMA based UAV communication 

system followed by the problem statements, associated research objectives, and scope 

of the thesis.

The classification of UAVs and literature overview of the associated A2G 

channel model are highlighted in Chapter 2. Henceforth, the chapter discusses 

some of the most challenging issues related to aerial communication systems in 

light of the most recent research developments. The chapter also introduces NOMA 

communication systems, while critical design parameters of power allocation and 

user-pairing are also analyzed. Next, a brief overview is presented on the state of 

the art development in the aerial NOMA communication realm. Subsequently, the 

thesis presents an overview of some of the baseline schemes utilized in the thesis for 

comparative analyses. Finally, the chapter concludes by discussing the optimization 

technique utilized in the thesis for various problems.

In Chapter 3, the first section elaborates the overall system modeling by 

detailing the spatial distribution, A2G channel, and energy consumption model of the 

aerial communication system. The next section portrays the transmission scheme of 

the aerial NOMA used in this thesis for performance analysis of the proposed schemes. 

Finally, the chapter introduces the formulated optimization problems and list the main 

constraints considered for the formulated problems in the thesis.

A two user model of an aerial NOMA communication system is examined in 

Chapter 4 of the dissertation. The proposed dynamic power allocation schemes jointly
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optimized with altitude of the NOMA based UAV-BS are evaluated for the objectives 

of achievable sum-rate and coverage maximization. The results are presented for 

both optimized and fixed altitude schemes, where superior performance of NOMA 

in comparison to OMA scheme is established.

The Chapter 5 extends the NOMA UAV-BS design to a multi-user scenario of 

a NOMA UAV-BS deployment. The problem of transmission power minimization is 

formulated as a highly non-convex joint function of user-pairing, power allocation and 

altitude of the NOMA based UAV-BS. The chapter highlights the high dependence 

between each design parameter and an iterative CSO based user-pairing strategy is 

illustrated.

The Chapter 6 explores the notion of total energy efficiency for a multi

user scenario of a NOMA UAV-BS, where a novel bit per energy consumption 

maximization problem is investigated. The chapter presents a detailed analyses on the 

feasible altitude range of the NOMA UAV-BS given a best-worst user-pairing scheme. 

Subsequently, the highly non-convex optimization problem is solved employing a 

nested Dinkelbach’s framework. The result are presented at the end to manifest the 

improved energy efficiency of the proposed scheme.

Chapter 7 concludes the dissertation. Finally, a discussion on open research 

issues related to aerial communication systems is furnished.
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